Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene
-
摘要: 长江三角洲地区的磁性地层认识存在很大不确定性.为建立一个可靠的年代标尺,为区内沉积环境和气候演化研究提供约束,在年代地层和磁性地层基础上,以频率磁化率为信号源、ETP为靶曲线,通过轨道调谐方法对区内LZK1孔开展了天文年代标尺研究,建立了年代序列框架.结果显示,M/B界线埋深约为143.0 m、Ga/M界线埋深约为219.0 m、Gi/Ga界线埋深约为296.6 m.受气候和沉积环境控制,沉积旋回特征清楚,沉积速率具有明显的阶段性.调谐后的频率磁化率显示了显著的125 ka、96 ka、41 ka、23 ka、22 ka、18 ka等轨道周期,并在轨道周期上与ETP曲线高度相关,相关性超过了95%检验标准.100 ka、41 ka和23 ka周期的带通滤波曲线与偏心率、斜率和岁差在振幅和相位上吻合较好,但局部时间段有差异,可能与低沉积速率、沉积速率突变或短时间尺度的地层缺失等因素有关.研究表明,在具有短暂沉积缺失的持续沉降区域,只要保证样品分辨率,可以通过轨道调谐方法建立可靠的年代框架.Abstract: There is also uncertainty about the magnetostratigraphy in the Yangtze delta. In order to establish a reliable time scale, and provide constraints for sedimentary environment and climate evolution, based on chronostratigraphy and magnetostratigraphy, in this paper astronomical time scale of the LZK1 borehole in the Yangtze delta is researched, and established the chronological framework is established. The results show that M/B, Ga/M and Gi/Ga boundaries locate at 143.0 m, 219.0 m and 296.6 m separately. The deposit cycles are clear and the sedimentary rate has obvious phases, which was influenced by the climate and sedimentary environment. The tuned frequency dependent susceptibility record reveals orbital periods including 125 ka, 96 ka, 41 ka, 23 ka, 22 ka, 18 ka, and is correlated with ETP curves enormously in orbital periods, the confidence interval exceeds 95%. The band-pass filtering curves of 100 ka, 41 ka, 23 ka circles coincide with the corresponding orbital parameter curve in phase and amplitude in total, while existing some inconformities at certain times. The inconformities may be caused by low sedimentary rate or abrupt change of sedimentary rate. In this paper, a conclusion is drawn that in the ongoing subsidence areas with temporary depositional hiatus, as long as the sampling resolution can be assured, we can establish reliable chronological framework by orbital tuning.
-
Key words:
- Yangtze delta /
- magnetostratigraphy /
- orbital tuning /
- astronomical time scale /
- climate period /
- sedimentology /
- Quaternary
-
图 4 LZK1孔柱状、质量(频率)磁化率和极性对比
GPTS引自Gradstein et al.(2012);岩性剖面中岩性同图 2
Fig. 4. Lithologic column, curves of mass susceptibility and frequency dependent susceptibility of borehole LZK1, polarity with the correlation to the GPTS 2012
图 5 LZK1孔初始年代模型、沉积速率及频谱分析、深海氧同位素对比
黑色粗线为5点滑动平均曲线,0~5.3 Ma氧同位素数据引自Lisiecki and Raymo(2005);其他引自Zachos et al.(2001)
Fig. 5. Curves of initial time scale and sedimentary rate, spectrum analysis and χfd of borehole LZK1, comparison with marine oxygen isotope
表 1 光释光测年结果
Table 1. OSL ages for sediments from LZK1 borehole
野外
编号埋深
(m)U
(10-6)Th
(10-6)K
(%)等效剂量
(Gy)年剂量
(Gy/ka)含水量
(%)年龄
(ka)gsg-1 13.6 1.80 9.80 1.80 4.94±0.37 3.02 27.26 1.6±0.1 gsg-2 14.0 2.56 13.7 2.25 6.50±0.19 3.78 36.92 1.7±0.1 gsg-5 41.6 2.30 12.7 2.26 41.04±0.71 3.71 29.98 11.1±0.5 gsg-6 43.3 1.76 8.70 1.63 43.62±0.31 2.77 22.68 15.6±0.6 gsg-7 57.0 1.54 7.25 1.77 82.56±1.17 2.74 20.39 30.1±1.3 gsg-8 86.8 1.20 5.56 1.82 168.70±2.90 2.67 10.82 63.2±3.4 gsg-9 87.5 2.91 15.5 2.68 435.76±15.62 4.56 27.35 95.5±5.1 gsg-10 107.1 3.11 14.4 2.24 532.54±6.40 4.28 20.57 124.5±5.2 表 2 AMS 14C测年结果
Table 2. AMS 14C ages for sediments from LZK1 borehole
野外
编号埋深
(m)直接测年年龄
(a BP)惯用年龄
(a BP)日历校正年龄
2δ(a BP)13C/12C比值
(%)AC-1 20.6 2 660±30 3 000±30 2 760~2 690 -4.4 AC-2 21.2 2 710±30 3 110±30 2 910~2 760 -0.6 AC-3 30.8 4 480±30 4 890±30 5 260~5 030 -0.3 AC-5 32.8 5 890±30 6 290±30 6 760~6 630 -0.6 -
[1] Ao, H., Dekkers, M.J., Qin, L., 2011.An Updated Astronomical Timescale for the Plio-Pleistocene Deposits from South China Sea and New Insights into Asian Monsoon Evolution.Quaternary Science Reviews, 30(13-14):1560-1575.doi:10.1016/ j.quascirev.2011.04.009 [2] Brüggemann, W., 1992.A Minimal Cost Function Method for Optimizing the Age-Depth Relation of Deep-Sea Sediment Cores.Paleoceanography, 7(4):467-487.doi:10.1029/ 92PA01235 [3] Chen, Z.Y., Chen, Z.L., Zhang, W.G., 1997.Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions.Quaternary Research, 47(2):181-191.doi:10.1006/ qres.1996.1878 [4] Chen, Z.Y., Stanley, D.J., 1995.Quaternary Subsidence and River Channel Migration in the Yangtze Delta Plain, Eastern China.Journal of Coastal Research, 11(3):927-945. http://journals.fcla.edu/jcr/article/download/79870/77135 [5] Ding, Z.L., Yu, Z.W., Liu, D.S., 1991.Progress in Loess Research (Part 3):Time Scale.Quaternary Sciences, (4):336-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201007009.htm [6] Duan, Z.Q., Liu, Q.S., Shi, X.F., et al., 2016.Reconstruction of High-Resolution Magnetostratigraphy of the Changjiang (Yangtze) River Delta, China.Geophysical Journal International, 204(2):948-960.doi:10.1093/ gji/ ggv497 [7] Gao, Z.Y., 2007.Correlation of Parasequence and Short-Term Base Level Cycles in River Facies:A Case of the Xujiahe Formation in Central Sichuan.Acta Geologica Sinica, 81(1):109-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200701012.htm [8] Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al., 2012.The Geologic Time Scale 2012.Elsevier, Amsterdam, 1-1176. [9] Han, Z.Y., Li, X.S., 2006.Orbitally Tuned Time Scale Based on Climate Proxy Indicator of Grain Size Distribution in Nihewan Basin.Earth Science, 31(6):773-779 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200606004.htm [10] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003.40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China:Eruption Ages, Magma Evolution and Petrogenesis.Chemical Geology, 197(1-4):287-318.doi:10.1016/ S0009-2541(02)00399-6 [11] Huang, X.T., Zheng, H.B., Yang, S.Y., et al., 2008.Magnetostratigraphy and Its Applications of Core DY03 in the Yangtze River Delta.Marine Geology & Quaternary Geology, 28(6):87-93 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/1010492 [12] Imbrie.J, Hays, J.D., Martinson, D.G., et al., 1984.The Orbital Theory of Pleistocene Climate:Support from a Revised Chronology of the Marine δ18O Record.In:Berger, A., Hays, J., Kukla, G., et al., eds., Milankovitch & Climate:Understanding the Response to Astronomical Forcing.D.Reidel Publishing Co., Norwell, 269-305. [13] Ji, Y.P., Xia, Z.K., 2007.Comparison and Primarily Interpretation of Magnetic Susceptibilities in Different Sediments.Acta Geoscientica Sinica, 28(6):541-549 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb200706005.htm [14] Laskar, J., Robutel, P., Joutel, F., et al., 2004.A Long-Term Numerical Solution for the Insolation Quantities of the Earth.Astronomy & Astrophysics, 428 (1):261-285.doi:10.1051/ 0004-6361:20041335 [15] Li, P.Y., Wang, Y.J., Liu, Z.X., 1999.Chronostratigraphy and Deposition Rate in the Okinawa Trough.Science in China (Series D), 29(1):50-55 (in Chinese). [16] Li, X.C., Sun, B.N., Xiao, L., et al., 2014.Strutum Characteristics of the Neogene Shengxian Formation in Zhejiang Province and Its Related Fossil Studies.Journal of Lanzhou University (Natural Sciences), 50(2):145-153 (in Chinese with English abstract). [17] Lisiecki, L.E., Raymo, M.E., 2005.A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records.Paleoceanography, PA1003.doi:10.1029/2004PA001071 [18] Miao, Y.F., Fang, X.M., Song, C.H., et al., 2016.Late Cenozoic Fire Enhancement Response to Aridification in Mid-Latitude Asia:Evidence from Microcharcoal Records.Quaternary Science Reviews, 139:53-66.doi:10.1016/ j.quascirev.2016.02.030 [19] Miao, Y.F., Zhang, P., Lu, S.M., et al., 2015.Late Quaternary Pollen Records from the Yangtze River Delta, East China, and Its Implications for the Asian Monsoon Evolution.Arabian Journal of Geosciences, 8(10):7845-7854.doi:10.1007/ s12517-015-1777-8 [20] Nádor, A., Lantos, M., Tóth-Makk, Á., et al., 2003.Milankovitch-Scale Multi-Proxy Records from Fluvial Sediments of the Last 2.6 Ma, Pannonian Basin, Hungary.Quaternary Science Reviews, 22(20):2157-2175.doi:10.1016/ S0277-3791(03)00134-3 [21] Püspöki, Z., Demeter, G., Tóth-Makk, Á., et al., 2013.Tectonically Controlled Quaternary Intracontinental Fluvial Sequence Development in the Nyírség-Pannonian Basin, Hungary.Sedimentary Geology, 283:34-56.doi:10.1016/ j.sedgeo.2012.11.003 [22] Qiang, X.K., An, Z.S., Chang, H., 2003.Paleoclimatic Implication of Frequency-Dependent Magnetic Susceptibility of Red Clay Sequences in the Jiaxian Profile of Northern China.Marine Geology & Quaternary Geology, 23(3):91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200303014.htm [23] Qiu, J.B., Li, X., 2007.Quaternary Stratigraphy and Sedimentary Environment of Shanghai Area.Shanghai Scientific & Technical Publishers, Shanghai (in Chinese). [24] Shi, X.F., Yao, Z.Q., Liu, Q.S., et al., 2016.Sedimentary Architecture of the Bohai Sea China over the Last 1 Ma and Implications for Sea-Level Changes.Earth & Planetary Science Letters, 451:10-21.doi:10.1016/ j.epsl.2016.07.002 [25] Shu, Q., 2004.Study on the Changes of Palaeoenvironment and Palaeoclimate during the Past 3 Ma Recorded in Xinghua Core at Northern Jiangsu Basin (Dissertation).Nanjing Normal University, Nanjing (in Chinese with English abstract). [26] Singer, B.S., 2014.A Quaternary Geomagnetic Instability Time Scale.Quaternary Geochronology, 21:29-52.doi:10.1016/ j.quageo.2013.10.003 [27] Tian, J., Wang, P.X., Cheng, X.R., et al., 2005.Astronomically Tuned Time Scale 12 Ma-18.3 Ma, ODP Site 1 148, Northern South China Sea.Earth Science, 30(5):513-518 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0012821X02009238 [28] Tian, Q.C., 2012.Climate Variations Documented by Lake Sediments in the Hinterland of Tibetan Plateau since Mid-Pleistocene.Lanzhou University, Lanzhou (in Chinese with English abstract). [29] Wang, R.H., Guo, K.Y., Yu, Z.J., et al., 2005.Quaternary Magneto-Stratigraphy of the Yangtze Delta Area.Journal of Stratigraphy, 29(Suppl.):612-617 (in Chinese with English abstract). [30] Wang, Z.H., Zhang, D., Li, X., et al., 2008.Magnetic Properties and Relevant Minerals of Late Cenozoic Sediments in the Yangtze River Delta and Their Implications.Geology in China, 35(4):670-682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200804012.htm [31] Wu, H.C., Zhang, S.H., Feng, Q.L., et al., 2011.Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy.Earth Science, 36(3):409-428 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201103001.htm [32] Wu, H.C., Zhang, S.H., Jiang, G.Q., et al., 2013.Astrochronology of the Early Turonian-Early Campanian Terrestrial Succession in the Songliao Basin, Northeastern China and Its Implication for Long-Period Behavior of the Solar System.Palaeogeography, Palaeoclimatology, Palaeoecology, 385:55-70.doi:10.1016/ j.palaeo.2012.09.004 [33] Wu, S.Y., Liu, J., 2015.Characteristics of Milankovitch Cycle in Eocene Formation, Eastern Depression of the North Yellow Sea Basin.Earth Science, 40(11):1933-1944 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511016.htm [34] Xing, L.S., Xu, S.J., Zhang, J.X., 1986.Division of Quaternary Magnetostratigraphy in the Yangtse Delta Area.Bulletin of the Institute of Geomechanics CAGS, (8):89-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ2005S1029.htm [35] Xu, F.J., Li, A.C., Li, T.G., et al., 2011.The Paleoenvironmental Significance of Magnetic Susceptibility of Sediments on the East China Sea Inner Shelf since the Last Deglaciation.Acta Oceanologica Sinica, 33(1):91-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201101012.htm [36] Yang, S.Y., Li, C.X., Yokoyama, K., 2006.Elemental Compositions and Monazite Age Patterns of Core Sediments in the Changjiang Delta:Implications for Sediment Provenance and Development History of the Changjiang River.Earth & Planetary Science Letters, 245(3-4):762-776.doi:10.1016/ j.epsl.2006.03.042 [37] Yao, Z.Q., Shi, X.F., Liu, Q.S., et al., 2014.Paleomagnetic and Astronomical Dating of Sediment Core BH08 from the Bohai Sea, China:Implications for Glacial-Interglacial Sedimentation.Palaeogeography, Palaeoclimatology, Palaeoecology, 393:90-101.doi:10.1016/ j.palaeo.2013.11.012 [38] Yu, Y.T., 2006.Mid-Pleistocene Climatic Transition (MPT) as Evidenced by a Sediment Record from Lake Gas Hure, Northwestern Qaidam Basin.Lanzhou University, Lanzhou (in Chinese with English abstract). [39] Yu, Z.J., Zhang, Y.P., Wang, R.H., et al., 2004.The Division and Age of the Neogene Strata in the Yangtze Delta Area.Journal of Stratigraphy, 28(3):257-264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200403010.htm [40] Yuan, L.W., Chen, Y., Liu, Z.C., 2003.Restudy on the Orbital Tuning Time Scale of Deep Core in Qaidam Basin.Jounal of Nanjing Normal University (Natural Science), 26(2):87-93 (in Chinese with English abstract). [41] Zachos, J., Pagani, M., Sloan, L., et al., 2001.Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.Science, 292(5517):686-693.doi:10.11266/ science.1059412 [42] Zhang, M.H., 2009.Sedimentary Infilling and Environmental Changes of the Northern Jiangsu Basin since Latest Miocene Recorded in Xinghua Cores.Nanjing Normal University, Nanjing (in Chinese with English abstract). [43] Zhang, P., Li, X.Q., Pan, M.B., et al., 2013.Magnetostratigraphy of Borehole SZ04 in the Yangtze River Delta and Its Implications.Acta Sedimentologica Sinica, 31(6):1041-1049 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201306011.htm [44] Zhang, P., Miao, Y.F., Zhang, Z.Y., et al., 2013.Late Cenozoic Sporopollen Records in the Yangtze River Delta, East China and Implications for East Asian Summer Monsoon Evolution.Palaeogeography, Palaeoclimatology, Palaeoecology, 388:153-165.doi:10.1016/ j.palaeo.2013.08.014 [45] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230 (in Chinese with English abstract). [46] Zhang, Z.K., Wu, R.J., Wang, S.M., 1998.Implication of Magnetic Frequency Dependent Susceptibility on Environmental Variation from Lacustrine Sediment in Daihai Lake.Geographical Research, 17(3) :297-302 (in Chinese with English abstract). [47] Zou, L., Zhang, Z.Z., Han, Y., 2015.Magnetostratigraphy of Core DZS2 off the Yangtze River Estuary.Marine Geology & Quaternary Geology, 35(2):43-52 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0277379116301627 [48] 丁仲礼, 余志伟, 刘东生, 1991.中国黄土研究新进展(三)时间标尺.第四纪研究, 11(4): 336-348. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199104004.htm [49] 高志勇, 2007.河流相沉积中准层序与短期基准面旋回对比研究——以四川中部须家河组为例.地质学报, 81(1): 109-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701012.htm [50] 韩志勇, 李徐生, 2006.泥河湾盆地基于粒度气候指标的轨道调谐时间标尺.地球科学, 31(6): 773-779. http://www.earth-science.net/WebPage/Article.aspx?id=1639 [51] 黄湘通, 郑洪波, 杨守业, 等, 2008.长江三角洲DY03孔磁性地层研究及其意义.海洋地质与第四纪地质, 28(6): 87-93. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806015.htm [52] 吉云平, 夏正楷, 2007.不同类型沉积物磁化率的比较研究和初步解释.地球学报, 28(6): 541-549. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200706005.htm [53] 李培英, 王永吉, 刘振夏, 1999.冲绳海槽年代地层与沉积速率.中国科学(D辑), 29(1): 50-55. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901007.htm [54] 李相传, 孙柏年, 肖良, 等, 2014.浙江新近纪嵊县组地层特征及其化石研究进展.兰州大学学报(自然科学版), 50(2): 145-153. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201402001.htm [55] 强小科, 安芷生, 常宏, 2003.佳县红粘土堆积序列频率磁化率的古气候意义.海洋地质与第四纪地质, 23(3): 91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200303014.htm [56] 邱金波, 李晓, 2007.上海市第四纪地层与沉积环境.上海:上海科学技术出版社. [57] 舒强, 2004. 苏北盆地兴化钻孔近3 Ma环境变化记录研究(博士学位论文). 南京: 南京师范大学. [58] 田军, 汪品先, 成鑫荣, 等, 2005.南海ODP1148站中中新世(12~18.3 Ma)天文调谐的年代标尺.地球科学, 30(5): 13-518. http://www.earth-science.net/WebPage/Article.aspx?id=1377 [59] 田庆春, 2012. 青藏高原腹地湖泊沉积物记录的中更新世以来的气候变化(博士学位论文). 兰州: 兰州大学. [60] 王润华, 郭坤一, 于振江, 等, 2005.长江三角洲地区第四纪磁性地层学研究.地层学杂志, 29(增刊): 612-617. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ2005S1028.htm [61] 王张华, 张丹, 李晓, 等, 2008.长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意义.中国地质, 35(4): 670-682. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200804012.htm [62] 吴怀春, 张世红, 冯庆来, 等, 2011.旋回地层学理论基础、研究进展和展望.地球科学, 36(3): 409-428. http://www.earth-science.net/WebPage/Article.aspx?id=2107 [63] 吴淑玉, 刘俊, 2015.北黄海东部坳陷始新统米兰科维奇旋回特征.地球科学, 40(11): 1933-1944. http://www.earth-science.net/WebPage/Article.aspx?id=3200 [64] 邢历生, 徐树金, 张景鑫, 1986.长江三角洲地区第四纪磁性地层划分.地质力学研究所所刊, (8): 89-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX198600006.htm [65] 徐方建, 李安春, 李铁刚, 等, 2011.末次冰消期以来东海内陆架沉积物磁化率的环境意义.海洋学报, 33(1): 91-97. doi: 10.11978/j.issn.1009-5470.2011.01.091 [66] 袁林旺, 陈晔, 刘泽纯, 2003.柴达木盆地深钻孔轨道调谐时间标尺的再研究.南京师大学报(自然科学版), 26(2): 87-93. http://www.cnki.com.cn/Article/CJFDTOTAL-NJSF200302019.htm [67] 于永涛, 2006. 柴达木盆地西北缘尕斯库勒湖钻孔记录的中更新世气候转型(博士学位论文). 兰州: 兰州大学. [68] 于振江, 张于平, 王润华, 等, 2004.长江三角洲(江南)地区新近纪地层划分及时代讨论.地层学杂志, 28(3): 257-264. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200403010.htm [69] 张茂恒, 2009. 中新世末期以来苏北盆地沉积环境演化的兴化钻孔记录(博士学位论文). 南京: 南京师范大学. [70] 张平, 李向前, 潘明宝, 等, 2013.长江三角洲SZ04孔磁性地层研究及其意义.沉积学报, 31(6): 1041-1049. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306011.htm [71] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7): 1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225 [72] 张振克, 吴瑞金, 王苏民, 1998.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映.地理研究, 17(3): 297-302. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ803.010.htm [73] 邹亮, 张志忠, 韩月, 2015.长江口外海区DZS2孔第四纪磁性地层.海洋地质与第四纪地质, 35(2): 43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201502007.htm