Applicability of Fractal Models and Nanopores' Fractal Characteristics for Low-Middle Rank Tectonic Deformed Coals
-
摘要: 构造煤纳米孔非均质性研究对于揭示煤层气赋存状态和传输特性具有重要意义.选取低-中煤级典型序列构造煤样品,基于高压压汞和低温液氮相结合的方法计算了构造煤基质压缩系数,并分析了Menger、热力学、Sierpinski和FHH分形模型对构造煤的适用性,进一步揭示了孔隙分形特征,糜棱煤的Menger分形曲线呈现三段式分布,而对于原生煤、碎裂煤、片状煤、鳞片煤和揉皱煤而言,Sierpinski模型、Menger模型、热力学模型以及FHH模型分段点分别为100 nm、72 nm、72 596 nm和8 nm.Menger模型分形维数大于3且拟合偏差较大,不适合表征构造煤的孔隙非均质性.Sierpinski模型适合于描述构造煤的纳米孔分形特征;FHH模型适合于表征原生煤及构造煤8~100 nm的孔隙非均质性.Sierpinski模型微米孔(>100 nm)的分形维数(Ds1)随着构造变形的增强先升高,而后降低,在片状煤中达到最高;Sierpinski模型纳米孔(< 100 nm,Ds2c)和FHH模型 < 8 nm的孔隙的非均质性随构造变形的增强逐渐升高.原生煤和脆性变形煤中,Ds1 > Ds2c,表明为微米孔非均质性强于纳米孔;鳞片煤中,Ds1接近于Ds2c;揉皱煤中,Ds1 < Ds2c,表明纳米孔的非均质性强于微米孔.Abstract: The investigations of nanopore heterogeneity in tectonically deformed coals are of significance for the study of occurrence state and transmission characteristics of coalbed methane (CBM). The low-middle rank tectonic deformed coals were screened out firstly in this study and then the matrix compressibility and the applicabilities of Menger, thermodynamics, Sierpinski, and FHH of tectonic deformed coals, as well as the fractal characteristics, were analyzed based on high-pressure mercury intrusion and low-pressure gas adsorption.The fractal curves of Menger model for mylonitic coals can be divided into three stages. However, for primary coals, cataclastic coals, schistose coals, scaly coals, and wrinkle coals, the fractal curves of Sierpinski, Menger, thermodynamics, and FHH can be obviously divided into two stages and the piecewise points locates at 100 nm, 72 nm, 72 596 nm, and 8 nm respectively. The fractal dimensions of Menger model are >3 and have a fitting deviation, so it is not suitable to characterize the pore heterogeneity. The Sierpinski model is suitable to characterize the fractal characteristics of the nanopore of the tectonic deformed coals whereas the FHH model is for the pores of 8-100 nm in primary coals and various tectonic deformed coals. The fractal dimension (Ds1) of micron pores at Sierpinski fractal curve (>100 nm) increases firstly and then decreases with the increase of tectonic deformation, reaching the highest values in schistose coals. The heterogeneity of both nanopores at Sierpinski fractal curve (< 100 nm, Ds2c) and that of pores of 8-100 nm at FHH fractal curve increase with the enhancement of the tectonic deformation. In primary coals and brittle deformed coals, Ds1 > Ds2c, indicating that the heterogeneity of micron pores are stronger than that of nanopores. In scaly coals, Ds1 is close to Ds2c. In wrinkle coals, Ds1 < Ds2c, indicating that the heterogeneity of nanopores is stronger than that of micron pores.
-
图 1 淮北地区徐宿弧形双冲-叠瓦扇推覆构造与采样位置
据琚宜文等(2005);Jiang et al.(2010);Li et al.(2013);姜波等(2016).a.淮北煤田构造纲要图;b.AB线剖面图;c.矿区煤系地层综合柱状图
Fig. 1. Schematic map showing the Xuzhou-Suzhou arcuate duplex-imbricate fan thrust system and sampling location in the Huaibei area
表 1 样品及其基本特征
Table 1. Basic properties of tectonically deformed coal samples
样品编号 煤体结构 孔容(mm3/g) Ro, max(%) 样品编号 煤体结构 孔容(mm3/g) Ro, max(%) >1 000 100~1 000 >1 000 100~1 000 Q3 原生煤 11.1 1.4 0.89 Q2 鳞片煤 15.7 5.1 0.79 Q11 原生煤 9.6 9.8 1.00 Z8 鳞片煤 11.4 6.1 0.81 Z2 原生煤 1.8 1.4 0.98 Q5 鳞片煤 20.4 4.2 0.89 Q16 原生煤 2.3 1.6 0.90 Z12 鳞片煤 4.8 2.2 1.34 Q14 原生煤 8.7 2.3 0.84 Z11 鳞片煤 2.4 0.6 0.91 Q1 碎裂煤 5.4 1.7 1.00 Q15 揉皱煤 42.9 3.9 0.85 Q8 碎裂煤 5.7 1.9 0.89 Z5 揉皱煤 7.9 2.1 0.93 Q4 碎裂煤 1.9 0.8 0.80 Q9 揉皱煤 7.6 2.6 0.90 Z7 碎裂煤 14.6 8.7 0.85 Z9 揉皱煤 25.6 17.3 0.86 Q17 碎裂煤 5.5 1.7 0.54 Q7 揉皱煤 33.2 12.8 0.91 Q12 片状煤 8.5 3.5 0.83 Z4 糜棱煤 12.3 4.0 0.84 Z12 片状煤 7.5 3.7 0.89 Z3 糜棱煤 22.8 13.7 0.91 Z1 片状煤 5.0 1.2 0.89 Q6 糜棱煤 21.7 21.3 0.91 Q10 片状煤 8.3 2.3 0.87 Z10 糜棱煤 30.2 20.7 0.81 Q13 片状煤 11.3 6.3 0.83 Z13 糜棱煤 30.2 20.7 0.81 -
[1] Beamish, B.B., Crosdale, J.P., 1998.Instantaneous Outbursts in Underground Coal Mines:An Overview and Association with Coal Type.International Journal Coal Geology, 35:27-55. https://doi.org/10.1016/S0166-5162(97)00036-0 [2] Busch, A., Gensterblum, Y., Krooss, B.M., 2003.Methane and CO2 Sorption and Desorption Measurements on Dry Argonne Premium Coals:Pure Components and Mixtures.International Journal of Coal Geology, 55(2):205-224. https://doi.org/10.1016/S0166-5162(03)00113-7 [3] Cai, Y., Liu, D., Pan, Z., et al., 2013.Pore Structure and Its Impact on CH4 Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China.Fuel, 103:258-268. https://doi.org/10.1016/j.fuel.2012.06.055 [4] Cao, Y.X., Mitchell, G.D., Davis, A., et al., 2000.Deformation Metamorphism of Bituminous and Anthracite Coals from China.International Journal Coal Geology, 43:227-242. https://doi.org/10.1016/S0166-5162(99)00061-0 [5] Fan, J.J., Ju, Y.W., Hou, Q.L., et al., 2010.Pore Structure Characteristics of Different Metamorphic-Deformed Coal Reservoirs and Its Restriction on Recovery of Coalbed Methane.Earth Science Frontiers, 17(5):325-335 (in Chinese with English abstract). https://www.researchgate.net/publication/285764446_Pore_structure_characteristics_of_different_metamorphic-deformed_coal_reservoirs_and_its_restriction_on_recovery_of_coalbed_methane [6] Fu, X.H., Qin, Y., Wang, G.X., et al., 2009.Evaluation of Coal Structure and Permeability with the Aid of Geophysical Logging Technology.Fuel, 88 (11):2278-2285. https://doi.org/10.1016/j.fuel.2009.05.018 [7] Fu, X.H., Qin, Y., Zhang, W.H., et al., 2005.The Natural and Fractural Classification Based on Methane Migration.Chinese Science Bulletin, 50(Suppl.Ⅰ):51-55 (in Chinese). [8] Garbacz, J.K., 1998.Fractal Description of Partially Mobile Single Gas Adsorption on Energetically Homogeneous Solid Adsorbent.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 143 (1):95-101. https://doi.org/10.1016/S0927-7757(98)00487-7 [9] Green, U., Aizenstat, Z., Gieldmeister, F., et al., 2011.CO2 Adsorption inside the Pore Structure of Different Rank Coals during Low Temperature Oxidation of Open Air Coal Stockpiles.Energy & Fuels, 25(9):4211-4215. https://doi.org/10.1021/ef200881w [10] Guo, X., Yao, Y., Liu, D., 2014.Characteristics of Coal Matrix Compressibility:An Investigation by Mercury Intrusion Porosimetry.Energy & Fuels, 28(6):3673-3678. https://doi.org/10.1021/ef5004123 [11] Jiang, B., Li, M., Qu, Z.H., et al., 2016.Current Research Status and Prospect of Tectonically Deformed Coal.Advances in Earth Science, 31(4):335-346 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201604001.htm [12] Jiang, B., Qu, Z., Wang, G.X., et al., 2010.Effects of Structural Deformation on Formation of Coalbed Methane Reservoirs in Huaibei Coalfield, China.International Journal of Coal Geology, 82 (3):175-183. https://doi.org/10.1016/j.coal.2009.12.011 [13] Jiang, W., Tang, S.H., Zhang, J.P., et al., 2013.Characteristics of Pore Permeability of Highly Metamorphic Bone Coal.Coal Geology & Exploration, 41(4):9-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201304002.htm [14] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2004.The New Structure-Genetic Classification System in Tectonically Deformed Coals and Its Geological Significance.Journal of China Coal Society, 29 (5):513-517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB200405001.htm [15] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2005.Structural Evolution of Nano-Scale Pores of Tectonic Coals in Southern North China and Its Mechanism.Acta Geologica Sinica, 79 (2):269-285 (in Chinese with English abstract). https://www.researchgate.net/publication/285737161_Structural_evolution_of_nano-scale_pores_of_tectonic_coals_in_southern_North_China_and_its_mechanism [16] Ju, Y.W., Li, X.S., 2009.Behavior and Mechanism of the Adsorption/Desorption of Tectonically Deformed Coals.Advances in Natural Science, 19(2):131-140 (in Chinese). doi: 10.1007%2Fs11434-008-0412-4 [17] Katz, A.J., Thompson, A.H., 1985.Fractal Sandstone Pores:Implications for Conductivity and Pore Formation.Physical Review Letters, 54(12):1325. https://doi.org/10.1103/PhysRevLett.54.1325 [18] Lei, C., Ren, J.Y., Zhang, J., 2015.Tectonic Province Divisions in the South China Sea:Implications for Basin Geodynamics.Earth Science, 40(4):744-762 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.062 [19] Li, H., 2001.Major and Minor Structural Features of a Bedding Shear Zone along a Coal Seam and Related Gas Outburst, Pingdingshan Coalfield, Northern China.International Journal of Coal Geology, 47(2):101-113. https://doi.org/10.1016/S0140-6701(02)86160-4 [20] Li, M., 2013. Structure Evolution and Deformation Mechanism of Tectonically Deformed Coal (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract). [21] Li, M., Jiang, B., Lin, S., et al., 2013.Characteristics of Coalbed Methane Reservoirs in Faer Coalfield, Western Guizhou.Energy Explortion Exploitation, 31(3):411-428. https://doi.org/10.1260/0144-5987.31.3.411 [22] Li, W., Liu, H., Song, X., 2015.Multifractal Analysis of Hg Pore Size Distributions of Tectonically Deformed Coals.International Journal of Coal Geology, 144:138-152. https://doi.org/10.1016/j.coal.2015.04.011 [23] Li, Y.H., Lu, G.Q., Rudolph, V., 1999.Compressibility and Fractal Dimension of Fine Coal Particles in Relation to Pore Structure Characterisation Using Mercury Porosimetry.Particle & Particle Systems Characterization, 16 (1):25-31.https://doi.org/0721-3115/99/0102-0025 https://www.researchgate.net/publication/43490824_Compressibility_and_Fractal_Dimension_of_Fine_Coal_Particles_in_Relation_to_Pore_Structure_Characterisation_Using_Mercury_Porosimetry [24] Li, Z.W., Hao, Z.Y., Pang, Y., et al., 2015.Fractal Dimensions of Coal and Their Influence on Methane Adsorption.Journal of China Coal Society, 40(4):863-869 (in Chinese with English abstract). http://www.researchgate.net/publication/281907394_Fractal_dimensions_of_coal_and_their_influence_on_methane_adsorption [25] Ma, J., Qi, H., Wong, P.Z., 1999.Experimental Study of Multilayer Adsorption on Fractal Surfaces in Porous Media.Physical Review, 59(2):2049-2059.https://doi.org/2049.10.1103/PhysRevE.59.2049 http://adsabs.harvard.edu/abs/1999PhRvE..59.2049M [26] Mitra, A., Harpalani, S., Liu, S., 2012.Laboratory Measurement and Modeling of Coal Permeability with Continued Methane Production:Part 1-Laboratory Results.Fuel, 94:110-116. https://doi.org/10.1016/j.fuel.2011.10.052 [27] Mosher, K., He, J., Liu, Y., et al., 2013.Molecular Simulation of Methane Adsorption in Micro-and Mesoporous Carbons with Applications to Coal and Gas Shale Systems.International Journal of Coal Geology, 109:36-44. https://doi.org/10.1016/j.coal.2013.01.001 [28] Nishioka, M., 1992.The Associated Molecular Nature of Bituminous Coal.Fuel, 71 (8):941-948.https://doi.org/10.1016/0016-2361 (92)90246-K doi: 10.1016/0016-2361(92)90246-K [29] Pan, J., Niu, Q., Wang, K., et al., 2016.The Closed Pores of Tectonically Deformed Coal Studied by Small-Angle X-Ray Scattering and Liquid Nitrogen Adsorption.Microporous and Mesoporous Materials, 224:245-252. https://doi.org/10.1016/j.micromeso.2015.11.057 [30] Pfeiferper, P., Avnir, D., 1983.Chemistry Nonintegral Dimensions between Two and Three.The Journal of Chemical Physics, 79(7):3369-3558. http://www.researchgate.net/publication/312371055_Chemistry_nonintegral_dimensions_between_two_and_three_J [31] Qu, Z., Wang, G.X., Jiang, B., et al., 2010.Experimental Study on the Porous Structure and Compressibility of Tectonized Coals.Energy & Fuels, 24(5):2964-2973. https://doi.org/10.1021/ef9015075 [32] Rigby, S.P., 2005.Predicting Surface Diffusivities of Molecules from Equilibrium Adsorption Isotherms.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 262(1):139-149. https://doi.org/10.1016/j.colsurfa.2005.04.021 [33] Schmitt, M., Fernandes, C.P., Dacunhaneto, J.A., et al., 2013.Characterization of Pore Systems in Seal Rocks Using Nitrogen Gas Adsorption Combined with Mercury Injection Capillary Pressure Technique.Marine and Petroleum Geology, 39(1):138-149. https://doi.org/10.1016/j.marpetgeo.2012.09.001 [34] Song, X.X., Tang, Y.G., Li, W., et al., 2013.Fractal Characteristics of Adsorption Pores of Tectonic Coal from Zhongliangshan Southern Coalmine.Journal of China Coal Society, 38(1):134-139 (in Chinese with English abstract). https://www.researchgate.net/publication/263108520_Fractal_characteristics_of_adsorption_pores_of_tectonic_coal_from_Zhongliangshan_southern_coalmine [35] Wang, X.J., Yao, H.F., Li, W., et al., 2014.Fractal Characterization of Pore Structure in Coals Based on Thermodynamics Model.Coal Geology & Exploration, 42(6):20-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201406006.htm [36] Wang, Y.Z., Wang, S.H., 2014.Fractal Characteristics of Tectonic Coal from Hegang Coal Field.Journal of Northeast Petroleum University, 38(5):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQSY201405009.htm [37] Washburn, E.W., 1921.The Dynamics of Capillary Flow.Physical Review, 17:273-83. doi: 10.1103/PhysRev.17.273 [38] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.162 [39] Xiong, C.R., Tang, H.M., Liu, B.C., et al., 2007.Using SEM Photos to Gain the Pore Structural Parameters of Soil Samples.Earth Science, 32(3):415-419(in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2007.03.016 [40] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.088 [41] Yao, Y., Liu, D., 2012.Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals.Fuel, 95:152-158. https://doi.org/10.1103/PhysRev.17.273 [42] Yao, Y., Liu, D., Tang, D., et al., 2008.Fractal Characterization of Adsorption-Pores of Coals from North China:An Investigation on CH4 Adsorption Capacity of Coals.International Journal of Coal Geology, 73(1):27-42. https://doi.org/10.1016/j.coal.2007.07.003 [43] Yao, Y., Liu, D., Tang, D., et al., 2009.Fractal Characterization of Seepage-Pores of Coals from China:An Investigation on Permeability of Coals.Computers & Geosciences, 35(6):1159-1166. https://doi.org/10.1016/j.cageo.2008.09.005 [44] Zhang, B., Li, S., 1995.Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry.Industrial & Engineering Chemistry Research, 34(4):1383-1386. https://doi.org/10.1021/ie00043a044 [45] Zhang, B., Liu, W., Liu, X., 2006.Scale-Dependent Nature of the Surface Fractal Dimension for Bi-and Multi-Disperse Porous Solids by Mercury Porosimetry.Applied Surface Science, 253 (3):1349-1355. https://doi.org/10.1016/j.apsusc.2006.02.009 [46] Zhang, W.J., Ju, Y.W., Wei, M.M., et al., 2015.Study on Characteristics and Mechanism of Adsorption/Desorption on Different Metamorphic-Deformed Coal Reservoirs.Earth Science Frontiers, 22(2):232-242 (in Chinese with English abstract). doi: 10.1007/s11434-008-0412-4 [47] Zhao, A.H., Liao, Y., 1998.Quantitative Analysis of Pore Structure by Fractal Analysis.Journal of China Coal Society, 23(4):439-442(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB804.021.htm [48] Zhao, L., Qin, Y., Yang, Z.B., et al., 2014.Study on Supercritical Isothermal Adsorption Model of Methane in Coal.Natural Gas Geoscience, 25(5):753-760 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201405016.htm [49] 范俊佳, 琚宜文, 侯泉林, 等, 2010.不同变质变形煤储层孔隙特征与煤层气可采性.地学前缘, 17(5):325-335. http://www.cqvip.com/QK/98600X/2010005/35548999.html [50] 傅雪海, 秦勇, 张万红, 等, 2005.基于煤层气运移的煤孔隙分形分类及自然分类研究.科学通报, 50(增刊Ⅰ):51-55. http://mall.cnki.net/magazine/Article/KXTB2005S1009.htm [51] 姜波, 李明, 屈争辉, 等, 2016.构造煤研究现状及展望.地球科学进展, 31(4):335-346. http://mall.cnki.net/magazine/Article/ZZMT201109021.htm [52] 姜文, 唐书恒, 张静平, 等, 2013.基于压汞分形的高变质石煤孔渗特征分析.煤田地质与勘探, 41(4):9-13. http://cdmd.cnki.com.cn/Article/CDMD-11413-1015304670.htm [53] 琚宜文, 姜波, 侯泉林, 等, 2004.构造煤结构-成因新分类及其地质意义.煤炭学报, 29(5):513-517. http://mall.cnki.net/magazine/article/MTXB200405001.htm [54] 琚宜文, 姜波, 侯泉林, 等, 2005.华北南部构造煤纳米级孔隙结构演化特征及作用机理.地质学报, 79(2):269-285. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502017.htm [55] 琚宜文, 李小诗, 2009.构造煤超微结构研究新进展.自然科学进展, 19(2):131-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502017.htm [56] 雷超, 任建业, 张静, 2015.南海构造变形分区及成盆过程.地球科学, 40(4):744-762. http://www.earth-science.net/WebPage/Article.aspx?id=3062 [57] 李明, 2013. 构造煤结构演化及成因机制(博士学位论文). 徐州: 中国矿业大学. http://cdmd.cnki.com.cn/Article/CDMD-10290-1013030104.htm [58] 李子文, 郝志勇, 庞源, 等, 2015.煤的分形维数及其对瓦斯吸附的影响.煤炭学报, 40(4):863-869. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201504022 [59] 宋晓夏, 唐跃刚, 李伟, 等, 2013.中梁山南矿构造煤吸附孔分形特征.煤炭学报, 38(1):134-139. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301021.htm [60] 王秀娟, 要惠芳, 李伟, 等, 2014.基于热力学模型的煤孔隙结构分形表征.煤田地质与勘探, 42(6):20-23. http://d.wanfangdata.com.cn/Periodical_mtdzykt201406004.aspx [61] 王有智, 王世辉, 2014.鹤岗煤田构造煤孔隙分形特征.东北石油大学学报, 38(5):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201405008 [62] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11):1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188 [63] 熊承仁, 唐辉明, 刘宝琛, 等, 2007.利用SEM照片获取土的孔隙结构参数.地球科学, 32(3):415-419. http://www.earth-science.net/WebPage/Article.aspx?id=3469 [64] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [65] 张文静, 琚宜文, 卫明明, 等, 2015.不同变质变形煤储层吸附/解吸特征及机理研究进展.地学前缘, 22(2):232-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201502021 [66] 赵爱红, 廖毅, 1998.煤的孔隙结构分形定量研究.煤炭学报, 23(4):439-442. http://www.cqvip.com/QK/98573X/201301/45013974.html [67] 赵龙, 秦勇, 杨兆彪, 等, 2014.煤中超临界甲烷等温吸附模型研究.天然气地球科学, 25(5):753-760. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201405016.htm