Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit: Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province
-
摘要: 黑云母的化学组成特征对揭示花岗岩的源区特征、形成环境、后期热液作用以及成矿元素富集特征具有重要的指示意义.对与锡田钨锡多金属矿床成矿作用密切相关的锡田燕山早期花岗岩黑云母和长石成分进行了系统的电子探针分析.分析结果表明,黑云母具有富铁贫镁、高铝低钠的特征,其MgO和FeOT含量分别为0.12%~1.35%和15.47%~23.24%,类似于高铁黑云母;其含铁指数Fe/(Fe+Mg)较高,集中在0.87~0.99,属于铁叶云母;其长石主要以正长石和钠长石为主.这些特征暗示了寄主岩石源区以壳源为主.结合相关区域地质资料,表明锡田燕山早期花岗质岩浆具有较高的温度和较低的氧逸度.黑云母具有高的含铁指数、较高的结晶温度和低的氧逸度等特征均有利于锡成矿,可以作为勘探锡矿的标志之一.综合分析认为,在锡田花岗质岩浆演化过程中,岩浆结晶期后分异出的流体趋向于向富锡的方向演化,是锡田多金属矿床成矿流体的重要来源.Abstract: Chemical composition of biotite is always used to reveal source characteristics, tectonic environment, late hydrothermal process and enrichment of ore-forming elements. The Xitian tin-tungsten polymetallic deposit is one of the most important polygenetic compound deposits in South China. This study presents detailed mineral composition of biotites and feldspars from Xitian granite, which is closely related to the formation of the deposit. Electron microprobe analyzer (EMPA) analysis indicates that the biotites have low MgO (0.12%-1.35%) and high FeOT (15.47%-23.24%) contents with Fe/(Fe+Mg) ratios of 0.87 to 0.99, resembling to those of siderophyllite. These features indicate that their host rocks were mainly derived from partial melting of crustal materials. Estimation results of crystallization temperatures and oxygen fugacity suggest that the Xitian granite has high crystallization temperatures and low oxygen fugacities. Therefore, it is proposed that hydrothermal fluids during the late stage of magmatic evolution are favour of Sn enrichment. These hydrothermal fluids could be an important source of ore-forming fluids. High iron indexes and crystallization temperatures and low oxygen fugacities in the ore-forming system are favorable for mineralization of Xitian tin-tungsten deposit.
-
图 1 锡田钨锡多金属矿床地质简图
图 1据伍式崇等(2009).1.第四系;2.岩关阶(C1y);3.锡矿山组下段(D3x2);4.锡矿山组上段(D3x1);5.佘田桥组(D3s);6.棋梓桥组(D2q);7.跳马涧组(D2t);8.奥陶系上统(O3);9.燕山早期细粒黑(二)云母花岗岩(γ52);10.印支期中粒斑状黑云母花岗岩(γ51);11.矽卡岩型钨锡多金属矿体;12.破碎带蚀变岩型钨锡多金属矿脉;13.石英脉-云英岩型钨锡矿脉;14.断层;15.不整合地质界线;16.采样位置
Fig. 1. Geological schematic map of Xitian tin-tungsten polymetallic deposit
图 3 锡田燕山早期花岗岩黑云母(a)MgO-FeOT/(FeOT+MgO)和(b)Si-Fe/(Fe+Mg)图解
图a据周作侠(1988);图b据Rieder et al.(1998)
Fig. 3. Plots of (a) MgO-FeOT/(FeOT+MgO) and (b) Si-Fe/(Fe+Mg) of biotite from Xitian granite
图 5 锡田燕山早期花岗岩黑云母MgO-FeOT-Al2O3图解
Fig. 5. Plot of MgO-FeOT-Al2O3 of biotite from Xitian granite
图 6 锡田燕山早期花岗岩黑云母Fe3+-Fe2+-Mg2+图解
Fig. 6. Plot of Fe3+-Fe2+-Mg2+ of biotite from Xitian granite
表 1 锡田燕山早期花岗岩黑云母成分(%)
Table 1. Composition of biotite from Xitian granite (%)
样品号 ZK10C02-20 ZK10C02-30 ZK14B04-12 SiO2 42.05 40.41 40.22 39.60 37.42 38.83 40.59 38.83 37.34 39.94 38.50 37.93 39.63 40.16 39.78 37.72 37.47 38.87 38.22 38.04 TiO2 0.55 1.09 0.93 1.49 1.61 0.83 0.73 0.85 2.07 0.52 0.86 0.21 0.17 0.36 0.41 0.25 0.22 0.16 0.25 0.33 Al2O3 21.75 21.19 21.34 21.02 20.34 20.56 20.84 20.65 19.53 20.72 22.69 22.32 23.02 23.53 22.96 22.04 22.33 22.57 22.13 22.20 FeO 13.74 15.91 16.70 17.78 20.25 17.70 15.21 16.43 20.38 15.68 18.13 20.02 20.35 18.82 19.44 20.31 19.90 19.51 20.14 21.01 Fe2O3 1.92 2.14 2.21 2.31 2.36 2.24 2.03 2.11 2.36 2.06 2.33 2.46 2.54 2.42 2.47 2.42 2.36 2.39 2.42 2.47 MnO 0.71 0.72 0.69 0.77 0.29 0.27 0.27 0.29 0.29 0.30 1.14 0.81 0.81 0.80 0.74 0.36 0.31 0.34 0.37 0.31 MgO 0.76 0.94 1.22 1.22 1.15 1.35 1.28 1.20 1.27 1.24 0.20 0.13 0.17 0.16 0.12 0.28 0.24 0.20 0.23 0.24 CaO 0.01 - 0.06 0.06 0.01 0.08 0.10 0.08 0.15 0.16 0.05 0.06 - - - 0.18 0.05 0.00 0.03 0.16 Na2O 0.14 0.13 0.15 0.07 0.14 0.16 0.15 0.15 0.17 0.16 0.19 0.07 0.07 0.13 0.15 0.19 0.20 0.16 0.15 0.18 K2O 9.84 9.76 9.71 9.72 10.56 10.11 10.76 10.80 10.49 10.87 9.65 9.61 9.73 9.95 9.81 10.08 10.38 10.54 10.37 10.18 Cr2O3 0.06 0.01 - 0.02 - - - - - - 0.08 0.02 - 0.02 0.02 - - - - - Total 91.34 92.07 93.00 93.83 93.90 91.92 91.77 91.17 93.84 91.46 93.57 93.39 96.23 96.11 95.64 93.57 93.25 94.52 94.05 94.87 Si 6.66 6.45 6.39 6.29 6.08 6.31 6.51 6.35 6.08 6.46 6.15 6.13 6.19 6.23 6.22 6.11 6.09 6.19 6.15 6.09 AlⅣ 1.34 1.55 1.61 1.72 1.93 1.69 1.49 1.65 1.92 1.54 1.85 1.87 1.81 1.77 1.78 1.89 1.91 1.81 1.85 1.91 AlⅥ 2.71 2.44 2.38 2.21 1.96 2.25 2.45 2.32 1.83 2.41 2.42 2.38 2.42 2.52 2.45 2.31 2.36 2.43 2.34 2.28 Ti 0.07 0.13 0.11 0.18 0.20 0.10 0.09 0.10 0.25 0.06 0.10 0.03 0.02 0.04 0.05 0.03 0.03 0.02 0.03 0.04 Fe3+ 0.23 0.26 0.26 0.28 0.29 0.27 0.25 0.26 0.29 0.25 0.28 0.30 0.30 0.28 0.29 0.29 0.29 0.29 0.29 0.30 Fe2+ 1.82 2.12 2.22 2.36 2.75 2.41 2.04 2.25 2.78 2.12 2.42 2.71 2.66 2.44 2.54 2.75 2.70 2.60 2.71 2.81 Mn 0.10 0.10 0.09 0.10 0.04 0.04 0.04 0.04 0.04 0.04 0.15 0.11 0.11 0.11 0.10 0.05 0.04 0.05 0.05 0.04 Mg 0.18 0.22 0.29 0.29 0.28 0.33 0.31 0.29 0.31 0.30 0.05 0.03 0.04 0.04 0.03 0.07 0.06 0.05 0.05 0.06 Ca 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.03 0.03 0.01 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.01 0.03 Na 0.04 0.04 0.05 0.02 0.04 0.05 0.05 0.05 0.06 0.05 0.06 0.02 0.02 0.04 0.04 0.06 0.06 0.05 0.05 0.06 K 1.99 1.99 1.97 1.97 2.19 2.10 2.20 2.25 2.18 2.25 1.97 1.98 1.94 1.97 1.96 2.08 2.15 2.14 2.13 2.08 Cr 0.01 0.00 0.00 0.00 - - - - - - 0.01 0.00 0.00 0.00 0.00 - - - - - Fe/(Fe+Mg) 0.91 0.90 0.89 0.89 0.91 0.88 0.87 0.88 0.90 0.88 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 Mg/(Fe+Mg) 0.09 0.10 0.11 0.11 0.09 0.12 0.13 0.12 0.10 0.12 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 T(℃) - 413 328 515 540 247 - 277 597 - 265 - - - - - - - - - 注:T={[ln(Ti)-a-c(XMg)3]/b}0.333,其中XMg=Mg/(Mg+Fe), a=-2.359 4, b=4.648 2×10-9, c=-1.728 3. 表 2 锡田燕山早期花岗岩长石成分(%)
Table 2. Composition of feldspar from Xitian granite (%)
样品 ZK10C02-20 ZK10C02-30 ZK14B04-12 SiO2 68.10 67.20 62.67 63.18 64.16 61.43 64.16 62.40 64.08 63.40 67.88 67.82 67.60 66.35 67.46 66.73 TiO2 0.02 0.00 0.01 0.00 0.00 0.00 0.04 0.04 0.03 0.00 0.01 0.26 0.01 0.01 0.02 0.01 Al2O3 19.43 18.66 17.24 17.06 17.99 17.12 17.89 17.12 17.87 17.91 18.92 19.11 19.11 18.37 18.48 18.70 FeO 0.08 0.00 0.06 0.01 0.02 0.11 0.05 0.05 0.00 0.03 0.00 0.02 0.00 0.03 0.00 0.01 MnO 0.00 0.00 0.01 0.02 0.00 0.03 0.00 0.02 0.01 0.00 0.02 0.03 0.05 0.00 0.03 0.02 MgO 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.02 0.03 0.03 0.02 0.01 0.03 CaO 0.27 0.06 0.11 0.07 0.04 0.17 0.12 0.11 0.06 0.06 0.06 0.80 0.37 0.18 0.14 0.52 Na2O 10.71 10.61 1.18 0.29 0.84 0.44 0.38 0.87 0.33 0.83 11.07 11.23 10.47 10.38 10.71 10.52 K2O 0.14 0.21 15.90 17.38 16.78 14.98 17.36 16.42 17.34 16.58 0.15 0.25 0.14 0.20 0.17 0.21 Total 98.74 96.75 97.16 98.02 99.85 94.31 100.00 97.04 99.74 98.80 98.12 99.55 97.77 95.57 97.03 96.75 Si 12.01 12.09 11.99 12.03 11.96 12.03 11.96 11.98 11.97 11.94 12.06 11.94 12.04 12.09 12.11 12.03 Al 4.04 3.95 3.88 3.83 3.95 3.95 3.93 3.87 3.93 3.97 3.96 3.96 4.01 3.94 3.91 3.97 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 Ca 0.05 0.01 0.02 0.02 0.01 0.04 0.02 0.02 0.01 0.01 0.01 0.15 0.07 0.04 0.03 0.10 Na 3.66 3.70 0.44 0.11 0.30 0.17 0.14 0.32 0.12 0.30 3.81 3.83 3.61 3.67 3.73 3.68 K 0.03 0.05 3.88 4.22 3.99 3.74 4.13 4.02 4.13 3.98 0.03 0.06 0.03 0.05 0.04 0.05 Ab 97.8 98.4 10.1 2.4 7.1 4.2 3.2 7.4 2.8 7.1 98.8 94.9 97.3 97.8 98.3 96.2 An 1.4 0.3 0.5 0.3 0.2 0.9 0.6 0.5 0.3 0.3 0.3 3.7 1.9 0.9 0.7 2.6 Or 0.8 1.3 89.4 97.2 92.7 94.9 96.2 92.1 96.9 92.7 0.9 1.4 0.9 1.2 1.0 1.2 -
[1] Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calcalkaline and Peraluminous Magmas.Journal of Petrology, 35(2):525-541. doi: 10.1093/petrology/35.2.525 [2] Batchelor, R.A., 2003.Geochemistry of Biotite in Metabentonites as an Age Discriminant, Indicator of Regional Magma Sources and Potential Correlating Tool.Mineralogical Magazine, 67(4):807-817. doi: 10.1180/0026461036740137 [3] Cai, Y.F., Feng, Z.H., Shao, T.B., et al., 2017.New Precise Zircon U-Pb and Muscovite 40Ar-39Ar Geochronology of the Late Cretaceous W-Sn Mineralization in the Shanhu Orefield, South China.Ore Geology Reviews, 84:338-346. doi: 10.1016/j.oregeorev.2017.01.022 [4] Chen, G.D., 1996.DIWA THEORY—Outline on Activated Tectonics and Metallogenic Theoretic System.Central South University of Technology Press, Changsha, 193-206 (in Chinese). [5] Chen, G.D., Yang, X.Y., Liang, X.Q., 2001.Preliminary Studies of History-Dynamics of the South China Mobilized Region.Geotectonica et Metallogenia, 25(3):228-238 (in Chinese with English abstract). [6] Chen, G.D., Yang, X.Y., Liang, X.Q., 2002.Some Cruxes of Dynamics Study on Activated Region.Chinese Journal of Geology, 37(3):320-331 (in Chinese with English abstract). [7] Dall'Agnol, R., Scaillet, B., Pichavant, M., 1999.An Experimental Study of a Lower Proterozoic A-Type Granite from the Eastern Amazonian Craton, Brazil.Journal of Petrology, 40(11):1673-1698. doi: 10.1093/petroj/40.11.1673 [8] de Albuquerque, C.A.R., 1973.Geochemistry of Biotites from Granitic Rocks, Northern Portugal.Geochimica et Cosmochimica Acta, 37(7):1779-1802. doi: 10.1016/0016-7037(73)90163-4 [9] du Bray, E.A., 1994.Compositions of Micas in Peraluminous Granitoids of the Eastern Arabian Shield:Implications for Petrogenesis and Tectonic Settings of Highly Evolved, Rare-Metal Enriched Granites.Contributions to Mineralogy and Petrology, 116(4):381-397. doi: 10.1007/BF00310906 [10] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [11] Feiss, P.G., 1978.Magmatic Sources of Copper in Copper Deposits.Economic Geology, 73(3):397-404. doi: 10.2113/gsecongeo.73.3.397 [12] Frost, C.D., Frost, B.R., Chamberlain, K.R., et al., 1999.Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA:A Reduced, Rapakiv Ⅰ-Type Anorogenic Granite.Journal of Petrology, 40(12):1771-1802. doi: 10.1093/petroj/40.12.1771 [13] Fu, J.M., Cheng, S.B., Lu, Y.Y., et al., 2012.Geochronology of the Greisen-Quartz-Vein Type Tungsten-Tin Deposit and Its Host Granite in Xitian, Hunan Province.Geology and Exploration, 48(2):313-320 (in Chinese with English abstract). doi: 10.1007/s11771-016-0357-8 [14] Fu, J.M., Wu, S.C., Xu, D.M., et al., 2009.Reconstraint from Zircon SHRIMP U-Pb Dating on the Age of Magma Intrusion and Mineralization in Xitian Tungsten-Tin Polymetallic Orefield, Eastern Hunan Province.Geology and Mineral Resources of South China, (3):1-7 (in Chinese with English abstract). doi: 10.1007/s00126-012-0446-z [15] Gan, C.S., Wang, Y.J., Cai, Y.F., et al., 2016.The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range.Earth Science, 41(1):17-34 (in Chinese with English abstract). doi: 10.1007/s11430-013-4770-7 [16] Gu, L.X., 1990.Geological Features, Petrogenesis and Metallogeny of A-Type Granites.Geological Science and Technology Information, 9(1):25-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199001006.htm [17] Henry, D.J., Guidotti, C.V., 2002.Ti in Biotite from Metapelitic Rocks:Temperature Effects, Crystallochemical Controls and Petrologic Applications.American Mineralogist, 87(4):375-382. doi: 10.2138/am-2002-0401 [18] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelities Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90:316-328. doi: 10.2138/am.2005.1498 [19] Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling.Earth Science, 41(10):1665-1682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200211001.htm [20] Hu, K.M., Tang, Z.C., Meng, X.S., et al., 2016.Chronology of Petrogenesis and Mineralization of Datongkeng Porphyry W-Mo Deposit in West Zhejiang.Earth Science, 41(9):1435-1450 (in Chinese with English abstract). doi: 10.1007/s12583-017-0739-3 [21] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008.Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China.Geological Journal of China Universities, 14(4):496-509 (in Chinese with English abstract). doi: 10.1007/s00710-014-0355-1 [22] Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009.Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental Arc to Rifting.Lithos, 107(3-4):185-204. doi: 10.1016/j.lithos.2008.10.006 [23] Kesler, S.E., Issgonis, M.J., Brownlow, A.H., et al., 1975.Geochemistry of Biotites from Mineralized and Barren Intrusive Systerms.Economic Geology, 70(3):559-567. doi: 10.2113/gsecongeo.70.3.559 [24] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. doi: 10.1093/petroj/38.3.371 [25] Lalonde, A.E., Bernard, P., 1993.Composition and Color of Biotite from Granites:Two Useful Properties in Characterization of Plutonic Suites from the Hepburn Internal Zone of Wopmay Orogen, Northwest-Territories.Canadian Mineralogist, 31(1):203-217. http://rruff.info/doclib/cm/vol31/CM31_203.pdf [26] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). doi: 10.1007/s00126-016-0654-z [27] Li, Z.L., Hu, R.Z., Peng, J.T., et al., 2006.Helium Isotope Composition of Fluid Inclusions and the Origin of Ore-Forming Fluids of Furong Tin Orefield in Hunan Province, China.Earth Science, 31(1):129-135 (in Chinese with English abstract). [28] Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). [29] Linnen, R.L., Pichavant, M., Holtz, F., 1996.The Combined Effect of fO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Hapologranitic Melt.Geochimica et Cosmochimica Acta, 60(24):4965-4976. doi: 10.1016/S0016-7037(96)00295-5 [30] Luo, H.W., Zeng, Q.W., Zeng, G.H., et al., 2005.Geological Characteristics and Origin of the Xitian Tin Orefield in Eastern Hunan Province.Geology and Mineral Resources of South China, (2):61-67 (in Chinese with English abstract). [31] Patio Dounce, A.E., 1993.Titanium Substitution in Biotite:An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability.Chemical Geology, 108(1-4):133-162. doi: 10.1016/0009-2541(93)90321-9 [32] René, M., Holtz, F., Luo, C.H., et al., 2008.Biotite Stability in Peraluminous Granitic Melts:Compositional Dependence and Application to the Generation of Two-Mica Granites in the South Bohemian Batholith (Bohemian Massif, Czech Republic).Lithos, 102(3-4):538-553. doi: 10.1016/j.lithos.2007.07.022 [33] Rieder, M., Cavazzini, G., D'Yakonov, Y.S., et al., 1998.Nomenclature of the Micas.The Canadian Mineralogist, 36:905-912. http://adsabs.harvard.edu/abs/1998CCM....46..586R [34] Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003.Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator?Canadian Mineralogist, 41(6):1381-1396. doi: 10.2113/gscanmin.41.6.1381 [35] Stemprok, M., 1990.Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas.Mineralium Deposita, 25(3):205-212. doi: 10.1007/BF00190382 [36] Sylvester, P.J., Ward, B.J., Grossman, L., et al., 1990.Chemical Compositions of Siderophile Element-Rich Opaque Assemblages in an Allende Inclusion.Geochimica et Cosmochimica Acta, 54(12):3491-3508. doi: 10.1016/0016-7037(90)90300-A [37] Wasson, J.T., Kallemeyn, G.W., 1988.Compositions of Chondrites.Philosophical Transactions of the Royal Society of London, 325(1587):535-544. doi: 10.1098/rsta.1988.0066 [38] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202 [39] Wones, D.R., 1989.Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks.American Mineralogist, 74:744-749. http://rruff.info/doclib/am/vol74/AM74_744.pdf [40] Wones, D.R., Eugster, H.P., 1965.Stability of Biotite:Experiment, Theory and Application.The American Mineralogist, 50:1228-1272. http://rruff.info/doclib/am/vol50/AM50_1228.pdf [41] Wu, S.C., Hong, Q.H., Long, W.P., et al., 2009.Geological Features and Metallogenic Model of Xitian W-Sn Polymetallic Deposit, Hunan Province.Geology and Mineral Resources of South China, (2):1-6 (in Chinese with English abstract). [42] Wu, S.C., Long, Z.Q., Xu, H.H., et al., 2012.Structural Characteristics and Prospecting Significance of the Xitian Tin-Tungsten Polymetallic Deposit, Hunan Province, China.Geotectonica et Metallogenia, 36(2):217-226 (in Chinese with English abstract). [43] Wu, S.C., Luo, H.W., Huang, T., 2004.Metallogenetic Geological Characteristics and Prospecting of Tin-Polymetallic Deposits in Central Xitian Area, Eastern Hunan.Geology and Mineral Resources of South China, (2):21-26 (in Chinese with English abstract). [44] Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2013.Geochronology and Geochemical Characteristics of the Xitian Tungsten-Tin-Bearing A-Type Granites, Hunan Province, China.Geotectonica et Metallogenia, 37(3):511-529 (in Chinese with English abstract). [45] Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract). [46] 陈国达, 1996.地洼学说——活化构造及成矿理论体系概论.长沙:中南工业大学出版社, 193-206. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199803010.htm [47] 陈国达, 杨心宜, 梁新权, 2001.中国华南活化区历史-动力学的初步研究.大地构造与成矿学, 25(3): 228-238. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200103001.htm [48] 陈国达, 杨心宜, 梁新权, 2002.关于活化区动力学的几个问题.地质科学, 37(3): 320-331. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203008.htm [49] 付建明, 程顺波, 卢友月, 等, 2012.湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年.地质与勘探, 48(2): 313-320. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202014.htm [50] 付建明, 伍式崇, 徐德明, 等, 2009.湘东锡田钨锡多金属矿区成岩成矿时代的再厘定.华南地质与矿产, (3): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200903001.htm [51] 甘成势, 王岳军, 蔡永丰, 等, 2016.南岭地区温公岩体的岩石成因及其构造指示.地球科学, 41(1): 17-34. http://earth-science.net/WebPage/Article.aspx?id=3216 [52] 顾连兴, 1990.A型花岗岩的特征、成因及成矿.地质科技情报, 9(1): 25-31. http://youxian.cnki.com.cn/yxdetail.aspx?filename=DGYK20160520000&dbname=CAPJ2015 [53] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10): 1665-1682. http://earth-science.net/WebPage/Article.aspx?id=3370 [54] 胡开明, 唐增才, 孟祥随, 等, 2016.浙西大铜坑斑岩型钨钼矿床成岩成矿年代学.地球科学, 41(9): 1435-1450. http://earth-science.net/WebPage/Article.aspx?id=3349 [55] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报, 14(4): 496-509. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm [56] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6): 999-1015. http://earth-science.net/WebPage/Article.aspx?id=3312 [57] 李兆丽, 胡瑞忠, 彭建堂, 等, 2006.湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪.地球科学, 31(1): 129-135. http://earth-science.net/WebPage/Article.aspx?id=1545 [58] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2): 155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ402.004.htm [59] 罗洪文, 曾钦旺, 曾桂华, 等, 2005.湘东锡田锡矿田矿床地质特征及矿床成因.华南地质与矿产, (2): 61-67. doi: 10.3969/j.issn.1007-3701.2005.02.002 [60] 伍式崇, 洪庆辉, 龙伟平, 等, 2009.湖南锡田钨锡多金属矿床成矿地质特征及成矿模式.华南地质与矿产, (2): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200902000.htm [61] 伍式崇, 龙自强, 徐辉煌, 等, 2012.湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义.大地构造与成矿学, 36(2): 217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201202011.htm [62] 伍式崇, 罗洪文, 黄韬, 2004.锡田中部地区锡多金属矿成矿地质特征及找矿潜力.华南地质与矿产, (2): 21-26. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200402004.htm [63] 周云, 梁新权, 梁细荣, 等, 2013.湖南锡田含W-Sn A型花岗岩年代学与地球化学特征.大地构造与成矿学, 37(3): 511-529. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303017.htm [64] 周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3): 63-73. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198803007.htm