• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南岛小妹韧性剪切带纳米颗粒发育阶段及形成机制

    王印 刘海龄 张雪芬 沈宝云 朱荣伟 周洋

    王印, 刘海龄, 张雪芬, 沈宝云, 朱荣伟, 周洋, 2018. 海南岛小妹韧性剪切带纳米颗粒发育阶段及形成机制. 地球科学, 43(5): 1532-1541. doi: 10.3799/dqkx.2017.540
    引用本文: 王印, 刘海龄, 张雪芬, 沈宝云, 朱荣伟, 周洋, 2018. 海南岛小妹韧性剪切带纳米颗粒发育阶段及形成机制. 地球科学, 43(5): 1532-1541. doi: 10.3799/dqkx.2017.540
    Wang Yin, Liu Hailing, Zhang Xuefen, Shen Baoyun, Zhu Rongwei, Zhou Yang, 2018. Developmental Stage and Formation Mechanism of Nanoparticles in Xiaomei Ductile Shear Zone on Hainan Island. Earth Science, 43(5): 1532-1541. doi: 10.3799/dqkx.2017.540
    Citation: Wang Yin, Liu Hailing, Zhang Xuefen, Shen Baoyun, Zhu Rongwei, Zhou Yang, 2018. Developmental Stage and Formation Mechanism of Nanoparticles in Xiaomei Ductile Shear Zone on Hainan Island. Earth Science, 43(5): 1532-1541. doi: 10.3799/dqkx.2017.540

    海南岛小妹韧性剪切带纳米颗粒发育阶段及形成机制

    doi: 10.3799/dqkx.2017.540
    基金项目: 

    "中国海及邻域地质地球物理及地球化学系列图"项目 GZH200900504-WX02

    国家自然科学基金项目 41476039

    国家自然科学基金项目 91328205

    国家自然科学基金项目 41276048

    详细信息
      作者简介:

      王印(1993-), 男, 硕士, 主要研究纳米构造地质学和大地构造学

      通讯作者:

      刘海龄

    • 中图分类号: P571

    Developmental Stage and Formation Mechanism of Nanoparticles in Xiaomei Ductile Shear Zone on Hainan Island

    • 摘要: 为了探讨韧性剪切带中纳米颗粒的发育过程和形成机制,进而厘定纳米颗粒对韧性剪切带形成过程和应力机制的指示作用,选取了在小妹韧性剪切带里发育的3种岩石样品(花岗岩、花岗质片麻岩和石英片岩),在扫描电镜下观察其中的纳米颗粒结构及纳米颗粒的聚集形态.观察结果表明:存在2种基本形态——球形的粒状和长条形的柱状,粒状纳米粒子(纳米粒)在3种岩石中都广泛发育,而柱状纳米颗粒(纳米棒)则在花岗质片麻岩中最发育.对纳米颗粒聚集形态研究,可将发育阶段分为:粒化阶段-异化阶段-成层堆积阶段.再次活动时,首先是经过活化阶段,形成复体颗粒,然后再重复上述阶段.结合纳米颗粒形态变化过程,其形成机制可能为脆-韧性变形.

       

    • 图  1  陵水县小妹研究区区域地质图

      图中五角星为研究区位置,位于小妹水库堤坝下游河床中.①九所-陵水断裂带的可能实际露头(蓝色线);②地球物理场资料给出的九所-陵水断裂带位置(绿色线).1.中二叠二长花岗岩;2.晚二叠二长花岗岩;3.中三叠二长花岗岩;4.早白垩二长花岗岩;5.晚白垩二长花岗岩;6.中二叠花岗岩;7.中三叠花岗岩;8.晚白垩花岗岩;9.晚二叠闪长花岗岩;10.晚白垩闪长花岗岩;11.中三叠石英二长岩;12.中侏罗石英二长岩;13.早白垩石英二长岩;14.早白垩石英正长岩;15.中三叠石英正长岩;16.中三叠钾长花岗岩;17.早白垩细晶斑岩;18.晚白垩花岗斑岩;19.长城系;20.第四系北海组; 21.第四系烟墩组;22.第四系全新统;23.断层;24.等高线;25.糜棱岩带

      Fig.  1.  Regional geological map and spatial location of Xiaomei research area, Lingshui County

      图  2  研究区实测剖面及样品采集位置

      Fig.  2.  Cross-section and sample locations of research area

      图  3  3种岩石样品的野外露头及光学显微镜照片

      a.花岗岩野外露头照片;b, c.花岗岩光学显微镜下正交偏光显微照片;d.石英片岩野外露头照片;e, f.石英片岩光学显微镜下正交偏光显微照片;g.花岗质片麻岩野外露头照片;h, i.花岗质片麻岩光学显微镜下正交偏光显微照片.Pl.斜长石;Qz.石英;Bt.黑云母;Chl.绿泥岩;Kf.钾长石;Act.阳起石

      Fig.  3.  Outcrops and optical micrographs of three kinds of rock samples

      图  4  两种基本纳米粒子扫描电镜图片

      a.纳米粒,为花岗岩扫描电镜图片,粒状纳米粒子,图中测量的大粒子为77 nm,小粒子为21 nm,松散堆积;b.纳米棒,为花岗质片麻岩扫描电镜图片,柱状纳米粒子,图中纳米粒子宽50 nm左右,长可达1 μm

      Fig.  4.  SEM photos of two basic nanoparticles

      图  5  异化粒扫描电镜照片

      沈宝云等(2016).a.异化作用发生早期阶段,颗粒粒径变化不大,但是颗粒形态变化较显著,并且颗粒开始出现聚集现象,形成复体颗粒;b.异化作用后期,单体颗粒粒径显著减小,平均粒径为32 nm,颗粒的圆度和球度相对较好,且颗粒间呈线性紧密排列;a, b均为花岗岩中照片

      Fig.  5.  SEM photos of alienation nanoparticles

      图  6  成层作用扫描电镜图片

      a.纳米线在较稀疏条件下,呈近平行状排列,形成网状结构;b.较稀疏条件下,纳米线平行排列,形成的定向结构;c,d.纳米线成层后,堆积形成的立体结构的垂直层面的扫描电镜图片.a~d均为石英片岩中的照片

      Fig.  6.  SEM photos of stratification

      图  7  颗粒活化阶段扫描电镜照片

      a.由第1期活动形成的纳米颗粒堆积形成的层状结构,在遭受第2期活动形成褶皱,并使层间发生滑动,导致各层间堆积不再紧密;b.在挤压应力作用下,纳米层先是韧性变形,形成褶皱,然后发生脆性变形,形成断裂;c.断裂缝隙中的纳米颗粒复体,圆度和球度非常好;d.裂缝中,由颗粒较小的梭状纳米复体颗粒呈放射状排列形成的花状结构;a~d均为石英片岩中的照片

      Fig.  7.  SEM photos of reactivation stage

      图  8  纳米线与纳米棒扫描电镜图片

      a.纳米线放射状堆积,b.纳米棒散乱堆积;a.石英片岩照片,b.花岗质片麻岩照片

      Fig.  8.  SEM photos of nanoline and nanorod

      图  9  纳米棒聚集扫描电镜图片

      a.少量纳米棒刚形成时杂乱分布,其中还夹杂有纳米粒;b.大量纳米棒定向堆积,其中无纳米粒存在(据沈宝云等,2016);a,b均为花岗质片麻岩照片

      Fig.  9.  SEM photos of aggregation of nanorod

      图  10  裂缝中的纳米颗粒扫描电镜图片

      a.花岗质片麻岩(沈宝云等,2016);b.石英片岩

      Fig.  10.  The SEM photo of nanoparticle in the fissure

    • [1] Collettini, C., Niemeijer, A., Viti, C., et al., 2009.Fault Zone Fabric and Fault Weakness.Nature, 462(7275):907-910.doi: 10.1038/nature08585
      [2] Han, R., Hirose, T., Shimamoto, T., 2010.Strong Velocity Weakening and Powder Lubrication of Simulated Carbonate Faults at Seismic Slip Rates.Journal of Geophsical Reaseach, 115(B3):181-192.doi: 10.1029/2008jb006136
      [3] Han, R., Shimamoto, T., Hirose, T., et al., 2007.Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition.Science, 316(5826):878-881.doi: 10.1126/science.1139763
      [4] Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolutionin the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605.doi: 10.1016/S0012-821X(02)00818-X
      [5] Hochella, M.F., 2006.The Case for Nanogeoscience.Annals of the New York Academy of Sciences, 1093(1):108-122.doi: 10.1196/annals.1382.008
      [6] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract).doi: 10.3969/j.issn.1007-2802.2016.01.001
      [7] Li, J., Liu, C.L., Zheng, Y., et al., 2017.Rupture Process of the Ms 7.0 Lushan Earthquake Determined by Joint Inversion of Local Static GPS Records, Strong Motion Data, and Teleseismograms.Journal of Earth Science, 28(2):404-410. http://www.cqvip.com/QK/86256X/199905/1004426919.html
      [8] Liu, H.L., Yan, P., Liu, Y.C., et al., 2006.The Existence and Significance of the Suture Zone in the North Margin of the South China Sea.Chinese Science Bulletin, 51(Suppl.Ⅱ):92-101. http://en.cnki.com.cn/Article_en/CJFDTotal-JXTW2006S2015.htm
      [9] Liu, H.L., Yao, Y.J., Shen, B.Y., et al., 2015.On Linkage of Western Boundary Faults of the South China Sea.Earth Science, 40(4):615-632 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.049
      [10] Liu, H.L., Zheng, H.B., Wang, Y.L., et al., 2011.Basement of the South China Sea Area:Tracing the Tethyan Realm.Acta Geologica Sinica (English Edition), 85(3):637-655.doi: 10.1111/j.1755-6724.2011.00457.x
      [11] Liu, Z.H., Pan, B.W., Li, P.C., et al., 2017.Ductile Shear Zone in High-Grade Metamorphic Rocks and Its Rheomorphic Mechanism in the Daqing Mountain Area, Inner Mongolia.Earth Science, 42(12):2105-2116 (in Chinese with English abstract).doi: 10.3799/dqkx.2017.135
      [12] Paola, N.D., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58.doi: 10.1016/j.epsl.2015.09.002
      [13] Reich, M.S., Utsunomiya, S.E., Kesler, L., et al., 2006.Thermal Behavior of Metal Nanoparticles in Geologic Materials.Geology, 34(12):1033.doi: 10.1130/g22829a.1
      [14] Sammis, C.G., Ben-Zion, Y., 2008.Mechanics of Grain-Size Reduction in Fault Zones.Journal of Geophsical Reaseach, 113(B3):115-124.doi: 10.1029/2006jb004892
      [15] Schleicher, A.M., van der Pluijm, B.A., Warr, L.N., 2010.Nanocoatings of Clay and Creep of the San Andreas Fault at Parkfield, California.Geology, 38(7):667-670.doi: 10.1130/g31091.1
      [16] Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.54
      [17] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706.doi: 10.1130/g34087.1
      [18] South China Fe-Rich Scientific Research Team, Chinese Academy of Sciences, 1986.Geology in Hainan and Geochemistry of Iron Ore in Shilu.Science Press, Beijing (in Chinese).
      [19] Sun, Y., Ge, H.P., Lu, X.C., et al., 2003.Discovery and Analysis of the Ultra-Micro Nano Texture in the Ductile-Brittle Shear Zone.Science China Earth Sciences, 33(7):619-625 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200610013.htm
      [20] Sun, Y., Shu, L.S., Lu, X.C., et al., 2008.Recent Progress in Studies on the Nano-Sized Particle Layer in Rock Shear Planes.Progress in Natural Science, 18(4):367-373.doi: 10.1016/j.pnsc.2007.12.001
      [21] Tisato, N., Toro, G.D., Rossi, N.D., et al., 2012.Experimental Investigation of Flash Weakening in Limestone.Journal of Structural Geology, 38(4):183-199.doi: 10.1016/j.jsg.2011.11.017
      [22] Yuan, R.M., Zhang, B.L., Xu, X.W., et al., 2014.Features and Genesis of Micro-Nanometer-Sized Grains on Shear Slip Surface of the 2008 Wenchuan Earthquake.Science China Earth Sciences, 57:1961-1971.doi:10.1007/s11 430-014-4859-7
      [23] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      [24] 刘海龄, 姚永坚, 沈宝云, 等, 2015.南海西缘结合带的贯通性.地球科学, 40(4):615-632. http://www.earth-science.net/WebPage/Article.aspx?id=3107
      [25] 刘正宏, 潘博文, 李鹏川, 等, 2017.内蒙古大青山高级变质岩韧性剪切带及其流变机制.地球科学, 42(12):2105-2116. http://www.earth-science.net/WebPage/Article.aspx?id=3710
      [26] 沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354
      [27] 中国科学院华南富铁科学研究队, 1986.海南岛地质与石碌铁矿地球化学.北京:科学出版社.
      [28] 孙岩, 葛和平, 陆现彩, 等, 2003.韧脆性剪切带滑移叶片中超微磨粒结构的发现和分析.中国科学:地球科学, 33 (7):619-625. http://earth.scichina.com:8080/sciD/CN/Y2003/V33/I7/619
    • 加载中
    图(10)
    计量
    • 文章访问数:  4478
    • HTML全文浏览量:  1769
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-30
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回