Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin
-
摘要: 恢复烃源岩形成时期的古环境,落实优质烃源岩发育主控因素对确定湖相烃源岩发育层系及刻画烃源岩非均质性意义重大.利用岩石学、元素地球化学对长岭断陷早白垩世火石岭期至营城期的古环境进行恢复,并对反映古环境的微量元素含量及其比值与有机碳含量(Total Organic Carbon, TOC)进行相关性分析,确定控制湖相烃源岩发育的主要环境因素.研究表明,从火石岭期至沙河子期,再到营城期,长岭断陷经历了古水深从变深到变浅,古气候从潮湿-半潮湿气候到半干旱气候,古盐度从淡水相到半咸水相,湖泊水体还原性从增强到减弱的古环境演化过程,早白垩世不同时期长岭断陷古环境表现出明显的分带性,古气候和氧化还原条件是控制长岭断陷下白垩统湖相烃源岩发育的主要环境因素.长岭断陷沙河子组二段烃源岩形成于潮湿与缺氧的古环境,该时期湖盆演化处于均衡补偿阶段,且烃源岩古生产力较高,因此研究区沙河子组二段优质烃源岩十分发育,分布广.Abstract: Heterogeneity study of lacustrine source rocks relys heavily on a deeper understanding of paleoenvironment and the major controlling factors on their formation. Based on element geochemical and petrological analyses of the paleoenvironment of the Early Cretaceous (from K1h to K1yc) in Changling depression., the main controlling factors of organic source rocks development were analyzed according to the characteristics of its tectonics and sedimentary and the primary productivity of the source rocks in this study. Results show that from K1h period to K1sh stage to K1yc stage, Changling depression experienced paleo-water depth change from deep to shallow, palaeoclimate from humid-semi-humid to semi-arid, palaesalinity from fresh water to brackish water, and reduction condition from enhanced to weakened. From K1sh period to K1yc, the paleoenvironment of Changling depression shows obvious zonation; The correlation between trace element indexs indicating the paleoclimate and water reduction and TOC (Total Organic Carbon) of the source rock samples is significant, while the correlation between the trace element indexs indicating the paleosalinity and TOC of the source rock samples is small. So the paleoclimatic and redox conditions are the main environmental factors of the development of Lower Cretaceous lacustrine source rocks in Changling fault depression; K1sh2 Formation high quality source rock which developed in equilibrium compensation stage, humid climate, hypoxia and high initial productivity is widely distributed. Followed by K1sh1 Formation and K1h2 Formation, the organic source rock of K1yc Formation is relatively developed in the south and east, and the distribution is relatively limited.
-
图 10 长岭断陷下白垩统烃源岩微量元素含量及其比值与TOC关系
反映氧化还原条件的参数:微量元素含量Cr、Ni、V,元素含量比Ni/Co与V/Cr;反映古气候的参数:微量元素含量Cu,古气候指数,元素含量比Fe/Cu与Sr/Cu;反映古盐度的参数:微量元素含量Sr,元素含量比Sr/Ba与Sr/Ca
Fig. 10. Relationship between the element contents or its ratio and TOC in lacustrine source rocks of the lower Cretaceous samples from Changling depression
表 1 SL3井下白垩统元素标志、水体相对深度及沉积环境划分
Table 1. Element indexes, relative water depth and sedimentary environments of the lower Cretaceous lacustrine source rocks of SL3 well
层位 泥岩主要颜色 暗地比
(%)Fe/Mn (Al+Fe)/(Ca+Mg) 反映古水深 参考指标范围 范围 均值 范围 均值 营四段 灰色、褐色 17 43~54 49 4.5~8.3 6.8 三角洲平原 深湖:Fe/Mn<30,(Al+Fe)/(Ca+Mg)<2.5;半深湖:30<Fe/Mn<40,2.5<(Al+Fe)/(Ca+Mg)<5.0;滨浅湖:Fe /Mn>40,(Al+Fe)/(Ca+Mg)>5.0 营三段 灰色、深灰色 40 43~49 46 5.8~7.6 6.7 滨浅湖 营二段 灰色 66 42~53 46 6.0~7.5 6.5 滨浅湖 营一段 灰色 13 34~46 41 6.9~8.9 7.9 滨浅湖 沙二段 黑色、深灰色 82 17~52 37 0.7~5.6 2.9 深湖 沙一段 深灰色,顶部灰黑色 66 28~48 39 3.6~5.8 4.7 半深湖 火二段 深灰色 25 38~65 48 5.0~8.2 6.6 滨浅湖 表 2 古盐度微量元素判断指标
Table 2. Trace element index for paleosalinity recognition in samples
判断指标 淡水 半咸水 咸水 Sr丰度(10-6) <300 300~500 >500 Sr/Ba <0.6 0.6~1.0 >1.0 注:据郑荣才和柳梅青(1999);李进龙和陈东敬(2003). -
[1] Carroll, A.R., Bohacs, K.M., 2001.Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins.AAPG Bulletin, 85(6):1033-1053. [2] Demaison, G.J., Moore, G.T., 1980.Anoxic Environments and Oil Source Bedgenesis.AAPG Bulletin, 64(8):1179-1209. http://archives.datapages.com/data/bulletns/1980-81/data/pg/0064/0008/1150/1179.htm?doi=10.1306%2F2F91945E-16CE-11D7-8645000102C1865D [3] Deuser, W.G., Brewer, P.G., Jickells, T.D., et al., 1983.Biological Control of the Removal of Abiogenic Particles from the Surface Ocean.Science, 219(4583):388-391. doi: 10.1126/science.219.4583.388 [4] Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., 2004.A New Geological Time Scale, with Special Reference to Precambrian and Neogene.Episodes, 27(2):83-100. http://www.cqvip.com/qk/86983x/2004002/10458661.html [5] Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA.Chemical Geology, 99(1/3):65-82. http://www.sciencedirect.com/science/article/pii/000925419290031Y?via%3Dihub [6] Hunt, J.M., 1979.Petroleum Geochemistry and Geology.W.H.Freeman and Company, New York. [7] Ibach, L.E.J., 1982.Relationship between Sedimentation Rate and Total Organic Carbon Content in Ancient Marine Sediments.AAPG Bulletin, 66(2):170-188. http://archives.datapages.com/data/bulletns/1982-83/data/pg/0066/0002/0150/0170.htm?q=%2BtextStrip%3Aseparation+textStrip%3Aversus+textStrip%3Asplitting [8] Jia, J.L., Liu, Z.J., Achim, B., et al., 2014.Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin.Earth Science, 39(2):174-186 (in Chinese with English abstract). [9] Jia, Y.Y., Xing, X.J., Sun, G.Q., et al., 2015.The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin.Earth Science, 40 (12):1954-1967 (in Chinese with English abstract). [10] Jones, B., Manning, D.A.C., 1994.Comparison of Geological Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(111):111-129. http://www.sciencedirect.com/science/article/pii/000925419490085X [11] Katz, B.J., 1990.Controls on Distribution of Lacustrine Source Rocks through Time and Space.AAPG Memoir, 24(10):61-76. [12] Kelts, K., 1991.Sedimentary Environment in Lacustrine Source Rocks.In:Wang, P.X., Liu, C.L., eds., Memoir of Palaeolimnology.China Ocean Press, Beijing, 68-77 (in Chinese). [13] Kryc, K.A., Murray, R.W., Murray, D.W., 2003.Al-to-Oxide and Ti-to-Organic Linkages in Biogenic Sediment:Relationships to Paleo-Export Production and Bulk Al/Ti.Earth and Planetary Science Letters, 211(1-2):125-141. doi: 10.1016/S0012-821X(03)00136-5 [14] Li, H., Lu, J.L., Wang, B.H., et al., 2016.Reservoir-Forming Mechanism and Its Exploration Potential of Songliao Basin in the Southern Area of Changling Depression.Journal of China University of Petroleum (Edition of Natural Science), 40(3):44-54 (in Chinese with English abstract). doi: 10.1007/s11434-007-0424-5 [15] Li, J.L., Chen, D.J., 2003.Summary of Quantified Research Method on Paleosalinity.Petroleum Geology and Recover Efficiency, 10(5):1-3 (in Chinese with English abstract). [16] Liu, G., Zhou, D.S., 2007.Application of Microelements Analysis in Identifying Sedimentary Environment—Takin Qianjiang Formation in the Jianghan Basin as an Example.Petroleum Geology & Experiment, 29(3):307-314 (in Chinese with English abstract). [17] Ma, C., 2009.Initial Conference of the Ecostratigraphic Framework and Primary Productivity, Silurian, Upper Yangtze Region, China (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [18] Meyers, P.A., Arnaboldi, M., 2005.Trans-Mediterranean Comparison of Geochemical Paleoproductivity Proxies in a Mid-Pleistocene Interrupted Sapropel.Palaeogeography, Palaeochimatology, Palaeoecology, 222(3-4):313-328. doi: 10.1016/j.palaeo.2005.03.020 [19] Mongenot, T., Tribovillard, N.P., Desprairies, A., et al., 1996.Trace Elements Palaeoenvironmental Markers in Strongly Mature Hydrocarbon Source Rocks:The Cretaceous La Luna Formation of Venezuela.Sedimentary Geology, 103(103):23-37. http://www.sciencedirect.com/science/article/pii/003707389500078X [20] Myrbo, A., Shapley, M.D., 2006.Seasonal Water-Column Dynamics of Dissolved Inorganic Carbon Stable Isotopic Composition in Small Hard Water Lakes in Minnesota and Montana.Geochimica Cosmochimica Acta, 70(11):2699-2714. doi: 10.1016/j.gca.2006.02.010 [21] Qin, J.Z., 2005.Hydrocarbon Source Rocks of China.Science Press, Beijing (in Chinese). [22] Ren, J.L., Zhang, J., Liu, S.M., 2005.A Review on Aluminum to Titanium Ratio as a Geochemical Proxy to Reconstruct Paleoproductivity.Advances in Earth Science, 20(12):1314-1320 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200512005.htm [23] Song, L.J., Liu, C.Y., Zhao, H.G., et al., 2016.Ceochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin.Earth Science, 41(8):1295-1308 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH200703115.htm [24] Song, M.S., 2005.Sedimentary Environment Geochemistry in the Shasi Section of Southern Ramp, Dongying Depression.Journal of Mineralogy and Petrology, 25(1):67-73 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200501013.htm [25] Wang, C.L., Liu, C.L., Hu, H.B., et al., 2012.Sedimentary Characteristics and Its Environmental Significance of Salt-Bearing Strata of the Member 4 of Paleocene Shashi Formation in Southern Margin of Jiangling Depression, Jianghan Basin.Journal of Palaeogeography, 14(2):165-175 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201202004.htm [26] Wang, J., Wang, Q., Zhong, X.M., et al., 2015.Characteristics of High-Quality Hydrocarbon Source Rocks and Their Contributions to Reservoirs in the Erlian Basin.Petroleum Geology & Experiment, 37(5):642-647 (in Chinese with abstact). https://www.sciencedirect.com/science/article/pii/S0264817297000111 [27] Wen, H.G., Zheng, R.C., Tang, F., et al., 2008.Reconstruction and Analysis of Paleosalanity and Paleoenvironment of the Chang 6 Member in the Gengwan Region, Ordos Basin.Journal of Mineralogy and Petrology, 28(1):114-120 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200801016.htm [28] Yang, H., Zhang, W.Z., 2005.Leading Effect of the Seventh Member High-Quality Source Rock of Yanchang Formation in Ordos Basin during the Enrichment of Low-Penetrating Oil-Gas Accumulation:Geology and Geochemistry.Geochimica, 34(2):147-154 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200502006.htm [29] Yao, Y.J., Lü, C.L., Kang, Y.S., et, al., 2013.Characteristics of Hydrocarbon Source Rocks and Their Main Controlling Factors in Southeast Asia.Earth Science, 38(2):368-378 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201302019.htm [30] Zhang, L.Y., 2008.The Progress on the Study of Lacustrine Source Rocks.Petroleum Geology & Experiment, 30(6):591-595 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604009.htm [31] Zhang, Y.S., Yang, Y.Q., Qi, Z.X., et al., 2003.Sedimentary Characteristics and Environments of the Salt-Bearing Series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin.Journal of Palaeogeography, 5(1):29-35 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200301002.htm [32] Zhao, Z.Y., Zhao, J.H., Wang, H.J., et al., 2007.Distribution Characteristics and Applications of Trace Elements in Junggar Basin.Natural Gas Exploration & Development, 30(6):30-32 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRKT200702006.htm [33] Zheng, R.C., Liu, M.Q., 1999.Study on Palaeosalinity of Chang-6 Oil Reservoir Set in Ordos Basin.Oil & Gas Geology, 20(1):20-25 (in Chinese with abstact). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT901.019.htm [34] 贾建亮, 刘招君, Achim, B., 等, 2014.松辽盆地嫩江组油页岩发育控制因素.地球科学, 39(2): 174-186. http://www.earth-science.net/WebPage/Article.aspx?id=2817 [35] 贾艳艳, 邢学军, 孙国强, 等, 2015.柴北缘西段古-新近纪古气候演化.地球科学, 40(12): 1954-1967. http://www.earth-science.net/WebPage/Article.aspx?id=3202 [36] Kelts, K. , 1991. 湖相烃源岩的沉积环境: 绪论. 见: 汪品先, 刘传联编, 古湖泊论文集. 北京: 海洋出版社, 68-77. [37] 李浩, 陆建林, 王保华, 等, 2016.长岭断陷南部地区断陷层油气成藏机制及勘探潜力.中国石油大学学报(自然科学版), 40(3): 44-54. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201603006.htm [38] 李进龙, 陈东敬, 2003.古盐度定量研究方法综述.油气地质与采收率, 10(5): 1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200305001.htm [39] 刘刚, 周东升, 2007.微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例.石油实验地质, 29(3): 307-314. doi: 10.11781/sysydz200703307 [40] 马超, 2009. 上扬子地区志留系生态地层格架及其初级生产力的初步探讨(硕士学位论文). 北京: 中国地质大学. [41] 秦建中, 2005.中国烃源岩.北京:科学出版社. [42] 任景玲, 张经, 刘素美, 2005.以Al /Ti比值为地球化学示踪剂反演海洋古生产力的研究进展.地球科学进展, 20(12): 1314-1320. doi: 10.3321/j.issn:1001-8166.2005.12.006 [43] 宋立军, 刘池阳, 赵红格, 等, 2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学, 41(8): 1295-1308. http://www.earth-science.net/WebPage/Article.aspx?id=3338 [44] 宋明水, 2005.东营凹陷南斜坡沙四段沉积环境的地球化学特征.矿物岩石, 25(1): 67-73. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200501013.htm [45] 王春连, 刘成林, 湖海兵, 等, 2012.江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义.古地理学报, 14(2): 165-175. doi: 10.7605/gdlxb.2012.02.003 [46] 王建, 王权, 钟雪梅, 等, 2015.二连盆地优质烃源岩发育特征及成藏贡献.石油实验地质, 37(5): 642-647. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201505018.htm [47] 文华国, 郑荣才, 唐飞, 等, 2008.鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析.矿物岩石, 28(1): 114-120. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200801016.htm [48] 杨华, 张文正, 2005.论鄂尔多斯盆地长7段优质油源岩在低渗透油气藏富集中的主导作用:地质地球化学特征.地球化学, 34(2): 147-154. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502006.htm [49] 姚永坚, 吕彩丽, 康永尚, 等, 2013.东南亚地区烃源岩特征与主控因素.地球科学, 38(2): 368-378. http://www.earth-science.net/WebPage/Article.aspx?id=2374 [50] 张林晔, 2008.湖相烃源岩研究进展.石油实验地质, 30(6): 591-595. doi: 10.11781/sysydz200806591 [51] 张永生, 杨玉卿, 漆智先, 等, 2003.江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境.古地理学报, 5(1): 29-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200301002.htm [52] 赵增义, 赵建华, 王海静, 等, 2007.准噶尔盆地微量元素的分布特征及其应用.天然气勘探与开发, 30(6): 30-32. http://youxian.cnki.com.cn/yxdetail.aspx?filename=DQKX20170519000&dbname=CAPJ2015 [53] 郑荣才, 柳梅青, 1999.鄂尔多斯盆地长6油层组古盐度研究.石油与天然气地质, 20(1): 20-25. doi: 10.11743/ogg19990105