• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年

    张志 宋俊龙 唐菊兴 王立强 姚晓峰 李志军

    张志, 宋俊龙, 唐菊兴, 王立强, 姚晓峰, 李志军, 2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(6): 862-880. doi: 10.3799/dqkx.2017.523
    引用本文: 张志, 宋俊龙, 唐菊兴, 王立强, 姚晓峰, 李志军, 2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(6): 862-880. doi: 10.3799/dqkx.2017.523
    Zhang Zhi, Song Junlong, Tang Juxing, Wang Liqiang, Yao Xiaofeng, Li Zhijun, 2017. Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. Earth Science, 42(6): 862-880. doi: 10.3799/dqkx.2017.523
    Citation: Zhang Zhi, Song Junlong, Tang Juxing, Wang Liqiang, Yao Xiaofeng, Li Zhijun, 2017. Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. Earth Science, 42(6): 862-880. doi: 10.3799/dqkx.2017.523

    西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年

    doi: 10.3799/dqkx.2017.523
    基金项目: 

    中国地质调查局地质调查项目 DD20160015

    公益性行业科研专项 201511017

    国家自然科学基金项目 41402178

    成都地质调查中心所控基金项目 所控基[2015]-06

    详细信息
      作者简介:

      张志(1985-),男,博士,助理研究员,主要从事青藏高原地质矿产勘查评价研究.ORCID:0000-0002-0947-0290.E-mail:tancer@qq.com

    • 中图分类号: P641.3

    Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating

    • 摘要: 西藏嘎拉勒铜金矿床作为构造背景反演指示针的成岩成矿年代学研究较为匮乏,使得该成矿带区域背景-构造-岩浆-成矿活动系列研究步履维艰,利用LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石U-Pb测年、辉钼矿Re-Os定年及Lu-Hf同位素技术,首次全面厘定了区内侵入岩侵位时序、探讨了岩石成因并确定了成矿时代.结果表明,成矿前闪长岩成岩年龄为155.8±2.3 Ma,侵位于晚侏罗世初期,εHf(t)值分布于-14.68~-8.34,平均值-11.74,是班公湖-怒江特提斯洋南向俯冲的产物;花岗闪长岩为矿区成矿母岩,其成岩年龄为88±1 Ma(MSWD=0.56,n=21),εHf(t)值分布于5.84~9.20,平均值7.72,成矿后花岗斑岩成岩年龄为84.67±0.80 Ma(MSWD=1.9,n=18),εHf(t)值分布于6.32~9.78,平均值8.40,二者均为晚白垩世侵位,为拉萨地体与羌塘地体汇聚的产物;矿区辉钼矿Re-Os等时线年龄为88.55±0.60 Ma(MSWD=0.60,n=8),与成矿母岩(花岗闪长岩)成岩年龄一致.研究表明,在班公湖-怒江特提斯洋南向俯冲至碰撞过程中在矿区内均有相应的岩浆活动响应,嘎拉勒铜金矿床则为典型的碰撞期成矿作用的产物.

       

    • 图  1  班公湖-怒江成矿带及邻区构造单元分布(a)与嘎拉勒铜金矿床地质简图(b)

      Ⅰ.羌塘-三江造山系;Ⅰ1.玉龙塔格-巴颜喀拉前陆盆地;Ⅰ2.西金乌兰湖-金沙江-哀牢山结合带;Ⅰ3.昌都-兰坪地块;Ⅰ4.北羌塘-甜水海陆块;Ⅱ1.龙木错-双湖-澜沧江蛇绿混杂岩带;Ⅲ1.多玛地块;Ⅲ2.南羌塘盆地;Ⅲ3.扎普-多不杂岩浆弧带;Ⅳ.左贡地块;Ⅴ.班公湖-怒江缝合带;Ⅴ1.班公湖-怒江蛇绿混杂带;Ⅴ2.聂荣地块;Ⅴ3.嘉玉桥地块;Ⅵ.冈底斯岩浆弧;Ⅵ1.那曲-洛隆弧前盆地;Ⅵ2.昂龙岗日-班戈岩浆弧;Ⅵ3.狮泉河-申扎-嘉黎蛇绿混杂岩带;Ⅵ4.措勤-申扎岩浆弧;Ⅵ5.龙格尔-工布江达复合岩浆弧;1.第四系;2.白垩系朗久组;3.白垩系捷嘎组;4.花岗闪长岩;5.石英闪长岩;6.闪长岩;7.矽卡岩;8.研究区;9.不明性质断层及编号;10.平移断层及编号;11.地质界线;12.矿体编号及范围;13.平硐;14.采样点

      Fig.  1.  Tectonic units of Bangong-Nujiang metallogenic belt and its neighboring areas (a) and generalized geological map of the Glale Cu-Au deposit (b)

      图  2  嘎拉勒矿区岩浆岩关系露头(a)及KT2矿体02号勘探线(b)勘探线剖面

      Fig.  2.  Outcrop of the relationship of the diorite and granodiorite (a) and No.02 (b) exploration of KT2 of the Galae deposit

      图  3  嘎拉勒矿床矿石组构特征

      a.条带状磁铁矿;b.含黄铜矿、黄铁矿矽卡岩中石英晶洞;c.针铁矿交代黄铜矿;d.黄铜矿与斑铜矿呈固溶体分离结构.Mt.磁铁矿;Cp.黄铜矿;Py.黄铁矿;Go.针铁矿;Bn.斑铜矿;SK.矽卡岩

      Fig.  3.  The ore textures and structures of the Glale deposit

      图  4  嘎拉勒矿床主要侵入岩及辉钼矿照片

      a.花岗闪长岩;b.花岗闪长岩显微照片;c.闪长岩;d.闪长岩显微照片;e.花岗斑岩;f.花岗斑岩显微照片;g.石英脉中辉钼矿;h.辉钼矿显微照片;Q.石英;Hbl.角闪石;Pl.斜长石;Mo.辉钼矿

      Fig.  4.  Photography of the main intrusives and molybdenite sample from the Galale deposit

      图  5  嘎拉勒矿床主要侵入岩锆石阴极发光图像及测点位置

      Fig.  5.  Cathodoluminescence images and test points of zircons from the main intrusives in the Galale deposit

      图  6  嘎拉勒矿床主要侵入岩锆石U-Pb谐和年龄

      a.花岗闪长岩;b.花岗斑岩;c, d.闪长岩

      Fig.  6.  Concordia diagram of U-Pb data for zircons from the main intrusives in the Galale deposit

      图  7  嘎拉勒矿区辉钼矿Re-Os等时线年龄(a)及加权平均年龄(b)

      Fig.  7.  Re-Os isochron (a) and weighted average of model age (b) of molybdenites from Galale deposit

      图  8  嘎拉勒矿区主要侵入岩锆石U-Pb年龄-εHf(t)图解

      CHUR.球粒陨石均一源储(chondrite uniform reservoir);DM.亏损地幔(depleted mantle)

      Fig.  8.  Plot of U-Pb ages vs. εHf(t) for the main intrusives in Galale deposit

      表  1  嘎拉勒矿床花岗闪长岩LA-ICP-MS锆石定年结果

      Table  1.   LA-ICP-MS zircon dating result of the granodiorite in Galale deposit

      点号 元素(10-6) 同位素比值 年龄(Ma)
      ThUTh/U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      GLPD2-B10194.07186.620.504 0560.067 810.005 130.122 140.014 670.013 630.000 7386314511713875
      GLPD2-B102140.12166.360.842 2340.054 880.005 760.092 550.014 060.013 510.000 754072169013875
      GLPD2-B10381.11143.120.566 750.048 030.005 310.090 740.014 670.013 210.000 801012168814855
      GLPD2-B10479.68123.670.644 2560.046 570.003 280.097 170.010 760.013 960.000 67271419410894
      GLPD2-B105107.54165.040.651 5820.051 790.005 290.102 720.015 280.014 620.000 802762119914945
      GLPD2-B106153.96204.620.752 4360.042 910.004 390.083 040.012 330.014 070.000 761281738112905
      GLPD2-B107122.18163.350.747 9520.067 120.006 250.123 510.016 730.014 970.000 7584218211815965
      GLPD2-B10873.79135.610.544 1120.048 950.005 310.090 240.013 840.013 050.000 691452168813844
      GLPD2-B10989.39131.670.678 8440.040 020.004 620.079 120.012 780.014 440.000 782881807712925
      GLPD2-B110216.42288.790.749 4030.087 110.003 090.174 470.011 730.014 610.000 591 3636316310934
      GLPD2-B11182.48178.370.462 4120.054 280.004 890.100 550.013 430.014 540.000 753831899712935
      GLPD2-B11248.6042.351.147 5610.049 460.010 780.091 620.017 510.013 830.000 501694448916893
      GLPD2-B11356.1356.061.001 2230.050 120.006 490.093 330.012 280.013 620.000 322112659111872
      GLPD2-B114153.86120.021.281 9400.049 950.003 550.094 930.005 140.013 950.000 97191167925896
      GLPD2-B11579.9669.761.146 2440.048 200.002 340.091 610.004 730.013 690.000 19109111894881
      GLPD2-B116130.7597.041.347 3820.049 440.005 060.092 490.010 760.013 440.000 321692229010862
      GLPD2-B117168.86138.941.215 3710.048 190.003 260.090 440.005 960.013 660.000 41109152886873
      GLPD2-B118109.3982.531.325 5080.048 950.005 140.090 980.009 730.013 540.000 22146230889871
      GLPD2-B119100.88107.950.934 4980.049 400.002 850.091 950.004 740.013 690.000 29169132894882
      GLPD2-B12050.5553.570.943 5210.048 980.002 640.093 840.005 560.013 860.000 27146158915892
      GLPD2-B12186.4167.611.278 0260.048 930.003 210.092 130.005 860.013 730.000 20143157905881
      下载: 导出CSV

      表  2  嘎拉勒花岗闪长岩的锆石Hf同位素组成

      Table  2.   Hf isotopic composition for the granodiorite in Galale deposit

      测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf
      PD2-B1
      01870.001 6870.282 8980.000 0220.282 8954.466.27512750-0.95
      02870.000 9820.282 9290.000 0250.282 9285.567.41458677-0.97
      03850.001 0250.282 8860.000 0210.282 8854.045.84519776-0.97
      04890.000 7740.282 9460.000 0200.282 9456.178.08431636-0.98
      05940.000 9030.282 9500.000 0220.282 9486.298.29428626-0.97
      06900.001 2230.282 9330.000 0230.282 9315.717.61455667-0.96
      08840.000 9070.282 9270.000 0200.282 9265.497.29459683-0.97
      09920.000 6560.282 9210.000 0200.282 9205.267.24466692-0.98
      10930.001 0640.282 9330.000 0190.282 9315.687.65454667-0.97
      11930.000 7820.282 9360.000 0200.282 9355.807.79446657-0.98
      12890.000 9730.282 9440.000 0230.282 9426.077.96437643-0.97
      13870.001 0420.282 9650.000 0210.282 9636.838.68407596-0.97
      14890.001 6380.282 9470.000 0200.282 9446.198.05440638-0.95
      15880.001 2570.282 9800.000 0220.282 9787.359.20388563-0.96
      16860.000 8130.282 9310.000 0180.282 9305.637.47453673-0.98
      17870.001 1790.282 9140.000 0210.282 9125.036.88482712-0.96
      18870.001 5510.282 9610.000 0220.282 9586.678.48419609-0.95
      19880.000 9110.282 9720.000 0200.282 9707.068.93397580-0.97
      20890.001 0020.282 9160.000 0250.282 9145.086.97477707-0.97
      21 88 0.000 892 0.282 956 0.000 019 0.282 954 6.49 8.37 419 617 -0.97
      注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000);λ=1.867×10-11 a-1(Soderlund et al., 2004);(176Lu/177Hf)C=0.015,t=锆石结晶年龄.
      下载: 导出CSV

      表  3  嘎拉勒矿床闪长岩LA-ICP-MS锆石定年结果

      Table  3.   LA-ICP-MS zircon dating result of the diorite in Galale deposit

      点号 元素(10-6) 同位素比值 年龄(Ma)
      ThUTh/U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      GLB00401120.94138.060.875 9910.048 330.003 560.175 580.018 360.026 600.000 96116153164161696
      GLB0040254.35131.790.412 4380.096 700.006 710.168 700.017 470.014 800.000 601 56112115815954
      GLB00403150.55235.020.640 5680.052 660.004 020.091 630.009 970.013 840.000 53314160899893
      GLB00404118.45214.620.551 9160.053 260.004 810.094 720.011 620.013 650.000 513401879211873
      GLB00405227.85280.540.812 2010.050 330.002 700.187 680.014 950.026 860.000 83210114175131715
      GLB00406137.81200.410.687 6620.047 490.003 360.150 350.015 170.025 280.000 8974155142131616
      GLB0040790.44104.150.868 3980.051 970.006 670.094 320.016 580.013 570.000 752842829215875
      GLB0040886.10105.880.813 2260.047 470.004 870.160 190.021 780.023 780.000 9273217151191516
      GLB00409109.28112.010.975 6780.059 130.005 320.200 560.024 760.025 700.001 00572202186211646
      GLB00410112.67159.210.707 7210.063 880.003 710.205 690.017 240.023 170.000 70738125190151484
      GLB00411341.91415.170.823 5400.052 590.003 050.101 390.008 630.014 610.000 47311134988933
      GLB0041253.7898.380.546 6340.059 530.012 690.078 670.020 870.014 270.000 855874557720915
      GLB0041398.54109.370.900 9700.056 270.005 340.196 640.025 310.025 700.001 01463217182211646
      GLB00414127.08106.261.195 9510.054 060.002 770.186 400.016 780.024 820.000 95372115174141586
      GLB00415460.43337.731.363 3080.051 110.000 650.172 160.002 300.024 400.000 172563016121551
      GLB00416178.15164.241.084 7140.050 160.001 200.168 560.004 250.024 320.000 162115615841551
      GLB00417157.87137.651.146 9070.054 280.004 300.193 460.021 300.025 670.000 99383178180181636
      GLB00418133.90175.930.761 1040.052 460.002 730.169 980.005 460.023 500.000 5030611615951503
      GLB00419523.78226.472.312 8640.054 000.002 430.192 040.006 140.025 920.000 5937210717851654
      GLB00420147.22118.931.237 8920.050 810.008 680.167 730.027 930.024 060.000 98232352157241536
      下载: 导出CSV

      表  4  嘎拉勒闪长岩及花岗斑岩的锆石Hf同位素组成

      Table  4.   Hf isotopic composition for the diorite and granite porphyry in Galale deposit

      测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf
      GLB004
      011690.000 8710.282 3600.000 0260.282 357-14.58-10.981 2571 907-0.97
      051710.000 8250.282 4330.000 0210.282 430-12.00-8.341 1541 742-0.98
      061610.000 7800.282 3530.000 0180.282 351-14.81-11.361 2631 925-0.98
      081510.001 0190.282 2660.000 0210.282 263-17.89-14.681 3932 126-0.97
      091640.001 2600.282 3510.000 0160.282 347-14.90-11.451 2831 933-0.96
      131640.000 6490.282 2720.000 0170.282 270-17.68-14.161 3712 104-0.98
      141580.001 1230.282 3270.000 0210.282 324-15.74-12.401 3121 988-0.97
      151550.000 7160.282 3500.000 0240.282 347-14.94-11.611 2661 937-0.98
      161550.001 0680.282 3520.000 0240.282 349-14.85-11.571 2741 933-0.97
      171630.000 8350.282 3870.000 0210.282 384-13.63-10.141 2181 850-0.97
      181500.000 7320.282 3800.000 0180.282 378-13.85-10.651 2241 872-0.98
      191650.001 3610.282 2970.000 0290.282 293-16.79-13.321 3622 051-0.96
      201530.000 7680.282 3420.000 0190.282 340-15.19-11.911 2781 954-0.98
      ZK355-5-186
      01880.000 7640.282 9880.000 0210.282 9877.649.53372543-0.98
      02860.000 7980.282 9510.000 0220.282 9506.338.17425628-0.98
      03830.000 7810.282 9310.000 0190.282 9305.637.41453674-0.98
      04910.001 5670.282 8970.000 0210.282 8944.426.32511750-0.95
      05840.001 3490.282 9880.000 0230.282 9867.669.42377546-0.96
      06870.000 8100.282 9390.000 0220.282 9375.907.76442655-0.98
      07910.001 1040.282 9560.000 0190.282 9546.508.43421615-0.97
      08930.001 5570.282 9550.000 0210.282 9526.468.40428619-0.95
      09900.000 7960.282 9510.000 0210.282 9506.338.26425625-0.98
      10850.001 1240.282 9380.000 0220.282 9365.867.66447659-0.97
      11850.001 0350.282 9570.000 0190.282 9556.548.33419616-0.97
      12850.000 9240.282 9540.000 0200.282 9526.438.25422622-0.97
      13850.000 9010.282 9560.000 0200.282 9556.528.33418617-0.97
      14830.000 8470.282 9960.000 0210.282 9957.939.69361528-0.97
      15840.001 0170.282 9690.000 0190.282 9676.968.74402590-0.97
      16840.000 8860.282 9600.000 0170.282 9586.638.43413610-0.97
      17850.001 1920.282 9560.000 0190.282 9546.528.32421618-0.96
      18 86 0.001 000 0.282 997 0.000 023 0.282 995 7.94 9.78 362 525 -0.97
      注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000);λ=1.867×10-11 a-1(Soderlund et al., 2004);(176Lu/177Hf)C=0.015,t=锆石结晶年龄.
      下载: 导出CSV

      表  5  嘎拉勒矿床花岗斑岩LA-ICP-MS锆石定年结果

      Table  5.   LA-ICP-MS zircon dating result of the granite porphyry in Galale deposit

      点号 元素(10-6) 同位素比值 年龄(Ma)
      ThUTh/U 207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      ZK355-5-B18601126.66232.440.544 8990.046 850.003 370.086 780.008 380.013 820.000 442163858883
      ZK355-5-B18602115.24177.010.651 0100.045 380.004 080.081 70.009 560.013 360.000 4263189809863
      ZK355-5-B18603143.32267.910.534 9610.057 040.002 90.095 440.007 140.012 980.000 37493118937832
      ZK355-5-B18604134.32267.690.501 7690.045 440.004 150.093 410.011 290.014 180.000 48311949110913
      ZK355-5-B18605150.14237.780.631 4200.049 070.004 680.082 150.010 640.013 080.000 521512198010843
      ZK355-5-B18606158.76234.250.677 7300.045 240.003 050.081 950.007 70.013 660.000 428151807873
      ZK355-5-B18607113.28228.050.496 7480.051 430.004 810.096 840.012 360.014 180.000 562602179411914
      ZK355-5-B18608177.34265.890.666 9890.050 820.004 640.105 230.012 560.014 610.000 4723321110212933
      ZK355-5-B18609147.48260.130.566 9390.051 290.005 640.097 170.013 570.014 130.000 482542499413903
      ZK355-5-B1861083.9291.850.913 5990.048 320.003 000.088 750.008 430.013 250.000 47122132868853
      ZK355-5-B18611104.94131.300.799 2450.048 090.001 380.087 240.002 490.013 200.000 1210267852851
      ZK355-5-B1861289.31110.970.804 8610.049 390.002 480.090 550.004 470.013 310.000 13165112884851
      ZK355-5-B18613114.05150.440.758 1250.047 730.000 980.087 190.001 810.013 260.000 108782852851
      ZK355-5-B1861493.86129.290.725 9810.048 740.002 300.086 830.004 150.012 910.000 10200111854831
      ZK355-5-B18615106.88127.490.838 3670.048 970.001 420.088 180.002 770.013 060.000 2014669863841
      ZK355-5-B18616135.75106.841.270 6210.049 610.003 660.088 870.005 650.013 110.000 36176163865842
      ZK355-5-B18617290.73241.511.203 8130.050 110.000 760.091 840.001 530.013 270.000 1021135891851
      ZK355-5-B18618130.16137.530.946 3940.049 820.002 180.092 700.004 580.013 450.000 23187104904862
      下载: 导出CSV

      表  6  嘎拉勒-尕尔穷铜金矿床辉钼矿Re-Os同位素测年结果

      Table  6.   Re-Os isotopic data of molybdenites from Galale-Gaerqiong Cu-Au deposits

      原样名 样重(g) Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma)
      测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度
      ZK42-267.91 0.039 51 178.80 2.00 0.032 5 0.024 7 112.40 1.20 166.8 1.50 89.00 1.47
      ZK42-246.150.040 44218.602.100.121 70.019 8137.401.30203.01.6088.631.33
      ZK42-227.10.040 05211.802.200.043 20.008 0133.101.40196.81.6088.681.38
      ZK42-211.840.040 52174.502.000.014 30.011 0109.601.20161.21.3088.191.43
      ZK21-432.70.034 02110.900.900.050 30.009 269.710.54103.00.9088.621.24
      ZK21-411.10.040 11195.002.200.030 20.019 1122.601.40183.11.6089.631.49
      ZK42-279.970.010 2131.240.290.007 90.026 619.640.1829.30.2589.501.34
      ZK42-191.1 0.011 50 29.33 0.26 0.011 7 0.039 5 18.44 0.16 27.7 0.33 90.11 1.52
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [2] Bilchert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258.doi: 10.1016/S0012-821X(97)00040-X
      [3] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002(in Chinese with English abstract).
      [4] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196.doi: 10.1111/j.1751-908x.2002.tb00886.x
      [5] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982(in Chinese with English abstract). https://www.researchgate.net/publication/285918531_The_geochronology_and_geochemistry_of_intrusive_rocks_in_Bange_area_Constraints_on_the_evolution_time_of_the_Bangong_Lake-Nujiang_ocean_basin
      [6] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet
      [7] Griffin, W.L., Pearson, N., Belousova, J., E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/S0016-7037(99)00343-9
      [8] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8
      [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). https://www.researchgate.net/publication/252929356_In_situ_U-Pb_zircon_dating_using_laser_ablation-multi_ion_couting-ICP-MS
      [10] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011.Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin.Earth Science, 36(6):1021-1032(in Chinese with English abstract).
      [11] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract).
      [12] Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):1209.doi: 10.1029/2001tc001332
      [13] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). https://www.researchgate.net/publication/305417557_Geochronology_geochemistry_and_Zircon_Hf_isotopic_compositions_of_the_ore-bearing_porphyry_in_the_Lakang'e_porphyry_Cu-Mo_deposit_Tibet
      [14] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16(in Chinese with English abstract).
      [15] Li, G.M., Li, J.X., Qin, K.Z., et al., 2007.High Temperature, Salinity and Strong Oxidation Ore-Forming Fluid at Duobuza Gold-Rich Porphyry Copper Deposit in the Bangonghu Tectonic Belt, Tibet:Evidence from Fluid Inclusions.Acta Petrologica Sinica, 23(5):935-952(in Chinese with English abstract). http://www.oalib.com/paper/1471679
      [16] Li, G.M., Li, J.X., Qin, K.Z., et al., 2011.Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet.Resource Geology, 62(1):99-118.doi: 10.1111/j.1751-3928.2011.00182.x
      [17] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica, 24(3):531-543(in Chinese with English abstract). https://www.researchgate.net/publication/279598497_Geochemistry_of_porphyries_and_volcanic_rocks_and_ore-forming_geochronology_of_Duobuza_gold-rich_porphyry_copper_deposit_in_Bangonghu_belt_Tibet_Constraints_on_mettalogenic_tectonic_settings
      [18] Li, J.X., Qin, K.Z., Li, G.M., et al., 2014.Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos, 198-199:77-91.doi: 10.1016/j.lithos.2014.03.025
      [19] Lü, L.N., 2012.Metallogenic Model of Rich Iron and Copper (Gold) Deposits in Western Part of Bangong Co-Nujiang Metallogenie Belt, Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [20] Lü, L.N., Cui, Y.B., Song, L., et al., 2011.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold(Copper) Deposit, Tibet and Its Significance.Earth Science Frontiers, 18(5):224-242(in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet
      [21] Pan, G.T., Wang, L.Q., Zhu, D.C., 2004.Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau.Geological Bulletin of China, 23(1):12-19(in Chinese with English abstract).
      [22] Pearce, J.A., Deng, W.M., 1988.The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986).Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):215-238.doi: 10.1098/rsta.1988.0127
      [23] Qin, K.Z., Li, G.M., Zhang, Q., et al., 2006.Metallogenic Conditions and Possible Occurrences for Epithermal Gold Mineralizations in Gangdese and Bangonghu Belts, Tibet—In View of Porphyry-Epithermal Cu-Au Metallogenetic Systematic.In:Chen, Y.C., Mao, J.W., Xue, C.J., eds., Proceedings of 8th National Conference of Mineral Deposits, China.Geological Publishing House, Beijing, 666-670 (in Chinese).
      [24] Qu, W.J., Du, A.D., 2003.Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion.Rock and Mineral Analysis, 22(4):254-257, 262(in Chinese with English abstract). https://www.researchgate.net/publication/302500144_Highly_Precise_Re-Os_Dating_of_Molybdenite_by_ICP-MS_with_Carius_Tube_Sample_Digestion
      [25] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14(in Chinese with English abstract). https://www.researchgate.net/publication/291884183_Ages_of_Post-Collisional_A-Type_Granite_and_Constraints_on_the_Closure_of_the_Oceanic_Basin_in_the_Middle_Segment_of_the_Bangonghu-Nujiang_Suture_the_Tibetan_Plateau
      [26] Ren, J.S., Xiao, L.W., 2004.Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1:250 000 Geological Mapping.Geological Bulletin of China, 23(1):1-11(in Chinese with English abstract). https://www.researchgate.net/publication/286656319_15_million_international_geological_map_of_Asia
      [27] Scherer, E.E., Cameron, K.L., Blichert-Toft, J., 2000.Lu-Hf Garnet Geochronology:Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions.Geochimica et Cosmochimica Acta, 64(19):3413-3432.doi: 10.1016/s0016-7037(00)00440-3
      [28] Soderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219:311-324.doi: 10.1016/S0012-821X(04)00012-3
      [29] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30(in Chinese with English abstract).
      [30] Tang, J.X., Zhang, Z., Li, Z.J., et al., 2013.The Metallogenesis, Deposit Model and Prospecting Direction of the Ga'erqiong-Galale Copper-Gold Ore Field, Tibet.Acta Geoscientia Sinica, (4):385-394(in Chinese with English abstract). https://www.researchgate.net/publication/282281893_Determination_and_genesis_of_magnesian_skarn_or_ultramafite_of_Galale_Cu-Au_deposit_in_Tibet_China
      [31] Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33.doi: 10.13039/100007834
      [32] Wang, Z.H., Wang, Y.S., Xie, Y.H., et al., 2005.The Tarenben Oceanic-Island Basalts in the Middle Part of the Bangong-Nujiang Suture Zone, Xizang and Their Geological Implications.Sedimentary Geology and Tethyan Geology, 25(1-2):155-162(in Chinese with English abstract). https://www.researchgate.net/publication/275718191_Geochemistry_Geochronology_Sr-Nd_Isotopic_Compositions_of_Jiang_Tso_Ophiolite_in_the_Middle_Segment_of_the_Bangong-_Nujiang_Suture_Zone_and_Their_Geological_Significance
      [33] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126.doi: 10.1016/j.chemgeo.2006.05.003
      [34] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and It's Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602(in Chinese).
      [35] Xu, R.K., Zheng, Y.Y., Zhao, P.J., et al., 2007.Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet.Geology in China, 34(5):768-777(in Chinese with English abstract). https://www.researchgate.net/publication/291959586_Definition_and_geological_significance_of_the_Gacangjian_volcanic_arc_north_of_Dongqiao_Tibet
      [36] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211
      [37] Zhang, D.Y., Zhang, Z.C., Encarnación, J., et al., 2012.Petrogenesis of the Kekesai Composite Intrusion, Western Tianshan, NW China:Implications for Tectonic Evolution during Late Paleozoic Time.Lithos, 146-147:65-79.doi: 10.1016/j.lithos.2012.04.002
      [38] Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013.Mapping the Lhasa Terrane through Zircon Hf Isotopes:Constraints on the Nature of the Crust and Metallogenic Potential.Acta Petrologica Sinica, 29(11):3681-3688(in Chinese with English abstract). https://www.researchgate.net/publication/279581411_The_Paleocene_metamorphism_of_the_southeastern_margin_of_Lhasa_terrane_and_its_tectonic_significance
      [39] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2013a.Geological and Skarn Mineral Characteristics of Galale Cu-Au Deposit in Tibet.Mineral Deposits, 32(5):915-931(in Chinese with English abstract).
      [40] Zhang, Z., Tang, J.X., Li, Z.J., et al., 2013b.Petrology and Geochemistry of Intrusive Rocks in the Ga'erqiong-Galale Ore Concentration Area, Tibet and Their Geological Implications.Geology and Exploration, 49(4):676-688(in Chinese with English abstract).
      [41] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet.Earth Science, 40(1):77-97 (in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet
      [42] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011.Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English abstract). https://www.researchgate.net/publication/293318899_Geochemical_characteristics_chronology_and_the_significance_of_Laqing_copper_polymetallic_skarn_deposit_Bange_county_Tibet
      [43] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17.doi: 10.1016/j.lithos.2015.06.023
      [44] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546(in Chinese with English abstract). http://www.oalib.com/paper/1472180
      [45] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255.doi: 10.13039/501100001809
      [46] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.doi: 10.13039/501100001809
      [47] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003
      [48] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm
      [49] 高顺宝, 郑有业, 王进寿, 等, 2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm
      [50] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm
      [51] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
      [52] 江军华, 王瑞江, 曲晓明, 等, 2011.青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用.地球科学, 36(6):1021-1032. http://www.earth-science.net/WebPage/Article.aspx?id=2178
      [53] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物.岩石学报, 24(2):303-314. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm
      [54] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312
      [55] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001
      [56] 李光明, 李金祥, 秦克章, 等, 2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报, 23(5):935-952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm
      [57] 李金祥, 李光明, 秦克章, 等, 2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报, 24(3):531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm
      [58] 吕立娜, 2012. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型(学位论文). 北京: 中国地质科学院.
      [59] 吕立娜, 崔玉斌, 宋亮, 等, 2011.西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MS定年及意义.地学前缘, 18(5):224-242. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105021.htm
      [60] 潘桂棠, 王立全, 朱弟成, 2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报, 23(1):12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401003.htm
      [61] 秦克章, 李光明, 张旗, 等, 2006. 西藏浅成低温金-银矿的成矿条件与可能产出区分析——从斑岩-浅成低温铜金成矿系统的角度. 见: 陈毓川, 毛景文, 薛春纪, 编, 第八届全国矿床会议论文集. 北京: 地质出版社, 666-670.
      [62] 屈文俊, 杜安道, 2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试, 22(4):254-257, 262. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200304003.htm
      [63] 曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
      [64] 任纪舜, 肖黎薇, 2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 23(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm
      [65] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
      [66] 唐菊兴, 张志, 李志军, 等, 2013.西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向.地球学报, 34(4):385-394. doi: 10.3975/cagsb.2013.04.01
      [67] 王忠恒, 王永胜, 谢元和, 等, 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质, 25(1):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm
      [68] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [69] 许荣科, 郑有业, 赵平甲, 等, 2007.西藏东巧北尕苍见岛弧的厘定及地质意义.中国地质, 34(5):768-777. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200705002.htm
      [70] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm
      [71] 张志, 陈毓川, 唐菊兴, 等, 2013a.西藏嘎拉勒铜金矿床地质特征及矽卡岩矿物学特征研究.矿床地质, 32(5):915-931. http://cdmd.cnki.com.cn/Article/CDMD-10616-1012500530.htm
      [72] 张志, 唐菊兴, 李志军, 等, 2013b.西藏尕尔穷-嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义.地质与勘探, 49(4):676-688. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201304012.htm
      [73] 张志, 陈毓川, 唐菊兴, 等, 2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学, 40(1):77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024
      [74] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107021.htm
      [75] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
    • 加载中
    图(8) / 表(6)
    计量
    • 文章访问数:  5209
    • HTML全文浏览量:  1845
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-06
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回