Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating
-
摘要: 西藏嘎拉勒铜金矿床作为构造背景反演指示针的成岩成矿年代学研究较为匮乏,使得该成矿带区域背景-构造-岩浆-成矿活动系列研究步履维艰,利用LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石U-Pb测年、辉钼矿Re-Os定年及Lu-Hf同位素技术,首次全面厘定了区内侵入岩侵位时序、探讨了岩石成因并确定了成矿时代.结果表明,成矿前闪长岩成岩年龄为155.8±2.3 Ma,侵位于晚侏罗世初期,εHf(t)值分布于-14.68~-8.34,平均值-11.74,是班公湖-怒江特提斯洋南向俯冲的产物;花岗闪长岩为矿区成矿母岩,其成岩年龄为88±1 Ma(MSWD=0.56,n=21),εHf(t)值分布于5.84~9.20,平均值7.72,成矿后花岗斑岩成岩年龄为84.67±0.80 Ma(MSWD=1.9,n=18),εHf(t)值分布于6.32~9.78,平均值8.40,二者均为晚白垩世侵位,为拉萨地体与羌塘地体汇聚的产物;矿区辉钼矿Re-Os等时线年龄为88.55±0.60 Ma(MSWD=0.60,n=8),与成矿母岩(花岗闪长岩)成岩年龄一致.研究表明,在班公湖-怒江特提斯洋南向俯冲至碰撞过程中在矿区内均有相应的岩浆活动响应,嘎拉勒铜金矿床则为典型的碰撞期成矿作用的产物.Abstract: The Gelale Cu-Au deposit in Tibet is an example to probe the regional tectonics, but its ore-forming age is poorly studied, which hinders further studies for the regional tectonics, magmatism and mineralization in the metallogenic belt. The ages and genesis of the intrusive rocks, and the ages of the deposit are determined for the first time in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) zircon U-Pb dating, Lu-Hf isotopic test and Re-Os isotopic dating methods. Early diorite yields age of 155.8±2.3 Ma and εHf(t) values of -14.68~-8.34 (-11.74 in average), which is the product of the southward subduction of the Bangong-Nujiang Tethys ocean. The age of the inter-mineral granodiorite is 88±1 Ma(MSWD=0.56, n=21), and yields zircon εHf(t) values between 5.84-9.20, with the average value of 7.72, while the ages of the late granite porphyry is 84.67±0.8 Ma(MSWD=1.9, n=18), and yields zircon εHf(t) values between 6.32-9.78, with the average value of 8.40. Both the granodiorite and granite porphyry emplaced in the Late Cretaceous, which is the product of the convergence of the Lhasa terrane and the Qiangtang terrane.The Re-Os isochron age of molybdenite in the district is 88.55±0.60 Ma (MSWD=0.60, n=8), which is close to the age of the mineralization rock (granodiorite). Comprehensive study shows that the magmatic activities of the deposit corresponed to the subduction and collision environment of the Bangong-Nujiang Tethys ocean, and the Galale copper-gold deposit is the product of the mineralization event of the collision stage.
-
Key words:
- magmatic activity /
- metallogenesis /
- subduction /
- collision /
- Galale /
- petrology
-
图 1 班公湖-怒江成矿带及邻区构造单元分布(a)与嘎拉勒铜金矿床地质简图(b)
Ⅰ.羌塘-三江造山系;Ⅰ1.玉龙塔格-巴颜喀拉前陆盆地;Ⅰ2.西金乌兰湖-金沙江-哀牢山结合带;Ⅰ3.昌都-兰坪地块;Ⅰ4.北羌塘-甜水海陆块;Ⅱ1.龙木错-双湖-澜沧江蛇绿混杂岩带;Ⅲ1.多玛地块;Ⅲ2.南羌塘盆地;Ⅲ3.扎普-多不杂岩浆弧带;Ⅳ.左贡地块;Ⅴ.班公湖-怒江缝合带;Ⅴ1.班公湖-怒江蛇绿混杂带;Ⅴ2.聂荣地块;Ⅴ3.嘉玉桥地块;Ⅵ.冈底斯岩浆弧;Ⅵ1.那曲-洛隆弧前盆地;Ⅵ2.昂龙岗日-班戈岩浆弧;Ⅵ3.狮泉河-申扎-嘉黎蛇绿混杂岩带;Ⅵ4.措勤-申扎岩浆弧;Ⅵ5.龙格尔-工布江达复合岩浆弧;1.第四系;2.白垩系朗久组;3.白垩系捷嘎组;4.花岗闪长岩;5.石英闪长岩;6.闪长岩;7.矽卡岩;8.研究区;9.不明性质断层及编号;10.平移断层及编号;11.地质界线;12.矿体编号及范围;13.平硐;14.采样点
Fig. 1. Tectonic units of Bangong-Nujiang metallogenic belt and its neighboring areas (a) and generalized geological map of the Glale Cu-Au deposit (b)
表 1 嘎拉勒矿床花岗闪长岩LA-ICP-MS锆石定年结果
Table 1. LA-ICP-MS zircon dating result of the granodiorite in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLPD2-B101 94.07 186.62 0.504 056 0.067 81 0.005 13 0.122 14 0.014 67 0.013 63 0.000 73 863 145 117 13 87 5 GLPD2-B102 140.12 166.36 0.842 234 0.054 88 0.005 76 0.092 55 0.014 06 0.013 51 0.000 75 407 216 90 13 87 5 GLPD2-B103 81.11 143.12 0.566 75 0.048 03 0.005 31 0.090 74 0.014 67 0.013 21 0.000 80 101 216 88 14 85 5 GLPD2-B104 79.68 123.67 0.644 256 0.046 57 0.003 28 0.097 17 0.010 76 0.013 96 0.000 67 27 141 94 10 89 4 GLPD2-B105 107.54 165.04 0.651 582 0.051 79 0.005 29 0.102 72 0.015 28 0.014 62 0.000 80 276 211 99 14 94 5 GLPD2-B106 153.96 204.62 0.752 436 0.042 91 0.004 39 0.083 04 0.012 33 0.014 07 0.000 76 128 173 81 12 90 5 GLPD2-B107 122.18 163.35 0.747 952 0.067 12 0.006 25 0.123 51 0.016 73 0.014 97 0.000 75 842 182 118 15 96 5 GLPD2-B108 73.79 135.61 0.544 112 0.048 95 0.005 31 0.090 24 0.013 84 0.013 05 0.000 69 145 216 88 13 84 4 GLPD2-B109 89.39 131.67 0.678 844 0.040 02 0.004 62 0.079 12 0.012 78 0.014 44 0.000 78 288 180 77 12 92 5 GLPD2-B110 216.42 288.79 0.749 403 0.087 11 0.003 09 0.174 47 0.011 73 0.014 61 0.000 59 1 363 63 163 10 93 4 GLPD2-B111 82.48 178.37 0.462 412 0.054 28 0.004 89 0.100 55 0.013 43 0.014 54 0.000 75 383 189 97 12 93 5 GLPD2-B112 48.60 42.35 1.147 561 0.049 46 0.010 78 0.091 62 0.017 51 0.013 83 0.000 50 169 444 89 16 89 3 GLPD2-B113 56.13 56.06 1.001 223 0.050 12 0.006 49 0.093 33 0.012 28 0.013 62 0.000 32 211 265 91 11 87 2 GLPD2-B114 153.86 120.02 1.281 940 0.049 95 0.003 55 0.094 93 0.005 14 0.013 95 0.000 97 191 167 92 5 89 6 GLPD2-B115 79.96 69.76 1.146 244 0.048 20 0.002 34 0.091 61 0.004 73 0.013 69 0.000 19 109 111 89 4 88 1 GLPD2-B116 130.75 97.04 1.347 382 0.049 44 0.005 06 0.092 49 0.010 76 0.013 44 0.000 32 169 222 90 10 86 2 GLPD2-B117 168.86 138.94 1.215 371 0.048 19 0.003 26 0.090 44 0.005 96 0.013 66 0.000 41 109 152 88 6 87 3 GLPD2-B118 109.39 82.53 1.325 508 0.048 95 0.005 14 0.090 98 0.009 73 0.013 54 0.000 22 146 230 88 9 87 1 GLPD2-B119 100.88 107.95 0.934 498 0.049 40 0.002 85 0.091 95 0.004 74 0.013 69 0.000 29 169 132 89 4 88 2 GLPD2-B120 50.55 53.57 0.943 521 0.048 98 0.002 64 0.093 84 0.005 56 0.013 86 0.000 27 146 158 91 5 89 2 GLPD2-B121 86.41 67.61 1.278 026 0.048 93 0.003 21 0.092 13 0.005 86 0.013 73 0.000 20 143 157 90 5 88 1 表 2 嘎拉勒花岗闪长岩的锆石Hf同位素组成
Table 2. Hf isotopic composition for the granodiorite in Galale deposit
测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf PD2-B1 01 87 0.001 687 0.282 898 0.000 022 0.282 895 4.46 6.27 512 750 -0.95 02 87 0.000 982 0.282 929 0.000 025 0.282 928 5.56 7.41 458 677 -0.97 03 85 0.001 025 0.282 886 0.000 021 0.282 885 4.04 5.84 519 776 -0.97 04 89 0.000 774 0.282 946 0.000 020 0.282 945 6.17 8.08 431 636 -0.98 05 94 0.000 903 0.282 950 0.000 022 0.282 948 6.29 8.29 428 626 -0.97 06 90 0.001 223 0.282 933 0.000 023 0.282 931 5.71 7.61 455 667 -0.96 08 84 0.000 907 0.282 927 0.000 020 0.282 926 5.49 7.29 459 683 -0.97 09 92 0.000 656 0.282 921 0.000 020 0.282 920 5.26 7.24 466 692 -0.98 10 93 0.001 064 0.282 933 0.000 019 0.282 931 5.68 7.65 454 667 -0.97 11 93 0.000 782 0.282 936 0.000 020 0.282 935 5.80 7.79 446 657 -0.98 12 89 0.000 973 0.282 944 0.000 023 0.282 942 6.07 7.96 437 643 -0.97 13 87 0.001 042 0.282 965 0.000 021 0.282 963 6.83 8.68 407 596 -0.97 14 89 0.001 638 0.282 947 0.000 020 0.282 944 6.19 8.05 440 638 -0.95 15 88 0.001 257 0.282 980 0.000 022 0.282 978 7.35 9.20 388 563 -0.96 16 86 0.000 813 0.282 931 0.000 018 0.282 930 5.63 7.47 453 673 -0.98 17 87 0.001 179 0.282 914 0.000 021 0.282 912 5.03 6.88 482 712 -0.96 18 87 0.001 551 0.282 961 0.000 022 0.282 958 6.67 8.48 419 609 -0.95 19 88 0.000 911 0.282 972 0.000 020 0.282 970 7.06 8.93 397 580 -0.97 20 89 0.001 002 0.282 916 0.000 025 0.282 914 5.08 6.97 477 707 -0.97 21 88 0.000 892 0.282 956 0.000 019 0.282 954 6.49 8.37 419 617 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.表 3 嘎拉勒矿床闪长岩LA-ICP-MS锆石定年结果
Table 3. LA-ICP-MS zircon dating result of the diorite in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLB00401 120.94 138.06 0.875 991 0.048 33 0.003 56 0.175 58 0.018 36 0.026 60 0.000 96 116 153 164 16 169 6 GLB00402 54.35 131.79 0.412 438 0.096 70 0.006 71 0.168 70 0.017 47 0.014 80 0.000 60 1 561 121 158 15 95 4 GLB00403 150.55 235.02 0.640 568 0.052 66 0.004 02 0.091 63 0.009 97 0.013 84 0.000 53 314 160 89 9 89 3 GLB00404 118.45 214.62 0.551 916 0.053 26 0.004 81 0.094 72 0.011 62 0.013 65 0.000 51 340 187 92 11 87 3 GLB00405 227.85 280.54 0.812 201 0.050 33 0.002 70 0.187 68 0.014 95 0.026 86 0.000 83 210 114 175 13 171 5 GLB00406 137.81 200.41 0.687 662 0.047 49 0.003 36 0.150 35 0.015 17 0.025 28 0.000 89 74 155 142 13 161 6 GLB00407 90.44 104.15 0.868 398 0.051 97 0.006 67 0.094 32 0.016 58 0.013 57 0.000 75 284 282 92 15 87 5 GLB00408 86.10 105.88 0.813 226 0.047 47 0.004 87 0.160 19 0.021 78 0.023 78 0.000 92 73 217 151 19 151 6 GLB00409 109.28 112.01 0.975 678 0.059 13 0.005 32 0.200 56 0.024 76 0.025 70 0.001 00 572 202 186 21 164 6 GLB00410 112.67 159.21 0.707 721 0.063 88 0.003 71 0.205 69 0.017 24 0.023 17 0.000 70 738 125 190 15 148 4 GLB00411 341.91 415.17 0.823 540 0.052 59 0.003 05 0.101 39 0.008 63 0.014 61 0.000 47 311 134 98 8 93 3 GLB00412 53.78 98.38 0.546 634 0.059 53 0.012 69 0.078 67 0.020 87 0.014 27 0.000 85 587 455 77 20 91 5 GLB00413 98.54 109.37 0.900 970 0.056 27 0.005 34 0.196 64 0.025 31 0.025 70 0.001 01 463 217 182 21 164 6 GLB00414 127.08 106.26 1.195 951 0.054 06 0.002 77 0.186 40 0.016 78 0.024 82 0.000 95 372 115 174 14 158 6 GLB00415 460.43 337.73 1.363 308 0.051 11 0.000 65 0.172 16 0.002 30 0.024 40 0.000 17 256 30 161 2 155 1 GLB00416 178.15 164.24 1.084 714 0.050 16 0.001 20 0.168 56 0.004 25 0.024 32 0.000 16 211 56 158 4 155 1 GLB00417 157.87 137.65 1.146 907 0.054 28 0.004 30 0.193 46 0.021 30 0.025 67 0.000 99 383 178 180 18 163 6 GLB00418 133.90 175.93 0.761 104 0.052 46 0.002 73 0.169 98 0.005 46 0.023 50 0.000 50 306 116 159 5 150 3 GLB00419 523.78 226.47 2.312 864 0.054 00 0.002 43 0.192 04 0.006 14 0.025 92 0.000 59 372 107 178 5 165 4 GLB00420 147.22 118.93 1.237 892 0.050 81 0.008 68 0.167 73 0.027 93 0.024 06 0.000 98 232 352 157 24 153 6 表 4 嘎拉勒闪长岩及花岗斑岩的锆石Hf同位素组成
Table 4. Hf isotopic composition for the diorite and granite porphyry in Galale deposit
测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf GLB004 01 169 0.000 871 0.282 360 0.000 026 0.282 357 -14.58 -10.98 1 257 1 907 -0.97 05 171 0.000 825 0.282 433 0.000 021 0.282 430 -12.00 -8.34 1 154 1 742 -0.98 06 161 0.000 780 0.282 353 0.000 018 0.282 351 -14.81 -11.36 1 263 1 925 -0.98 08 151 0.001 019 0.282 266 0.000 021 0.282 263 -17.89 -14.68 1 393 2 126 -0.97 09 164 0.001 260 0.282 351 0.000 016 0.282 347 -14.90 -11.45 1 283 1 933 -0.96 13 164 0.000 649 0.282 272 0.000 017 0.282 270 -17.68 -14.16 1 371 2 104 -0.98 14 158 0.001 123 0.282 327 0.000 021 0.282 324 -15.74 -12.40 1 312 1 988 -0.97 15 155 0.000 716 0.282 350 0.000 024 0.282 347 -14.94 -11.61 1 266 1 937 -0.98 16 155 0.001 068 0.282 352 0.000 024 0.282 349 -14.85 -11.57 1 274 1 933 -0.97 17 163 0.000 835 0.282 387 0.000 021 0.282 384 -13.63 -10.14 1 218 1 850 -0.97 18 150 0.000 732 0.282 380 0.000 018 0.282 378 -13.85 -10.65 1 224 1 872 -0.98 19 165 0.001 361 0.282 297 0.000 029 0.282 293 -16.79 -13.32 1 362 2 051 -0.96 20 153 0.000 768 0.282 342 0.000 019 0.282 340 -15.19 -11.91 1 278 1 954 -0.98 ZK355-5-186 01 88 0.000 764 0.282 988 0.000 021 0.282 987 7.64 9.53 372 543 -0.98 02 86 0.000 798 0.282 951 0.000 022 0.282 950 6.33 8.17 425 628 -0.98 03 83 0.000 781 0.282 931 0.000 019 0.282 930 5.63 7.41 453 674 -0.98 04 91 0.001 567 0.282 897 0.000 021 0.282 894 4.42 6.32 511 750 -0.95 05 84 0.001 349 0.282 988 0.000 023 0.282 986 7.66 9.42 377 546 -0.96 06 87 0.000 810 0.282 939 0.000 022 0.282 937 5.90 7.76 442 655 -0.98 07 91 0.001 104 0.282 956 0.000 019 0.282 954 6.50 8.43 421 615 -0.97 08 93 0.001 557 0.282 955 0.000 021 0.282 952 6.46 8.40 428 619 -0.95 09 90 0.000 796 0.282 951 0.000 021 0.282 950 6.33 8.26 425 625 -0.98 10 85 0.001 124 0.282 938 0.000 022 0.282 936 5.86 7.66 447 659 -0.97 11 85 0.001 035 0.282 957 0.000 019 0.282 955 6.54 8.33 419 616 -0.97 12 85 0.000 924 0.282 954 0.000 020 0.282 952 6.43 8.25 422 622 -0.97 13 85 0.000 901 0.282 956 0.000 020 0.282 955 6.52 8.33 418 617 -0.97 14 83 0.000 847 0.282 996 0.000 021 0.282 995 7.93 9.69 361 528 -0.97 15 84 0.001 017 0.282 969 0.000 019 0.282 967 6.96 8.74 402 590 -0.97 16 84 0.000 886 0.282 960 0.000 017 0.282 958 6.63 8.43 413 610 -0.97 17 85 0.001 192 0.282 956 0.000 019 0.282 954 6.52 8.32 421 618 -0.96 18 86 0.001 000 0.282 997 0.000 023 0.282 995 7.94 9.78 362 525 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.表 5 嘎拉勒矿床花岗斑岩LA-ICP-MS锆石定年结果
Table 5. LA-ICP-MS zircon dating result of the granite porphyry in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ ZK355-5-B18601 126.66 232.44 0.544 899 0.046 85 0.003 37 0.086 78 0.008 38 0.013 82 0.000 4 42 163 85 8 88 3 ZK355-5-B18602 115.24 177.01 0.651 010 0.045 38 0.004 08 0.081 7 0.009 56 0.013 36 0.000 42 63 189 80 9 86 3 ZK355-5-B18603 143.32 267.91 0.534 961 0.057 04 0.002 9 0.095 44 0.007 14 0.012 98 0.000 37 493 118 93 7 83 2 ZK355-5-B18604 134.32 267.69 0.501 769 0.045 44 0.004 15 0.093 41 0.011 29 0.014 18 0.000 48 31 194 91 10 91 3 ZK355-5-B18605 150.14 237.78 0.631 420 0.049 07 0.004 68 0.082 15 0.010 64 0.013 08 0.000 52 151 219 80 10 84 3 ZK355-5-B18606 158.76 234.25 0.677 730 0.045 24 0.003 05 0.081 95 0.007 7 0.013 66 0.000 42 8 151 80 7 87 3 ZK355-5-B18607 113.28 228.05 0.496 748 0.051 43 0.004 81 0.096 84 0.012 36 0.014 18 0.000 56 260 217 94 11 91 4 ZK355-5-B18608 177.34 265.89 0.666 989 0.050 82 0.004 64 0.105 23 0.012 56 0.014 61 0.000 47 233 211 102 12 93 3 ZK355-5-B18609 147.48 260.13 0.566 939 0.051 29 0.005 64 0.097 17 0.013 57 0.014 13 0.000 48 254 249 94 13 90 3 ZK355-5-B18610 83.92 91.85 0.913 599 0.048 32 0.003 00 0.088 75 0.008 43 0.013 25 0.000 47 122 132 86 8 85 3 ZK355-5-B18611 104.94 131.30 0.799 245 0.048 09 0.001 38 0.087 24 0.002 49 0.013 20 0.000 12 102 67 85 2 85 1 ZK355-5-B18612 89.31 110.97 0.804 861 0.049 39 0.002 48 0.090 55 0.004 47 0.013 31 0.000 13 165 112 88 4 85 1 ZK355-5-B18613 114.05 150.44 0.758 125 0.047 73 0.000 98 0.087 19 0.001 81 0.013 26 0.000 10 87 82 85 2 85 1 ZK355-5-B18614 93.86 129.29 0.725 981 0.048 74 0.002 30 0.086 83 0.004 15 0.012 91 0.000 10 200 111 85 4 83 1 ZK355-5-B18615 106.88 127.49 0.838 367 0.048 97 0.001 42 0.088 18 0.002 77 0.013 06 0.000 20 146 69 86 3 84 1 ZK355-5-B18616 135.75 106.84 1.270 621 0.049 61 0.003 66 0.088 87 0.005 65 0.013 11 0.000 36 176 163 86 5 84 2 ZK355-5-B18617 290.73 241.51 1.203 813 0.050 11 0.000 76 0.091 84 0.001 53 0.013 27 0.000 10 211 35 89 1 85 1 ZK355-5-B18618 130.16 137.53 0.946 394 0.049 82 0.002 18 0.092 70 0.004 58 0.013 45 0.000 23 187 104 90 4 86 2 表 6 嘎拉勒-尕尔穷铜金矿床辉钼矿Re-Os同位素测年结果
Table 6. Re-Os isotopic data of molybdenites from Galale-Gaerqiong Cu-Au deposits
原样名 样重(g) Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK42-267.91 0.039 51 178.80 2.00 0.032 5 0.024 7 112.40 1.20 166.8 1.50 89.00 1.47 ZK42-246.15 0.040 44 218.60 2.10 0.121 7 0.019 8 137.40 1.30 203.0 1.60 88.63 1.33 ZK42-227.1 0.040 05 211.80 2.20 0.043 2 0.008 0 133.10 1.40 196.8 1.60 88.68 1.38 ZK42-211.84 0.040 52 174.50 2.00 0.014 3 0.011 0 109.60 1.20 161.2 1.30 88.19 1.43 ZK21-432.7 0.034 02 110.90 0.90 0.050 3 0.009 2 69.71 0.54 103.0 0.90 88.62 1.24 ZK21-411.1 0.040 11 195.00 2.20 0.030 2 0.019 1 122.60 1.40 183.1 1.60 89.63 1.49 ZK42-279.97 0.010 21 31.24 0.29 0.007 9 0.026 6 19.64 0.18 29.3 0.25 89.50 1.34 ZK42-191.1 0.011 50 29.33 0.26 0.011 7 0.039 5 18.44 0.16 27.7 0.33 90.11 1.52 -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [2] Bilchert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258.doi: 10.1016/S0012-821X(97)00040-X [3] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002(in Chinese with English abstract). [4] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196.doi: 10.1111/j.1751-908x.2002.tb00886.x [5] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982(in Chinese with English abstract). https://www.researchgate.net/publication/285918531_The_geochronology_and_geochemistry_of_intrusive_rocks_in_Bange_area_Constraints_on_the_evolution_time_of_the_Bangong_Lake-Nujiang_ocean_basin [6] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet [7] Griffin, W.L., Pearson, N., Belousova, J., E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/S0016-7037(99)00343-9 [8] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8 [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). https://www.researchgate.net/publication/252929356_In_situ_U-Pb_zircon_dating_using_laser_ablation-multi_ion_couting-ICP-MS [10] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011.Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin.Earth Science, 36(6):1021-1032(in Chinese with English abstract). [11] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract). [12] Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):1209.doi: 10.1029/2001tc001332 [13] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). https://www.researchgate.net/publication/305417557_Geochronology_geochemistry_and_Zircon_Hf_isotopic_compositions_of_the_ore-bearing_porphyry_in_the_Lakang'e_porphyry_Cu-Mo_deposit_Tibet [14] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16(in Chinese with English abstract). [15] Li, G.M., Li, J.X., Qin, K.Z., et al., 2007.High Temperature, Salinity and Strong Oxidation Ore-Forming Fluid at Duobuza Gold-Rich Porphyry Copper Deposit in the Bangonghu Tectonic Belt, Tibet:Evidence from Fluid Inclusions.Acta Petrologica Sinica, 23(5):935-952(in Chinese with English abstract). http://www.oalib.com/paper/1471679 [16] Li, G.M., Li, J.X., Qin, K.Z., et al., 2011.Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet.Resource Geology, 62(1):99-118.doi: 10.1111/j.1751-3928.2011.00182.x [17] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica, 24(3):531-543(in Chinese with English abstract). https://www.researchgate.net/publication/279598497_Geochemistry_of_porphyries_and_volcanic_rocks_and_ore-forming_geochronology_of_Duobuza_gold-rich_porphyry_copper_deposit_in_Bangonghu_belt_Tibet_Constraints_on_mettalogenic_tectonic_settings [18] Li, J.X., Qin, K.Z., Li, G.M., et al., 2014.Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos, 198-199:77-91.doi: 10.1016/j.lithos.2014.03.025 [19] Lü, L.N., 2012.Metallogenic Model of Rich Iron and Copper (Gold) Deposits in Western Part of Bangong Co-Nujiang Metallogenie Belt, Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [20] Lü, L.N., Cui, Y.B., Song, L., et al., 2011.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold(Copper) Deposit, Tibet and Its Significance.Earth Science Frontiers, 18(5):224-242(in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet [21] Pan, G.T., Wang, L.Q., Zhu, D.C., 2004.Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau.Geological Bulletin of China, 23(1):12-19(in Chinese with English abstract). [22] Pearce, J.A., Deng, W.M., 1988.The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986).Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):215-238.doi: 10.1098/rsta.1988.0127 [23] Qin, K.Z., Li, G.M., Zhang, Q., et al., 2006.Metallogenic Conditions and Possible Occurrences for Epithermal Gold Mineralizations in Gangdese and Bangonghu Belts, Tibet—In View of Porphyry-Epithermal Cu-Au Metallogenetic Systematic.In:Chen, Y.C., Mao, J.W., Xue, C.J., eds., Proceedings of 8th National Conference of Mineral Deposits, China.Geological Publishing House, Beijing, 666-670 (in Chinese). [24] Qu, W.J., Du, A.D., 2003.Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion.Rock and Mineral Analysis, 22(4):254-257, 262(in Chinese with English abstract). https://www.researchgate.net/publication/302500144_Highly_Precise_Re-Os_Dating_of_Molybdenite_by_ICP-MS_with_Carius_Tube_Sample_Digestion [25] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14(in Chinese with English abstract). https://www.researchgate.net/publication/291884183_Ages_of_Post-Collisional_A-Type_Granite_and_Constraints_on_the_Closure_of_the_Oceanic_Basin_in_the_Middle_Segment_of_the_Bangonghu-Nujiang_Suture_the_Tibetan_Plateau [26] Ren, J.S., Xiao, L.W., 2004.Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1:250 000 Geological Mapping.Geological Bulletin of China, 23(1):1-11(in Chinese with English abstract). https://www.researchgate.net/publication/286656319_15_million_international_geological_map_of_Asia [27] Scherer, E.E., Cameron, K.L., Blichert-Toft, J., 2000.Lu-Hf Garnet Geochronology:Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions.Geochimica et Cosmochimica Acta, 64(19):3413-3432.doi: 10.1016/s0016-7037(00)00440-3 [28] Soderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219:311-324.doi: 10.1016/S0012-821X(04)00012-3 [29] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30(in Chinese with English abstract). [30] Tang, J.X., Zhang, Z., Li, Z.J., et al., 2013.The Metallogenesis, Deposit Model and Prospecting Direction of the Ga'erqiong-Galale Copper-Gold Ore Field, Tibet.Acta Geoscientia Sinica, (4):385-394(in Chinese with English abstract). https://www.researchgate.net/publication/282281893_Determination_and_genesis_of_magnesian_skarn_or_ultramafite_of_Galale_Cu-Au_deposit_in_Tibet_China [31] Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33.doi: 10.13039/100007834 [32] Wang, Z.H., Wang, Y.S., Xie, Y.H., et al., 2005.The Tarenben Oceanic-Island Basalts in the Middle Part of the Bangong-Nujiang Suture Zone, Xizang and Their Geological Implications.Sedimentary Geology and Tethyan Geology, 25(1-2):155-162(in Chinese with English abstract). https://www.researchgate.net/publication/275718191_Geochemistry_Geochronology_Sr-Nd_Isotopic_Compositions_of_Jiang_Tso_Ophiolite_in_the_Middle_Segment_of_the_Bangong-_Nujiang_Suture_Zone_and_Their_Geological_Significance [33] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126.doi: 10.1016/j.chemgeo.2006.05.003 [34] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and It's Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602(in Chinese). [35] Xu, R.K., Zheng, Y.Y., Zhao, P.J., et al., 2007.Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet.Geology in China, 34(5):768-777(in Chinese with English abstract). https://www.researchgate.net/publication/291959586_Definition_and_geological_significance_of_the_Gacangjian_volcanic_arc_north_of_Dongqiao_Tibet [36] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211 [37] Zhang, D.Y., Zhang, Z.C., Encarnación, J., et al., 2012.Petrogenesis of the Kekesai Composite Intrusion, Western Tianshan, NW China:Implications for Tectonic Evolution during Late Paleozoic Time.Lithos, 146-147:65-79.doi: 10.1016/j.lithos.2012.04.002 [38] Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013.Mapping the Lhasa Terrane through Zircon Hf Isotopes:Constraints on the Nature of the Crust and Metallogenic Potential.Acta Petrologica Sinica, 29(11):3681-3688(in Chinese with English abstract). https://www.researchgate.net/publication/279581411_The_Paleocene_metamorphism_of_the_southeastern_margin_of_Lhasa_terrane_and_its_tectonic_significance [39] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2013a.Geological and Skarn Mineral Characteristics of Galale Cu-Au Deposit in Tibet.Mineral Deposits, 32(5):915-931(in Chinese with English abstract). [40] Zhang, Z., Tang, J.X., Li, Z.J., et al., 2013b.Petrology and Geochemistry of Intrusive Rocks in the Ga'erqiong-Galale Ore Concentration Area, Tibet and Their Geological Implications.Geology and Exploration, 49(4):676-688(in Chinese with English abstract). [41] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet.Earth Science, 40(1):77-97 (in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet [42] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011.Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English abstract). https://www.researchgate.net/publication/293318899_Geochemical_characteristics_chronology_and_the_significance_of_Laqing_copper_polymetallic_skarn_deposit_Bange_county_Tibet [43] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17.doi: 10.1016/j.lithos.2015.06.023 [44] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546(in Chinese with English abstract). http://www.oalib.com/paper/1472180 [45] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255.doi: 10.13039/501100001809 [46] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.doi: 10.13039/501100001809 [47] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003 [48] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm [49] 高顺宝, 郑有业, 王进寿, 等, 2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm [50] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm [51] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [52] 江军华, 王瑞江, 曲晓明, 等, 2011.青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用.地球科学, 36(6):1021-1032. http://www.earth-science.net/WebPage/Article.aspx?id=2178 [53] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物.岩石学报, 24(2):303-314. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm [54] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312 [55] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001 [56] 李光明, 李金祥, 秦克章, 等, 2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报, 23(5):935-952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm [57] 李金祥, 李光明, 秦克章, 等, 2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报, 24(3):531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm [58] 吕立娜, 2012. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型(学位论文). 北京: 中国地质科学院. [59] 吕立娜, 崔玉斌, 宋亮, 等, 2011.西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MS定年及意义.地学前缘, 18(5):224-242. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105021.htm [60] 潘桂棠, 王立全, 朱弟成, 2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报, 23(1):12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401003.htm [61] 秦克章, 李光明, 张旗, 等, 2006. 西藏浅成低温金-银矿的成矿条件与可能产出区分析——从斑岩-浅成低温铜金成矿系统的角度. 见: 陈毓川, 毛景文, 薛春纪, 编, 第八届全国矿床会议论文集. 北京: 地质出版社, 666-670. [62] 屈文俊, 杜安道, 2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试, 22(4):254-257, 262. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200304003.htm [63] 曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm [64] 任纪舜, 肖黎薇, 2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 23(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm [65] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [66] 唐菊兴, 张志, 李志军, 等, 2013.西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向.地球学报, 34(4):385-394. doi: 10.3975/cagsb.2013.04.01 [67] 王忠恒, 王永胜, 谢元和, 等, 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质, 25(1):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm [68] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [69] 许荣科, 郑有业, 赵平甲, 等, 2007.西藏东巧北尕苍见岛弧的厘定及地质意义.中国地质, 34(5):768-777. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200705002.htm [70] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm [71] 张志, 陈毓川, 唐菊兴, 等, 2013a.西藏嘎拉勒铜金矿床地质特征及矽卡岩矿物学特征研究.矿床地质, 32(5):915-931. http://cdmd.cnki.com.cn/Article/CDMD-10616-1012500530.htm [72] 张志, 唐菊兴, 李志军, 等, 2013b.西藏尕尔穷-嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义.地质与勘探, 49(4):676-688. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201304012.htm [73] 张志, 陈毓川, 唐菊兴, 等, 2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学, 40(1):77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024 [74] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107021.htm [75] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm