Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating
-
摘要: 西藏嘎拉勒铜金矿床作为构造背景反演指示针的成岩成矿年代学研究较为匮乏,使得该成矿带区域背景-构造-岩浆-成矿活动系列研究步履维艰,利用LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石U-Pb测年、辉钼矿Re-Os定年及Lu-Hf同位素技术,首次全面厘定了区内侵入岩侵位时序、探讨了岩石成因并确定了成矿时代.结果表明,成矿前闪长岩成岩年龄为155.8±2.3 Ma,侵位于晚侏罗世初期,εHf(t)值分布于-14.68~-8.34,平均值-11.74,是班公湖-怒江特提斯洋南向俯冲的产物;花岗闪长岩为矿区成矿母岩,其成岩年龄为88±1 Ma(MSWD=0.56,n=21),εHf(t)值分布于5.84~9.20,平均值7.72,成矿后花岗斑岩成岩年龄为84.67±0.80 Ma(MSWD=1.9,n=18),εHf(t)值分布于6.32~9.78,平均值8.40,二者均为晚白垩世侵位,为拉萨地体与羌塘地体汇聚的产物;矿区辉钼矿Re-Os等时线年龄为88.55±0.60 Ma(MSWD=0.60,n=8),与成矿母岩(花岗闪长岩)成岩年龄一致.研究表明,在班公湖-怒江特提斯洋南向俯冲至碰撞过程中在矿区内均有相应的岩浆活动响应,嘎拉勒铜金矿床则为典型的碰撞期成矿作用的产物.Abstract: The Gelale Cu-Au deposit in Tibet is an example to probe the regional tectonics, but its ore-forming age is poorly studied, which hinders further studies for the regional tectonics, magmatism and mineralization in the metallogenic belt. The ages and genesis of the intrusive rocks, and the ages of the deposit are determined for the first time in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) zircon U-Pb dating, Lu-Hf isotopic test and Re-Os isotopic dating methods. Early diorite yields age of 155.8±2.3 Ma and εHf(t) values of -14.68~-8.34 (-11.74 in average), which is the product of the southward subduction of the Bangong-Nujiang Tethys ocean. The age of the inter-mineral granodiorite is 88±1 Ma(MSWD=0.56, n=21), and yields zircon εHf(t) values between 5.84-9.20, with the average value of 7.72, while the ages of the late granite porphyry is 84.67±0.8 Ma(MSWD=1.9, n=18), and yields zircon εHf(t) values between 6.32-9.78, with the average value of 8.40. Both the granodiorite and granite porphyry emplaced in the Late Cretaceous, which is the product of the convergence of the Lhasa terrane and the Qiangtang terrane.The Re-Os isochron age of molybdenite in the district is 88.55±0.60 Ma (MSWD=0.60, n=8), which is close to the age of the mineralization rock (granodiorite). Comprehensive study shows that the magmatic activities of the deposit corresponed to the subduction and collision environment of the Bangong-Nujiang Tethys ocean, and the Galale copper-gold deposit is the product of the mineralization event of the collision stage.
-
Key words:
- magmatic activity /
- metallogenesis /
- subduction /
- collision /
- Galale /
- petrology
-
0. 引言
横贯青藏高原中部的班公湖-怒江缝合带作为冈瓦纳大陆的北界(Yin and Harrison, 2000;潘桂堂等,2004;Zhu et al., 2011),是冈底斯陆块与羌塘陆块的分界线(任纪舜和肖黎薇,2004),同时发育着一条巨型铜金矿带,被业界认为是西藏三大成矿带之一.鉴于该结合带整体工作程度较低,研究与勘查工作均比较滞后,使得成矿带大地构造背景问题长久以来争论颇多,主要有两种观点:一种认为缝合带早在早白垩世初就已碰撞闭合(Pearce and Deng,1988; Kapp et al., 2003;曲晓明等,2012);另一种观点则认为班公湖-怒江缝合带闭合时间可能延迟到早白垩世中晚期(秦克章等,2006;李光明等,2007;耿全如等,2011;Li et al., 2011, 2014;Zhu et al., 2011, 2013).区域构造背景不清楚,同时,作为构造背景反演指示针的成岩成矿年代学研究也较为匮乏,使得人们对该成矿带区域背景-构造-岩浆-成矿活动系列研究步履维艰.因此,更多典型矿床精确的成岩成矿年代学、地球化学研究工作对于探索班公湖-怒江洋南向俯冲至碰撞的岩浆活动及成矿作用响应来说至关重要.
嘠拉勒大型铜金矿床位于班公湖-怒江成矿带西段(图 1a),是成矿带南缘最为典型的矽卡岩型铜金矿床(唐菊兴等,2013;张志等, 2013a, 2013b),其金资源量已超过40 t,铜资源量超过15×104 t.目前矿床总体研究程度不高,唐菊兴等(2013)通过对矿区成矿地质条件的系统总结,查明了矿床地质特征,总结了成矿规律,认为成矿主要与晚燕山期侵位的花岗闪长岩有关,并指出了新的找矿方向;张志等(2013a)对矿区主要侵入岩进行了岩石地球化学特征研究,结果表明区内侵入岩为准铝质-弱过铝质钙碱性-高钾钙碱性岩石系列,显示出埃达克岩地球化学性质,并指出矿区主要侵入岩形成于班公湖-怒江特提斯洋闭合后碰撞隆升阶段;张志等(2013b)对矿床地质特征进行了系统总结,厘定了成矿阶段与成矿期次,同时对矿区矽卡岩进行了详细的矿物学特征研究,指出矿区矽卡岩为一套典型的镁质矽卡岩,并具有典型的矿物学分带及相应的矿化分带;张志等(2015)对矿区朗久组火山岩进行年代学及地球化学研究,获得朗久组火山角砾岩成岩年龄为141.70±0.47 Ma(MSWD=0.43),地球化学特征显示出典型的弧火山岩特征,指出其形成于班公湖-怒江特提斯洋南向俯冲阶段.可以看出,矿床目前研究程度较为薄弱,特别是针对矿区全面的成岩-成矿作用基础性研究亟待进行.本文利用LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石U-Pb测年、辉钼矿Re-Os定年及Lu-Hf同位素示踪技术,确定矿床成矿年龄的同时,对区内闪长岩、花岗闪长岩及花岗斑岩3类主要侵入岩进行了精确的年代学及岩浆源区示踪研究,结合前人研究资料全面揭示区内岩浆岩演化历程,探讨区内成岩-成矿作用,揭示矿床成因.
图 1 班公湖-怒江成矿带及邻区构造单元分布(a)与嘎拉勒铜金矿床地质简图(b)Ⅰ.羌塘-三江造山系;Ⅰ1.玉龙塔格-巴颜喀拉前陆盆地;Ⅰ2.西金乌兰湖-金沙江-哀牢山结合带;Ⅰ3.昌都-兰坪地块;Ⅰ4.北羌塘-甜水海陆块;Ⅱ1.龙木错-双湖-澜沧江蛇绿混杂岩带;Ⅲ1.多玛地块;Ⅲ2.南羌塘盆地;Ⅲ3.扎普-多不杂岩浆弧带;Ⅳ.左贡地块;Ⅴ.班公湖-怒江缝合带;Ⅴ1.班公湖-怒江蛇绿混杂带;Ⅴ2.聂荣地块;Ⅴ3.嘉玉桥地块;Ⅵ.冈底斯岩浆弧;Ⅵ1.那曲-洛隆弧前盆地;Ⅵ2.昂龙岗日-班戈岩浆弧;Ⅵ3.狮泉河-申扎-嘉黎蛇绿混杂岩带;Ⅵ4.措勤-申扎岩浆弧;Ⅵ5.龙格尔-工布江达复合岩浆弧;1.第四系;2.白垩系朗久组;3.白垩系捷嘎组;4.花岗闪长岩;5.石英闪长岩;6.闪长岩;7.矽卡岩;8.研究区;9.不明性质断层及编号;10.平移断层及编号;11.地质界线;12.矿体编号及范围;13.平硐;14.采样点Fig. 1. Tectonic units of Bangong-Nujiang metallogenic belt and its neighboring areas (a) and generalized geological map of the Glale Cu-Au deposit (b)1. 矿床地质
嘎拉勒矿区位于班公湖-怒江缝合带措勤-申扎火山岩浆弧的最西端,北部紧邻狮泉河-申扎-嘉黎蛇绿混杂岩带(图 1a).在缝合带构造演化过程中,该缝合带附近岩浆及构造活动强烈,为岩浆活动提供了丰富的成矿物质来源,而强烈的构造运动则为矿体的储存提供了空间,找矿潜力巨大.嘎拉勒矿区属于冈底斯-腾冲地层区,措勤-申扎分区,区域上广泛分布石炭纪-白垩纪碳酸盐岩,为形成矽卡岩型矿床的有利围岩,矿区内最主要的矽卡岩型铜金矿体便是由燕山期中酸性侵入岩与白垩纪碳酸盐岩经接触交代而形成.
矿区出露地层较为简单,主要由白垩系朗久组(K1l)与捷嘎组(K1jg)及第四系松散堆积物(Q)组成(图 1b).朗久组主要分布于矿区西部及北部,岩性组合为一套流纹质-英安质火山碎屑岩,张志等(2015)报道了区内朗久组火山岩年龄为141.7±0.7 Ma,火山活动时代为早白垩世初.捷嘎组地层为区内成矿地层,主要分布在矿区中部及南部,岩性主要为以白云岩及白云质大理岩为主的碳酸盐岩.矿区构造主要为断裂构造,目前共发育有4条断裂,其中F1为倾向南的逆冲断层,F2为倾向北东的正断层,F4断层具走滑性质,F3断层性质暂不明,目前资料表明F1及F2断层为成矿后断层,对矿体具有一定的破坏作用.矿区内侵入岩主要有花岗闪长岩、石英闪长岩、闪长岩及花岗斑岩,与成矿关系密切的为花岗闪长岩.在野外可明显见到花岗闪长岩脉及石英闪长岩侵入到闪长岩中,表明花岗闪长岩及石英闪长岩侵位时代晚于闪长岩(图 2a),闪长岩多呈岩株状产出并形成高地,周围多为朗久组火山碎屑岩及捷嘎组碳酸盐岩环绕,但皆无明显的热液蚀变、岩脉穿插及流体逃逸等现象,表明区内白垩系地层可能为上覆地层,闪长岩侵位世代较早.
矿区已查明10余个矽卡岩型铜金矿体,其中KT2、KT3、KT8三个矿体为矿区主矿体,其次为KT4矿体(图 1b),均赋存于花岗闪长岩与白云岩或白云质大理岩接触带矽卡岩内,矿体呈透镜状、层状、似层状等产出(图 2b).矿床成矿元素矿化特点从浅部到深部具有Cu+Au→Cu+Au+Fe→Mo±Cu的分带特点,与之相对应的矿化赋存类型为矽卡岩型矿化向石英脉型矿化演变,目前矿区工业矿体主要为铜金矿体,而相对深部的石英脉中辉钼矿现今发现较少,还不能单独圈出具有经济价值的工业矿体(张志等,2013b).矿床蚀变主要可见矽卡岩化、硅化、碳酸盐化、绿泥石化、绿帘石化、绢云母化、高岭土化等,以矽卡岩化、硅化为主.矿区金属矿物种类繁多,主要可见有黄铜矿、自然金、磁铁矿、黄铁矿,其次可见有铜兰、孔雀石、辉钼矿、褐铁矿、赤铁矿、斑铜矿、辉铜矿、蓝辉铜矿、针铁矿等.非金属矿物主要为一套镁质矽卡岩矿物,为中酸性岩浆岩与白云岩经接触交代而成(张志等,2013b).矿石结构主要可见半自形-他形粒状结构、包含结构等结晶结构,较为发育交代残留结构,少量固溶体分离结构;矿石构造主要可见稀疏-稠密浸染状、团块状构造,其次较为发育条带状构造,局部可见晶洞构造(图 3a~3d).
张志等(2013b)将矿床成矿过程分为了岩浆热液成矿期与表生期2个成矿期,其中岩浆热液成矿期可分为4个阶段,包括早期矽卡岩阶段(以石榴子石、镁橄榄石、镁铁尖晶石、透辉石等早期矽卡岩矿物出现为特征)、退化蚀变阶段(以蛇纹石、绿帘石等矿物大量交代早期矽卡岩为特征)、石英-硫化物阶段(铜金主成矿阶段)、碳酸盐-硫化物阶段(金属矿物沉淀及形成大量碳酸盐矿物).
2. 样品及分析方法
2.1 采样位置及样品特征
闪长岩样品GLB004采于闪长岩岩体露头,采样坐标为:X=492 317 m,Y=3 601 176 m,H=4 910 m,样品位于岩体中心位置.花岗闪长岩样品GLPD2-B1采于矿区中部的揭示KT2号矿体的平硐PD2,采样坐标为:X=492 920 m,Y=3 601 090 m,H=4 815 m.花岗斑岩为隐伏岩体,样品ZK355-5-B186采于钻孔ZK335-5,采样坐标为:X=492 454 m,Y=3 601 642 m,H=5 342 m.
花岗闪长岩呈灰白色,自形粒状结构,块状构造,主要由斜长石、角闪石、石英、钾长石及少量黑云母组成,偶见少量黄铁矿,可见较强绢云母化、泥化及硅化,局部发育钾化,另可见星点状黄铜矿化(图 4a, 图 4b).闪长岩呈灰黑色-灰色,自形-半自形粒状结构,块状构造,主要由斜长石、角闪石及少量石英组成,样品硅化较强,风化露头界面可见褐铁矿化(图 4c, 图 4d).花岗斑岩为灰白色,斑状结构,块状构造,主要由长英质矿物组成,可见绢云母化、泥化及绿泥石化,局部可见星点状黄铜矿化(图 4e, 图 4f).
本次测试所用8件辉钼矿样品均采自钻孔,其中6件辉钼矿样品采自钻孔ZK42不同深度位置,2件样品采自钻孔ZK21不同深度位置.矿区目前辉钼矿分布较为局限,仅少数钻孔可见,主要呈脉状、沉点状及细小团斑状随石英脉两边部产出(图 4g),局部可见呈星点状或细团斑状产于石英脉中央,镜下可见主要呈自形板状、条带状结构(图 4h),均非性显著.石英脉中辉钼矿部分为独立产出,部分为辉钼矿与黄铜矿共生.
2.2 锆石U-Pb定年及Lu-Hf同位素分析方法
锆石挑选由河北省廊坊区域地质矿产调查研究所实验室完成.主要过程如下:将样品破碎后采用浮选和磁选分选出锆石,然后利用双目镜挑选晶形、色泽较好且透明度高的锆石颗粒进行制靶(宋彪等,2002),过后利用阴极发光(cathodoluminescence,CL)进行锆石的显微照相,最后通过锆石的阴极发光图像选择合适的测点进行分析(主要避开包裹体、裂隙及残留核等).本次锆石U-Pb分析在中国地质科学院矿产资源研究所LA-ICP-MS实验室完成.锆石年龄计算以国际标准锆石91500为外标,并按照Andersen(2002)的方法进行普通铅校正,年龄计算及谐和图绘制主要是用Isoplot程序完成,具体分析步骤和数据处理过程参见文献(Gao et al., 2002;侯可军等,2009).
Lu-Hf同位素分析在中国科学院地质与地球物理研究所完成,测点紧邻锆石U-Pb测点而进行,采用配有193 nm激光的Neptune多接收电感耦合等离子质谱仪进行分析,分析过程中采用6~8 Hz的激光频率、100 mJ的激光强度和50~60 μm的激光束斑.试验中以He作为剥蚀物质的载气,采用91500作为外部标准,具体测试过程见文献(Wu et al., 2006).
2.3 Re-Os同位素定年分析方法
本次辉钼矿Re-Os同位素分析测试在国家地质测试中心Re-Os同位素实验室完成,采用电感耦合等离子体质谱仪TJA X-series ICP-MS(inductively coupled plasma-mass spectrometry)进行同位素比值测定.Re选择质量数185、187,用190监测Os.Os选择质量数为186、187、188、189、190、192,用185监测Re.样品测试中Re、Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差,置信水平95%.由于采用混合稀释剂,模式年龄的不确定度不包括稀释剂和样品的称量误差,但包括衰变常数的不确定(1.02%),模式年龄置信水平95%.普Os是根据原子量表和同位素丰度表,通过测量192Os/190Os比值计算得出.样品测试过程中先进行样品分解,然后直接蒸馏分离锇,最后萃取分离铼,铼锇具体化学分离步骤和质谱测定请参照相关文献(屈文俊和杜安道,2003).
3. 测试结果
3.1 花岗闪长岩
花岗闪长岩内锆石无色透明,长轴与短轴之比在1.5:1.0~4.0:1.0,长轴多大于100 μm,颗粒大的长轴可达300 μm,主要呈长柱状或短柱状,个别呈浑圆粒状,部分颗粒内部可见细小包裹体,锆石颗粒均发育密集震荡环带(图 5c),具岩浆成因锆石特征(吴元保和郑永飞,2004).本次对花岗闪长岩样品挑选出的锆石晶体共进行了21个点的测试,锆石U-Pb同位素分析结果见表 1.样品中Th含量在(49~216)×10-6之间,平均值为106×10-6;U含量在(42~289)×10-6之间,平均值为130×10-6;Th/U比值在0.46~1.35之间,具典型岩浆成因锆石特征.花岗闪长岩锆石206Pb/238U加权平均年龄为88±1 Ma(MSWD=0.56,n=21,1σ)(图 6a),该年龄代表了花岗闪长岩的结晶年龄,属于晚白垩世侵位.
表 1 嘎拉勒矿床花岗闪长岩LA-ICP-MS锆石定年结果Table Supplementary Table LA-ICP-MS zircon dating result of the granodiorite in Galale deposit点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLPD2-B101 94.07 186.62 0.504 056 0.067 81 0.005 13 0.122 14 0.014 67 0.013 63 0.000 73 863 145 117 13 87 5 GLPD2-B102 140.12 166.36 0.842 234 0.054 88 0.005 76 0.092 55 0.014 06 0.013 51 0.000 75 407 216 90 13 87 5 GLPD2-B103 81.11 143.12 0.566 75 0.048 03 0.005 31 0.090 74 0.014 67 0.013 21 0.000 80 101 216 88 14 85 5 GLPD2-B104 79.68 123.67 0.644 256 0.046 57 0.003 28 0.097 17 0.010 76 0.013 96 0.000 67 27 141 94 10 89 4 GLPD2-B105 107.54 165.04 0.651 582 0.051 79 0.005 29 0.102 72 0.015 28 0.014 62 0.000 80 276 211 99 14 94 5 GLPD2-B106 153.96 204.62 0.752 436 0.042 91 0.004 39 0.083 04 0.012 33 0.014 07 0.000 76 128 173 81 12 90 5 GLPD2-B107 122.18 163.35 0.747 952 0.067 12 0.006 25 0.123 51 0.016 73 0.014 97 0.000 75 842 182 118 15 96 5 GLPD2-B108 73.79 135.61 0.544 112 0.048 95 0.005 31 0.090 24 0.013 84 0.013 05 0.000 69 145 216 88 13 84 4 GLPD2-B109 89.39 131.67 0.678 844 0.040 02 0.004 62 0.079 12 0.012 78 0.014 44 0.000 78 288 180 77 12 92 5 GLPD2-B110 216.42 288.79 0.749 403 0.087 11 0.003 09 0.174 47 0.011 73 0.014 61 0.000 59 1 363 63 163 10 93 4 GLPD2-B111 82.48 178.37 0.462 412 0.054 28 0.004 89 0.100 55 0.013 43 0.014 54 0.000 75 383 189 97 12 93 5 GLPD2-B112 48.60 42.35 1.147 561 0.049 46 0.010 78 0.091 62 0.017 51 0.013 83 0.000 50 169 444 89 16 89 3 GLPD2-B113 56.13 56.06 1.001 223 0.050 12 0.006 49 0.093 33 0.012 28 0.013 62 0.000 32 211 265 91 11 87 2 GLPD2-B114 153.86 120.02 1.281 940 0.049 95 0.003 55 0.094 93 0.005 14 0.013 95 0.000 97 191 167 92 5 89 6 GLPD2-B115 79.96 69.76 1.146 244 0.048 20 0.002 34 0.091 61 0.004 73 0.013 69 0.000 19 109 111 89 4 88 1 GLPD2-B116 130.75 97.04 1.347 382 0.049 44 0.005 06 0.092 49 0.010 76 0.013 44 0.000 32 169 222 90 10 86 2 GLPD2-B117 168.86 138.94 1.215 371 0.048 19 0.003 26 0.090 44 0.005 96 0.013 66 0.000 41 109 152 88 6 87 3 GLPD2-B118 109.39 82.53 1.325 508 0.048 95 0.005 14 0.090 98 0.009 73 0.013 54 0.000 22 146 230 88 9 87 1 GLPD2-B119 100.88 107.95 0.934 498 0.049 40 0.002 85 0.091 95 0.004 74 0.013 69 0.000 29 169 132 89 4 88 2 GLPD2-B120 50.55 53.57 0.943 521 0.048 98 0.002 64 0.093 84 0.005 56 0.013 86 0.000 27 146 158 91 5 89 2 GLPD2-B121 86.41 67.61 1.278 026 0.048 93 0.003 21 0.092 13 0.005 86 0.013 73 0.000 20 143 157 90 5 88 1 花岗闪长岩内锆石176Hf/177Hf分布于0.282 886~0.282 980,176Lu/177Hf变化于0.000 656~0.001 687(表 2).根据对应锆石年龄计算的εHf(t)值变化于5.84~9.20,平均值7.72;εHf(0) 主要分布于4.04~7.35,平均为5.84;地壳tHf模式年龄变化于519~397 Ma,tHfC模式年龄变化于776~563 Ma(表 2).
表 2 嘎拉勒花岗闪长岩的锆石Hf同位素组成Table Supplementary Table Hf isotopic composition for the granodiorite in Galale deposit测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf PD2-B1 01 87 0.001 687 0.282 898 0.000 022 0.282 895 4.46 6.27 512 750 -0.95 02 87 0.000 982 0.282 929 0.000 025 0.282 928 5.56 7.41 458 677 -0.97 03 85 0.001 025 0.282 886 0.000 021 0.282 885 4.04 5.84 519 776 -0.97 04 89 0.000 774 0.282 946 0.000 020 0.282 945 6.17 8.08 431 636 -0.98 05 94 0.000 903 0.282 950 0.000 022 0.282 948 6.29 8.29 428 626 -0.97 06 90 0.001 223 0.282 933 0.000 023 0.282 931 5.71 7.61 455 667 -0.96 08 84 0.000 907 0.282 927 0.000 020 0.282 926 5.49 7.29 459 683 -0.97 09 92 0.000 656 0.282 921 0.000 020 0.282 920 5.26 7.24 466 692 -0.98 10 93 0.001 064 0.282 933 0.000 019 0.282 931 5.68 7.65 454 667 -0.97 11 93 0.000 782 0.282 936 0.000 020 0.282 935 5.80 7.79 446 657 -0.98 12 89 0.000 973 0.282 944 0.000 023 0.282 942 6.07 7.96 437 643 -0.97 13 87 0.001 042 0.282 965 0.000 021 0.282 963 6.83 8.68 407 596 -0.97 14 89 0.001 638 0.282 947 0.000 020 0.282 944 6.19 8.05 440 638 -0.95 15 88 0.001 257 0.282 980 0.000 022 0.282 978 7.35 9.20 388 563 -0.96 16 86 0.000 813 0.282 931 0.000 018 0.282 930 5.63 7.47 453 673 -0.98 17 87 0.001 179 0.282 914 0.000 021 0.282 912 5.03 6.88 482 712 -0.96 18 87 0.001 551 0.282 961 0.000 022 0.282 958 6.67 8.48 419 609 -0.95 19 88 0.000 911 0.282 972 0.000 020 0.282 970 7.06 8.93 397 580 -0.97 20 89 0.001 002 0.282 916 0.000 025 0.282 914 5.08 6.97 477 707 -0.97 21 88 0.000 892 0.282 956 0.000 019 0.282 954 6.49 8.37 419 617 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.3.2 闪长岩
闪长岩中锆石颜色相对较深,多呈长柱状或短柱状,另可见浑圆状,锆石颗粒长轴多数在100 μm左右,个别颗粒大的长轴近400 μm,长轴与短轴比在1.5:1.0~4.0:1.0,部分颗粒可见包裹体及残留核,绝大多数锆石均发育震荡环带结构(图 5a).本次闪长岩样品共进行了20个点的测试,测试分析结果见表 3.从表 3分析结果中可以看出,闪长岩锆石样品中Th含量在(54~524)×10-6,平均值为172×10-6;U含量在(98~415)×10-6,平均值为179×10-6;Th/U比值在0.41~2.31,具一般岩浆成因锆石特征(吴元保和郑永飞,2004).结果显示闪长岩206Pb/238U加权平均年龄明显分为2组(图 6c、图 6d),第1组锆石206Pb/238U加权平均年龄为155.8±2.3 Ma(MSWD=2.7,n=14,1σ)(图 6d);第2组锆石206Pb/238U加权平均年龄为90.3±2.8 Ma(MSWD=0.81,n=6,1σ)(图 6c).
表 3 嘎拉勒矿床闪长岩LA-ICP-MS锆石定年结果Table Supplementary Table LA-ICP-MS zircon dating result of the diorite in Galale deposit点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLB00401 120.94 138.06 0.875 991 0.048 33 0.003 56 0.175 58 0.018 36 0.026 60 0.000 96 116 153 164 16 169 6 GLB00402 54.35 131.79 0.412 438 0.096 70 0.006 71 0.168 70 0.017 47 0.014 80 0.000 60 1 561 121 158 15 95 4 GLB00403 150.55 235.02 0.640 568 0.052 66 0.004 02 0.091 63 0.009 97 0.013 84 0.000 53 314 160 89 9 89 3 GLB00404 118.45 214.62 0.551 916 0.053 26 0.004 81 0.094 72 0.011 62 0.013 65 0.000 51 340 187 92 11 87 3 GLB00405 227.85 280.54 0.812 201 0.050 33 0.002 70 0.187 68 0.014 95 0.026 86 0.000 83 210 114 175 13 171 5 GLB00406 137.81 200.41 0.687 662 0.047 49 0.003 36 0.150 35 0.015 17 0.025 28 0.000 89 74 155 142 13 161 6 GLB00407 90.44 104.15 0.868 398 0.051 97 0.006 67 0.094 32 0.016 58 0.013 57 0.000 75 284 282 92 15 87 5 GLB00408 86.10 105.88 0.813 226 0.047 47 0.004 87 0.160 19 0.021 78 0.023 78 0.000 92 73 217 151 19 151 6 GLB00409 109.28 112.01 0.975 678 0.059 13 0.005 32 0.200 56 0.024 76 0.025 70 0.001 00 572 202 186 21 164 6 GLB00410 112.67 159.21 0.707 721 0.063 88 0.003 71 0.205 69 0.017 24 0.023 17 0.000 70 738 125 190 15 148 4 GLB00411 341.91 415.17 0.823 540 0.052 59 0.003 05 0.101 39 0.008 63 0.014 61 0.000 47 311 134 98 8 93 3 GLB00412 53.78 98.38 0.546 634 0.059 53 0.012 69 0.078 67 0.020 87 0.014 27 0.000 85 587 455 77 20 91 5 GLB00413 98.54 109.37 0.900 970 0.056 27 0.005 34 0.196 64 0.025 31 0.025 70 0.001 01 463 217 182 21 164 6 GLB00414 127.08 106.26 1.195 951 0.054 06 0.002 77 0.186 40 0.016 78 0.024 82 0.000 95 372 115 174 14 158 6 GLB00415 460.43 337.73 1.363 308 0.051 11 0.000 65 0.172 16 0.002 30 0.024 40 0.000 17 256 30 161 2 155 1 GLB00416 178.15 164.24 1.084 714 0.050 16 0.001 20 0.168 56 0.004 25 0.024 32 0.000 16 211 56 158 4 155 1 GLB00417 157.87 137.65 1.146 907 0.054 28 0.004 30 0.193 46 0.021 30 0.025 67 0.000 99 383 178 180 18 163 6 GLB00418 133.90 175.93 0.761 104 0.052 46 0.002 73 0.169 98 0.005 46 0.023 50 0.000 50 306 116 159 5 150 3 GLB00419 523.78 226.47 2.312 864 0.054 00 0.002 43 0.192 04 0.006 14 0.025 92 0.000 59 372 107 178 5 165 4 GLB00420 147.22 118.93 1.237 892 0.050 81 0.008 68 0.167 73 0.027 93 0.024 06 0.000 98 232 352 157 24 153 6 两组年龄区域的锆石形态差异不大,但阴极发光强度及锆石晶棱形态略有不同,U、Th含量及Th/U比值亦有一定差异.第1组锆石样品中Th含量在(86~524)×10-6,平均值为187×10-6;U含量在(106~338)×10-6,平均值为119×10-6;Th/U比值在0.69~2.31.第2组锆石样品中Th含量在(54~342)×10-6,平均值为144×10-6;U含量在(98~415)×10-6,平均值为200×10-6;Th/U比值在0.41~0.86.从前述可以看出,155 Ma的锆石Th含量相对较高、U含量相对较低、Th/U比值相对较大,而90 Ma的锆石则相反,两组锆石年龄相差近70 Ma,显然并非分析误差.对于这一结果可能存在有3种解释:一是继承锆石核与新生锆石混合;二是两期岩浆活动锆石混合的结果;三是早期岩浆锆石受后期岩浆热液活动影响重结晶所致.本次测试均为对不同锆石样品进行测点,并非对同一颗锆石不同部位进行测点,因此第一种解释不成立.两组锆石形态、色泽并没有大的差异,其Th、U含量及Th/U比值虽具有一定差异,但差异不大,不具备两期不同锆石混合特征.另外,90 Ma±的锆石与155 Ma±的锆石相比,90 Ma±的锆石相对具有明显的港湾状结构、晶棱圆化及部分锆石颗粒具有明显的发光强度较强的白色边等特点,符合早期岩浆锆石受后期岩浆热液活动影响而重结晶的特征(吴元保和郑永飞,2004).再者,前述已测定矿区与成矿关系最为花岗闪长岩年龄为88 Ma,该年龄正好与闪长岩第2组锆石年龄基本一致,表明155 Ma的锆石受到后期90 Ma的岩浆热液活动影响是具备地质事实支撑的,因此第3种解释是比较合理的,矿区闪长岩成岩年龄应为155.8±2.3 Ma,90.3±2.8 Ma的锆石为后期岩浆热液活动影响的结果,岩体为晚罗世初期侵位.
闪长岩内锆石176Hf/177Hf分布于0.282 266~0.282 433,176Lu/177Hf变化在0.000 649~0.001 361(表 4).根据对应锆石年龄计算的εHf(t)值分布于-14.68~-8.34,平均值为-11.74;εHf(0) 主要分布在-17.89~-12.00,平均值为-15.14;地壳tHf模式年龄变化于1 393~1 154 Ma,tHfC模式年龄变化于2 126~1 742 Ma(表 4).
表 4 嘎拉勒闪长岩及花岗斑岩的锆石Hf同位素组成Table Supplementary Table Hf isotopic composition for the diorite and granite porphyry in Galale deposit测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf GLB004 01 169 0.000 871 0.282 360 0.000 026 0.282 357 -14.58 -10.98 1 257 1 907 -0.97 05 171 0.000 825 0.282 433 0.000 021 0.282 430 -12.00 -8.34 1 154 1 742 -0.98 06 161 0.000 780 0.282 353 0.000 018 0.282 351 -14.81 -11.36 1 263 1 925 -0.98 08 151 0.001 019 0.282 266 0.000 021 0.282 263 -17.89 -14.68 1 393 2 126 -0.97 09 164 0.001 260 0.282 351 0.000 016 0.282 347 -14.90 -11.45 1 283 1 933 -0.96 13 164 0.000 649 0.282 272 0.000 017 0.282 270 -17.68 -14.16 1 371 2 104 -0.98 14 158 0.001 123 0.282 327 0.000 021 0.282 324 -15.74 -12.40 1 312 1 988 -0.97 15 155 0.000 716 0.282 350 0.000 024 0.282 347 -14.94 -11.61 1 266 1 937 -0.98 16 155 0.001 068 0.282 352 0.000 024 0.282 349 -14.85 -11.57 1 274 1 933 -0.97 17 163 0.000 835 0.282 387 0.000 021 0.282 384 -13.63 -10.14 1 218 1 850 -0.97 18 150 0.000 732 0.282 380 0.000 018 0.282 378 -13.85 -10.65 1 224 1 872 -0.98 19 165 0.001 361 0.282 297 0.000 029 0.282 293 -16.79 -13.32 1 362 2 051 -0.96 20 153 0.000 768 0.282 342 0.000 019 0.282 340 -15.19 -11.91 1 278 1 954 -0.98 ZK355-5-186 01 88 0.000 764 0.282 988 0.000 021 0.282 987 7.64 9.53 372 543 -0.98 02 86 0.000 798 0.282 951 0.000 022 0.282 950 6.33 8.17 425 628 -0.98 03 83 0.000 781 0.282 931 0.000 019 0.282 930 5.63 7.41 453 674 -0.98 04 91 0.001 567 0.282 897 0.000 021 0.282 894 4.42 6.32 511 750 -0.95 05 84 0.001 349 0.282 988 0.000 023 0.282 986 7.66 9.42 377 546 -0.96 06 87 0.000 810 0.282 939 0.000 022 0.282 937 5.90 7.76 442 655 -0.98 07 91 0.001 104 0.282 956 0.000 019 0.282 954 6.50 8.43 421 615 -0.97 08 93 0.001 557 0.282 955 0.000 021 0.282 952 6.46 8.40 428 619 -0.95 09 90 0.000 796 0.282 951 0.000 021 0.282 950 6.33 8.26 425 625 -0.98 10 85 0.001 124 0.282 938 0.000 022 0.282 936 5.86 7.66 447 659 -0.97 11 85 0.001 035 0.282 957 0.000 019 0.282 955 6.54 8.33 419 616 -0.97 12 85 0.000 924 0.282 954 0.000 020 0.282 952 6.43 8.25 422 622 -0.97 13 85 0.000 901 0.282 956 0.000 020 0.282 955 6.52 8.33 418 617 -0.97 14 83 0.000 847 0.282 996 0.000 021 0.282 995 7.93 9.69 361 528 -0.97 15 84 0.001 017 0.282 969 0.000 019 0.282 967 6.96 8.74 402 590 -0.97 16 84 0.000 886 0.282 960 0.000 017 0.282 958 6.63 8.43 413 610 -0.97 17 85 0.001 192 0.282 956 0.000 019 0.282 954 6.52 8.32 421 618 -0.96 18 86 0.001 000 0.282 997 0.000 023 0.282 995 7.94 9.78 362 525 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.3.3 花岗斑岩
花岗斑岩中锆石晶形较好,无色透明,多呈长柱状,少数呈短柱状,长轴多数大于100 μm,颗粒大者长轴可达250 μm,长短轴比值在1.5:1.0~2.5:1.0.所有锆石样品均可见震荡环带结构(图 5b).本次花岗斑岩样品共进行了18个有效点的测试,测试结果见表 5.样品中Th含量在(84~291)×10-6,平均值为1 343×10-6,U含量在(925~268)×10-6,平均值为189×10-6,Th/U比值在0.50~1.27,具有一般岩浆成因锆石特征.锆石206Pb/238U加权平均年龄为84.67±0.82 Ma(MSWD=1.90,n=18,1σ)(图 6b),该年龄代表花岗斑岩的结晶年龄,岩体侵位于晚白垩世.
表 5 嘎拉勒矿床花岗斑岩LA-ICP-MS锆石定年结果Table Supplementary Table LA-ICP-MS zircon dating result of the granite porphyry in Galale deposit点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ ZK355-5-B18601 126.66 232.44 0.544 899 0.046 85 0.003 37 0.086 78 0.008 38 0.013 82 0.000 4 42 163 85 8 88 3 ZK355-5-B18602 115.24 177.01 0.651 010 0.045 38 0.004 08 0.081 7 0.009 56 0.013 36 0.000 42 63 189 80 9 86 3 ZK355-5-B18603 143.32 267.91 0.534 961 0.057 04 0.002 9 0.095 44 0.007 14 0.012 98 0.000 37 493 118 93 7 83 2 ZK355-5-B18604 134.32 267.69 0.501 769 0.045 44 0.004 15 0.093 41 0.011 29 0.014 18 0.000 48 31 194 91 10 91 3 ZK355-5-B18605 150.14 237.78 0.631 420 0.049 07 0.004 68 0.082 15 0.010 64 0.013 08 0.000 52 151 219 80 10 84 3 ZK355-5-B18606 158.76 234.25 0.677 730 0.045 24 0.003 05 0.081 95 0.007 7 0.013 66 0.000 42 8 151 80 7 87 3 ZK355-5-B18607 113.28 228.05 0.496 748 0.051 43 0.004 81 0.096 84 0.012 36 0.014 18 0.000 56 260 217 94 11 91 4 ZK355-5-B18608 177.34 265.89 0.666 989 0.050 82 0.004 64 0.105 23 0.012 56 0.014 61 0.000 47 233 211 102 12 93 3 ZK355-5-B18609 147.48 260.13 0.566 939 0.051 29 0.005 64 0.097 17 0.013 57 0.014 13 0.000 48 254 249 94 13 90 3 ZK355-5-B18610 83.92 91.85 0.913 599 0.048 32 0.003 00 0.088 75 0.008 43 0.013 25 0.000 47 122 132 86 8 85 3 ZK355-5-B18611 104.94 131.30 0.799 245 0.048 09 0.001 38 0.087 24 0.002 49 0.013 20 0.000 12 102 67 85 2 85 1 ZK355-5-B18612 89.31 110.97 0.804 861 0.049 39 0.002 48 0.090 55 0.004 47 0.013 31 0.000 13 165 112 88 4 85 1 ZK355-5-B18613 114.05 150.44 0.758 125 0.047 73 0.000 98 0.087 19 0.001 81 0.013 26 0.000 10 87 82 85 2 85 1 ZK355-5-B18614 93.86 129.29 0.725 981 0.048 74 0.002 30 0.086 83 0.004 15 0.012 91 0.000 10 200 111 85 4 83 1 ZK355-5-B18615 106.88 127.49 0.838 367 0.048 97 0.001 42 0.088 18 0.002 77 0.013 06 0.000 20 146 69 86 3 84 1 ZK355-5-B18616 135.75 106.84 1.270 621 0.049 61 0.003 66 0.088 87 0.005 65 0.013 11 0.000 36 176 163 86 5 84 2 ZK355-5-B18617 290.73 241.51 1.203 813 0.050 11 0.000 76 0.091 84 0.001 53 0.013 27 0.000 10 211 35 89 1 85 1 ZK355-5-B18618 130.16 137.53 0.946 394 0.049 82 0.002 18 0.092 70 0.004 58 0.013 45 0.000 23 187 104 90 4 86 2 花岗斑岩内锆石176Hf/177Hf分布于0.282 897~0.282 997,176Lu/177Hf变化于0.000 764~0.001 567(表 4).根据对应锆石年龄计算的εHf(t)值变化于6.32~9.78,平均值为8.40;εHf(0) 主要分布于4.42~7.94,平均值为6.57;地壳tHf模式年龄变化于511~361 Ma,tHfC模式年龄变化于679~525 Ma(表 4).
3.4 Re-Os测试结果
嘎拉勒矿区8件辉钼矿样品Re-Os测试结果见表 6.从表 6中可以看出,本次测试辉钼矿样品Re含量变化较大,范围介于29.33×10-6~218.60×10-6,而普Os含量则普遍较低,基本接近于0.所测样品模式年龄介于88.19~90.11 Ma,变化范围很小,利用Isoplot软件对嘎拉勒矿床所测8组数据进行等时线拟合(图 7a),获取的矿区辉钼矿Re-Os等时线年龄为88.55±0.60 Ma(MSWD=0.60,n=8,2σ),初始187Os/188Os值为0.38±0.37,该年龄代表了辉钼矿形成时年龄,从模式年龄等时线图中可以看出拟合程度较高,测年精确,模式年龄加权平均值为89.00±0.48 Ma(MSWD=0.80,2σ)(图 7b).
表 6 嘎拉勒-尕尔穷铜金矿床辉钼矿Re-Os同位素测年结果Table Supplementary Table Re-Os isotopic data of molybdenites from Galale-Gaerqiong Cu-Au deposits原样名 样重(g) Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK42-267.91 0.039 51 178.80 2.00 0.032 5 0.024 7 112.40 1.20 166.8 1.50 89.00 1.47 ZK42-246.15 0.040 44 218.60 2.10 0.121 7 0.019 8 137.40 1.30 203.0 1.60 88.63 1.33 ZK42-227.1 0.040 05 211.80 2.20 0.043 2 0.008 0 133.10 1.40 196.8 1.60 88.68 1.38 ZK42-211.84 0.040 52 174.50 2.00 0.014 3 0.011 0 109.60 1.20 161.2 1.30 88.19 1.43 ZK21-432.7 0.034 02 110.90 0.90 0.050 3 0.009 2 69.71 0.54 103.0 0.90 88.62 1.24 ZK21-411.1 0.040 11 195.00 2.20 0.030 2 0.019 1 122.60 1.40 183.1 1.60 89.63 1.49 ZK42-279.97 0.010 21 31.24 0.29 0.007 9 0.026 6 19.64 0.18 29.3 0.25 89.50 1.34 ZK42-191.1 0.011 50 29.33 0.26 0.011 7 0.039 5 18.44 0.16 27.7 0.33 90.11 1.52 4. 讨论
4.1 矿区岩浆侵位时代和时序
本次研究通过对矿区中酸性岩浆岩年龄及辉钼矿年龄的精确测定,揭示了矿区岩浆演化历程及相应的成矿作用,发现矿区共具有5期次岩浆活动,但仅有一期岩浆活动有相应的成矿作用.156 Ma左右的闪长岩最早侵位,其侵位时代为晚侏罗世初期,可能为班公湖-怒江特提斯洋南向俯冲的产物至早白垩世初爆发了火山活动(141 Ma),形成郎久组火山岩(张志等,2015),随后131 Ma左右的石英闪长岩开始侵位(吕立娜等,2011),该3个时期的岩浆活动均为班公湖-怒江特提斯洋南向俯冲阶段的产物,且均没有相应的成矿作用响应.至晚白垩世时,班公湖-怒江特提斯洋消亡,拉萨地块与南羌塘地块陆-陆碰撞阶段,88 Ma左右的花岗闪长岩开始侵位,并与捷嘎组碳酸盐地层进行接触交代形成矽卡岩型金铜矿体,是矿区内最重要的成岩-成矿事件.成矿后4 Ma左右的84 Ma花岗斑岩开始侵位,为矿区内最后一期次岩浆活动,但并没有形成相应的成矿作用.
综上所述,嘠拉勒矿区岩浆岩演化历程为:闪长岩→郎久组火山岩→石英闪长岩→花岗闪长岩(成矿期岩浆活动)→花岗斑岩.
4.2 岩浆源区示踪
锆石原位Hf同位素是揭示地壳演化和示踪岩浆源区的重要手段(Scherer et al., 2000;Griffin et al., 2002;Zhang et al., 2012;冷秋锋等,2016;李碧乐等,2016),并在岩石学研究中得到了广泛的应用.本次锆石Hf同位素研究表明,嘎拉勒矿区内侵入岩锆石Hf同位素组成明显分为正直域与负值域两个类别(图 8),显示区内主要侵入岩浆活动具有不同的岩浆源区.花岗闪长岩锆石初始176Hf/177Hf值分布于0.282 886~0.282 980,176Lu/177Hf值变化于0.000 656~0.001 687,根据对应锆石年龄计算的εHf(t)值变化于5.84~9.20,平均值7.72,tHfC模式年龄变化于776~563 Ma.吕立娜(2012)对花岗闪长岩进行了Sr-Nd同位素研究,获得87Sr/86Sr初始比值平均为0.705 1,εNd(t)平均值为1.4.张志等(2013a)对矿区花岗闪长岩进行了岩石地球化学特征研究,指出其具有埃达克岩地球化学特征,但并没有Mg、Cr、Ni等元素的富集,总体仍具有弧岩浆性质.相对较低的87Sr/86Sr初始比值、正的εNd(t)值、正的εHf(t)值及年轻的地壳模式年龄及其地球化学特征指示区内花岗闪长岩起源于新生下地壳.花岗斑岩锆石初始176Hf/177Hf值分布于0.282 897~0.282 997,176Lu/177Hf值变化于0.000 764~0.001 567,根据对应锆石年龄计算的εHf(t)值变化于6.32~9.78,平均值8.40,tHfC模式年龄变化于679~525 Ma,可以看出,花岗闪长岩与花岗斑岩Hf同位素组成极为相似,表明二者岩浆源区相同或接近,已有研究表明二者地球化学特征也极为相似(张志等,2013a),暗示二者可能属于同一岩浆系统不同期次侵位的产物.而区内闪长岩Hf同位素组成与前述两岩体Hf同位素组成具有明显的区别,闪长岩锆石初始176Hf/177Hf值分布于0.282 266~0.282 433,176Lu/177Hf值变化于0.000 649~0.001 361,根据对应锆石年龄计算的εHf(t)值分布于-14.68~-8.34,平均值-11.74,tHfC模式年龄变化于2.1~1.7 Ga,负的εHf(t)值及较老的地壳模式年龄表明闪长岩岩浆起源于古老的成熟地壳(图 8),而非新生下地壳,表明闪长岩相对于花岗闪长岩及花岗斑岩而言形成于不同的构造环境.值得注意的是,闪长岩锆石Hf同位素组成与中部拉萨地体(古拉萨地体微陆块)西部江巴至雄巴地区岩浆岩锆石Hf同位素组成十分相似(Zhu et al., 2009, 2011;张立雪等,2013),暗示嘎拉勒地区曾经存在与古拉萨地体相似的结晶基底.
4.3 成岩-成矿构造背景
由于工作程度较低,班公湖-怒江结合带构造演化问题依然没有定论.目前关于该缝合带代表的是形成于二叠世-早三叠世的新特提洋的认识基本已得到一致认可(任纪舜和肖黎薇,2004),但对于班公湖-怒江特提斯洋的俯冲消减形式以及俯冲至碰撞闭合的时限一直存在较大的争论.前期研究者认为俯冲形式为班公湖-怒江特提斯洋洋壳向羌塘板块下的单向俯冲(Pearce and Deng, 1988; Kapp et al., 2003),但随着该构造带研究资料的丰富及研究的深入,越来越多的学者认为该构造带具有向南、向北双重俯冲的特征(秦克章等,2006;李光明等,2007;许荣科等,2007;康志强等,2008;李金祥等,2008;杜德道等,2011;耿全如等,2011;江军华等,2011).目前“双向俯冲”的观点已基本被大多数研究者所认同,但关于俯冲→碰撞缝合阶段的演化却又存在不同的观点.一方面部分学者认为大洋关闭在早白垩世初(Kapp et al., 2003;Zhu et al., 2011, 2016; 曲晓明等, 2012).另一方面很多研究资料又表明特提斯洋消亡时间可能推迟到早白垩世中晚期,主要报道文献为一系列早白垩世中晚期岛弧岩浆活动的发现(李金祥等,2008;高顺宝等,2011;赵元艺等,2011;Li et al., 2014;Wang et al., 2016),此外在区域上还发现了早白垩世中期(110 Ma左右)OIB型洋岛玄武岩(王忠恒等,2005;朱弟成等,2006;Wang et al., 2016).综上所述,尽管班公湖-怒江缝合带的构造演化时限问题仍存在争论,但就目前区域已有研究资料来看,早白垩世中晚期很可能是一个重要的缝合带闭合时间节点.
本次研究表明,研究区内岩浆活动从晚侏罗世初至晚白垩世均有发育,在早白垩世以前有3期次岩浆活动,分别是闪长岩(156 Ma)、郎久组火山岩(141 Ma)及石英闪长岩(131 Ma),其对应于前述班公湖-怒江特提斯洋南向俯冲阶段.班公湖-怒江特提斯洋消亡后,花岗闪长岩(88 Ma)与花岗斑岩(84 Ma)侵位,属于陆-陆汇聚环境的产物,表明在班公湖-怒江缝合带南缘构造演化过程中,从俯冲至碰撞闭合阶段均在嘎拉勒矿区内留下了岩浆活动痕迹.吕立娜等(2011)及张志等(2013a, 及2015)对区内主要岩浆岩进行了岩石地球化学特征研究,结果表明区内晚侏罗世及晚白垩世岩浆岩均具有明显的Rb、Th、U等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素的岛弧花岗岩特征.然而本次锆石Hf同位素特征表明,俯冲阶段形成的闪长岩起源于与古拉萨地体结晶基底相似的古老地壳的重熔,而碰撞期花岗闪长岩与花岗斑岩则起源于新生下地壳的部分熔融,表明尽管其均具有弧岩浆的特征,但不同区域演化阶段形成的岩浆源区是不同的,矿区内晚侏罗世至早白垩世期间的3期次岩浆活动可能形成于班公湖-怒江特提斯洋南向俯冲过程中的弧环境,而晚白垩世侵位的花岗闪长岩与花岗斑岩则与陆内造山作用密切相关.
通过辉钼矿Re-Os同位素定年结果表明,矿床成矿年龄为88.55±0.60 Ma,与花岗闪长岩成岩年龄一致,矿床形成于晚白垩世,是班公湖-怒江缝合带构造演化中典型的碰撞期成矿事件产物.
5. 结论
(1) 利用锆石U-Pb年代学研究,查明了嘎拉勒矿区内主要侵入岩时代,研究区从晚侏罗世初至晚白垩世均有岩浆活动.产于成矿前的闪长岩侵位于155.8±2.3 Ma,成矿母岩花岗闪长岩侵位于88±1 Ma,成矿后的花岗斑岩侵位于84.67±0.82 Ma.矿区岩浆岩演化历程为:闪长岩→郎久组火山岩→石英闪长岩→花岗闪长岩(成矿期岩浆活动)→花岗斑岩.
(2) 区内侵入岩锆石Hf同位素组成具有明显的区别.闪长岩εHf(t)值分布于-14.68~-8.34,平均值-11.74,起源于与古拉萨地体结晶基底成分相似的古老成熟地壳的部分熔融,形成于班公湖-怒江特提斯洋南向俯冲过程中的弧环境.花岗闪长岩εHf(t)值变化于5.84~9.20,平均值7.72,花岗斑岩εHf(t)值变化于6.32~9.78,平均值8.40,花岗闪长岩与花岗斑岩Hf同位素组成相似,可能属于同一岩浆系统的产物,二者起源于新生下地壳的部分熔融,与南羌塘陆块与冈底斯陆块之间的陆-陆汇聚密切相关.
(3) 辉钼矿Re-Os同位素定年结果表明,矿床成矿年龄为88.55±0.60 Ma,矿床形成于晚白垩世,是班公湖-怒江缝合带构造演化中典型的碰撞期成矿事件.
致谢: 野外工作中得到了西藏地质二队何林工程师的大力帮助,样品测试工作得到中国地质科学院矿产资源研究所侯可军老师的热忱帮助,在此一并表示诚挚的感谢!同时感谢评审专家和编辑部老师提出的宝贵修改意见! -
图 1 班公湖-怒江成矿带及邻区构造单元分布(a)与嘎拉勒铜金矿床地质简图(b)
Ⅰ.羌塘-三江造山系;Ⅰ1.玉龙塔格-巴颜喀拉前陆盆地;Ⅰ2.西金乌兰湖-金沙江-哀牢山结合带;Ⅰ3.昌都-兰坪地块;Ⅰ4.北羌塘-甜水海陆块;Ⅱ1.龙木错-双湖-澜沧江蛇绿混杂岩带;Ⅲ1.多玛地块;Ⅲ2.南羌塘盆地;Ⅲ3.扎普-多不杂岩浆弧带;Ⅳ.左贡地块;Ⅴ.班公湖-怒江缝合带;Ⅴ1.班公湖-怒江蛇绿混杂带;Ⅴ2.聂荣地块;Ⅴ3.嘉玉桥地块;Ⅵ.冈底斯岩浆弧;Ⅵ1.那曲-洛隆弧前盆地;Ⅵ2.昂龙岗日-班戈岩浆弧;Ⅵ3.狮泉河-申扎-嘉黎蛇绿混杂岩带;Ⅵ4.措勤-申扎岩浆弧;Ⅵ5.龙格尔-工布江达复合岩浆弧;1.第四系;2.白垩系朗久组;3.白垩系捷嘎组;4.花岗闪长岩;5.石英闪长岩;6.闪长岩;7.矽卡岩;8.研究区;9.不明性质断层及编号;10.平移断层及编号;11.地质界线;12.矿体编号及范围;13.平硐;14.采样点
Fig. 1. Tectonic units of Bangong-Nujiang metallogenic belt and its neighboring areas (a) and generalized geological map of the Glale Cu-Au deposit (b)
表 1 嘎拉勒矿床花岗闪长岩LA-ICP-MS锆石定年结果
Table 1. LA-ICP-MS zircon dating result of the granodiorite in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLPD2-B101 94.07 186.62 0.504 056 0.067 81 0.005 13 0.122 14 0.014 67 0.013 63 0.000 73 863 145 117 13 87 5 GLPD2-B102 140.12 166.36 0.842 234 0.054 88 0.005 76 0.092 55 0.014 06 0.013 51 0.000 75 407 216 90 13 87 5 GLPD2-B103 81.11 143.12 0.566 75 0.048 03 0.005 31 0.090 74 0.014 67 0.013 21 0.000 80 101 216 88 14 85 5 GLPD2-B104 79.68 123.67 0.644 256 0.046 57 0.003 28 0.097 17 0.010 76 0.013 96 0.000 67 27 141 94 10 89 4 GLPD2-B105 107.54 165.04 0.651 582 0.051 79 0.005 29 0.102 72 0.015 28 0.014 62 0.000 80 276 211 99 14 94 5 GLPD2-B106 153.96 204.62 0.752 436 0.042 91 0.004 39 0.083 04 0.012 33 0.014 07 0.000 76 128 173 81 12 90 5 GLPD2-B107 122.18 163.35 0.747 952 0.067 12 0.006 25 0.123 51 0.016 73 0.014 97 0.000 75 842 182 118 15 96 5 GLPD2-B108 73.79 135.61 0.544 112 0.048 95 0.005 31 0.090 24 0.013 84 0.013 05 0.000 69 145 216 88 13 84 4 GLPD2-B109 89.39 131.67 0.678 844 0.040 02 0.004 62 0.079 12 0.012 78 0.014 44 0.000 78 288 180 77 12 92 5 GLPD2-B110 216.42 288.79 0.749 403 0.087 11 0.003 09 0.174 47 0.011 73 0.014 61 0.000 59 1 363 63 163 10 93 4 GLPD2-B111 82.48 178.37 0.462 412 0.054 28 0.004 89 0.100 55 0.013 43 0.014 54 0.000 75 383 189 97 12 93 5 GLPD2-B112 48.60 42.35 1.147 561 0.049 46 0.010 78 0.091 62 0.017 51 0.013 83 0.000 50 169 444 89 16 89 3 GLPD2-B113 56.13 56.06 1.001 223 0.050 12 0.006 49 0.093 33 0.012 28 0.013 62 0.000 32 211 265 91 11 87 2 GLPD2-B114 153.86 120.02 1.281 940 0.049 95 0.003 55 0.094 93 0.005 14 0.013 95 0.000 97 191 167 92 5 89 6 GLPD2-B115 79.96 69.76 1.146 244 0.048 20 0.002 34 0.091 61 0.004 73 0.013 69 0.000 19 109 111 89 4 88 1 GLPD2-B116 130.75 97.04 1.347 382 0.049 44 0.005 06 0.092 49 0.010 76 0.013 44 0.000 32 169 222 90 10 86 2 GLPD2-B117 168.86 138.94 1.215 371 0.048 19 0.003 26 0.090 44 0.005 96 0.013 66 0.000 41 109 152 88 6 87 3 GLPD2-B118 109.39 82.53 1.325 508 0.048 95 0.005 14 0.090 98 0.009 73 0.013 54 0.000 22 146 230 88 9 87 1 GLPD2-B119 100.88 107.95 0.934 498 0.049 40 0.002 85 0.091 95 0.004 74 0.013 69 0.000 29 169 132 89 4 88 2 GLPD2-B120 50.55 53.57 0.943 521 0.048 98 0.002 64 0.093 84 0.005 56 0.013 86 0.000 27 146 158 91 5 89 2 GLPD2-B121 86.41 67.61 1.278 026 0.048 93 0.003 21 0.092 13 0.005 86 0.013 73 0.000 20 143 157 90 5 88 1 表 2 嘎拉勒花岗闪长岩的锆石Hf同位素组成
Table 2. Hf isotopic composition for the granodiorite in Galale deposit
测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf PD2-B1 01 87 0.001 687 0.282 898 0.000 022 0.282 895 4.46 6.27 512 750 -0.95 02 87 0.000 982 0.282 929 0.000 025 0.282 928 5.56 7.41 458 677 -0.97 03 85 0.001 025 0.282 886 0.000 021 0.282 885 4.04 5.84 519 776 -0.97 04 89 0.000 774 0.282 946 0.000 020 0.282 945 6.17 8.08 431 636 -0.98 05 94 0.000 903 0.282 950 0.000 022 0.282 948 6.29 8.29 428 626 -0.97 06 90 0.001 223 0.282 933 0.000 023 0.282 931 5.71 7.61 455 667 -0.96 08 84 0.000 907 0.282 927 0.000 020 0.282 926 5.49 7.29 459 683 -0.97 09 92 0.000 656 0.282 921 0.000 020 0.282 920 5.26 7.24 466 692 -0.98 10 93 0.001 064 0.282 933 0.000 019 0.282 931 5.68 7.65 454 667 -0.97 11 93 0.000 782 0.282 936 0.000 020 0.282 935 5.80 7.79 446 657 -0.98 12 89 0.000 973 0.282 944 0.000 023 0.282 942 6.07 7.96 437 643 -0.97 13 87 0.001 042 0.282 965 0.000 021 0.282 963 6.83 8.68 407 596 -0.97 14 89 0.001 638 0.282 947 0.000 020 0.282 944 6.19 8.05 440 638 -0.95 15 88 0.001 257 0.282 980 0.000 022 0.282 978 7.35 9.20 388 563 -0.96 16 86 0.000 813 0.282 931 0.000 018 0.282 930 5.63 7.47 453 673 -0.98 17 87 0.001 179 0.282 914 0.000 021 0.282 912 5.03 6.88 482 712 -0.96 18 87 0.001 551 0.282 961 0.000 022 0.282 958 6.67 8.48 419 609 -0.95 19 88 0.000 911 0.282 972 0.000 020 0.282 970 7.06 8.93 397 580 -0.97 20 89 0.001 002 0.282 916 0.000 025 0.282 914 5.08 6.97 477 707 -0.97 21 88 0.000 892 0.282 956 0.000 019 0.282 954 6.49 8.37 419 617 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.表 3 嘎拉勒矿床闪长岩LA-ICP-MS锆石定年结果
Table 3. LA-ICP-MS zircon dating result of the diorite in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GLB00401 120.94 138.06 0.875 991 0.048 33 0.003 56 0.175 58 0.018 36 0.026 60 0.000 96 116 153 164 16 169 6 GLB00402 54.35 131.79 0.412 438 0.096 70 0.006 71 0.168 70 0.017 47 0.014 80 0.000 60 1 561 121 158 15 95 4 GLB00403 150.55 235.02 0.640 568 0.052 66 0.004 02 0.091 63 0.009 97 0.013 84 0.000 53 314 160 89 9 89 3 GLB00404 118.45 214.62 0.551 916 0.053 26 0.004 81 0.094 72 0.011 62 0.013 65 0.000 51 340 187 92 11 87 3 GLB00405 227.85 280.54 0.812 201 0.050 33 0.002 70 0.187 68 0.014 95 0.026 86 0.000 83 210 114 175 13 171 5 GLB00406 137.81 200.41 0.687 662 0.047 49 0.003 36 0.150 35 0.015 17 0.025 28 0.000 89 74 155 142 13 161 6 GLB00407 90.44 104.15 0.868 398 0.051 97 0.006 67 0.094 32 0.016 58 0.013 57 0.000 75 284 282 92 15 87 5 GLB00408 86.10 105.88 0.813 226 0.047 47 0.004 87 0.160 19 0.021 78 0.023 78 0.000 92 73 217 151 19 151 6 GLB00409 109.28 112.01 0.975 678 0.059 13 0.005 32 0.200 56 0.024 76 0.025 70 0.001 00 572 202 186 21 164 6 GLB00410 112.67 159.21 0.707 721 0.063 88 0.003 71 0.205 69 0.017 24 0.023 17 0.000 70 738 125 190 15 148 4 GLB00411 341.91 415.17 0.823 540 0.052 59 0.003 05 0.101 39 0.008 63 0.014 61 0.000 47 311 134 98 8 93 3 GLB00412 53.78 98.38 0.546 634 0.059 53 0.012 69 0.078 67 0.020 87 0.014 27 0.000 85 587 455 77 20 91 5 GLB00413 98.54 109.37 0.900 970 0.056 27 0.005 34 0.196 64 0.025 31 0.025 70 0.001 01 463 217 182 21 164 6 GLB00414 127.08 106.26 1.195 951 0.054 06 0.002 77 0.186 40 0.016 78 0.024 82 0.000 95 372 115 174 14 158 6 GLB00415 460.43 337.73 1.363 308 0.051 11 0.000 65 0.172 16 0.002 30 0.024 40 0.000 17 256 30 161 2 155 1 GLB00416 178.15 164.24 1.084 714 0.050 16 0.001 20 0.168 56 0.004 25 0.024 32 0.000 16 211 56 158 4 155 1 GLB00417 157.87 137.65 1.146 907 0.054 28 0.004 30 0.193 46 0.021 30 0.025 67 0.000 99 383 178 180 18 163 6 GLB00418 133.90 175.93 0.761 104 0.052 46 0.002 73 0.169 98 0.005 46 0.023 50 0.000 50 306 116 159 5 150 3 GLB00419 523.78 226.47 2.312 864 0.054 00 0.002 43 0.192 04 0.006 14 0.025 92 0.000 59 372 107 178 5 165 4 GLB00420 147.22 118.93 1.237 892 0.050 81 0.008 68 0.167 73 0.027 93 0.024 06 0.000 98 232 352 157 24 153 6 表 4 嘎拉勒闪长岩及花岗斑岩的锆石Hf同位素组成
Table 4. Hf isotopic composition for the diorite and granite porphyry in Galale deposit
测点编号 t(Ma) 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM(Ma) tDMC(Ma) fLu/Hf GLB004 01 169 0.000 871 0.282 360 0.000 026 0.282 357 -14.58 -10.98 1 257 1 907 -0.97 05 171 0.000 825 0.282 433 0.000 021 0.282 430 -12.00 -8.34 1 154 1 742 -0.98 06 161 0.000 780 0.282 353 0.000 018 0.282 351 -14.81 -11.36 1 263 1 925 -0.98 08 151 0.001 019 0.282 266 0.000 021 0.282 263 -17.89 -14.68 1 393 2 126 -0.97 09 164 0.001 260 0.282 351 0.000 016 0.282 347 -14.90 -11.45 1 283 1 933 -0.96 13 164 0.000 649 0.282 272 0.000 017 0.282 270 -17.68 -14.16 1 371 2 104 -0.98 14 158 0.001 123 0.282 327 0.000 021 0.282 324 -15.74 -12.40 1 312 1 988 -0.97 15 155 0.000 716 0.282 350 0.000 024 0.282 347 -14.94 -11.61 1 266 1 937 -0.98 16 155 0.001 068 0.282 352 0.000 024 0.282 349 -14.85 -11.57 1 274 1 933 -0.97 17 163 0.000 835 0.282 387 0.000 021 0.282 384 -13.63 -10.14 1 218 1 850 -0.97 18 150 0.000 732 0.282 380 0.000 018 0.282 378 -13.85 -10.65 1 224 1 872 -0.98 19 165 0.001 361 0.282 297 0.000 029 0.282 293 -16.79 -13.32 1 362 2 051 -0.96 20 153 0.000 768 0.282 342 0.000 019 0.282 340 -15.19 -11.91 1 278 1 954 -0.98 ZK355-5-186 01 88 0.000 764 0.282 988 0.000 021 0.282 987 7.64 9.53 372 543 -0.98 02 86 0.000 798 0.282 951 0.000 022 0.282 950 6.33 8.17 425 628 -0.98 03 83 0.000 781 0.282 931 0.000 019 0.282 930 5.63 7.41 453 674 -0.98 04 91 0.001 567 0.282 897 0.000 021 0.282 894 4.42 6.32 511 750 -0.95 05 84 0.001 349 0.282 988 0.000 023 0.282 986 7.66 9.42 377 546 -0.96 06 87 0.000 810 0.282 939 0.000 022 0.282 937 5.90 7.76 442 655 -0.98 07 91 0.001 104 0.282 956 0.000 019 0.282 954 6.50 8.43 421 615 -0.97 08 93 0.001 557 0.282 955 0.000 021 0.282 952 6.46 8.40 428 619 -0.95 09 90 0.000 796 0.282 951 0.000 021 0.282 950 6.33 8.26 425 625 -0.98 10 85 0.001 124 0.282 938 0.000 022 0.282 936 5.86 7.66 447 659 -0.97 11 85 0.001 035 0.282 957 0.000 019 0.282 955 6.54 8.33 419 616 -0.97 12 85 0.000 924 0.282 954 0.000 020 0.282 952 6.43 8.25 422 622 -0.97 13 85 0.000 901 0.282 956 0.000 020 0.282 955 6.52 8.33 418 617 -0.97 14 83 0.000 847 0.282 996 0.000 021 0.282 995 7.93 9.69 361 528 -0.97 15 84 0.001 017 0.282 969 0.000 019 0.282 967 6.96 8.74 402 590 -0.97 16 84 0.000 886 0.282 960 0.000 017 0.282 958 6.63 8.43 413 610 -0.97 17 85 0.001 192 0.282 956 0.000 019 0.282 954 6.52 8.32 421 618 -0.96 18 86 0.001 000 0.282 997 0.000 023 0.282 995 7.94 9.78 362 525 -0.97 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tHf=1/λ×ln{1+(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)Hf]};tHfC=1/λ×ln{1+[(176Hf/177Hf)S, t -(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède,1997; Griffin et al., 2000 );λ=1.867×10-11 a-1(Soderlund et al., 2004 );(176Lu/177Hf)C=0.015,t=锆石结晶年龄.表 5 嘎拉勒矿床花岗斑岩LA-ICP-MS锆石定年结果
Table 5. LA-ICP-MS zircon dating result of the granite porphyry in Galale deposit
点号 元素(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ ZK355-5-B18601 126.66 232.44 0.544 899 0.046 85 0.003 37 0.086 78 0.008 38 0.013 82 0.000 4 42 163 85 8 88 3 ZK355-5-B18602 115.24 177.01 0.651 010 0.045 38 0.004 08 0.081 7 0.009 56 0.013 36 0.000 42 63 189 80 9 86 3 ZK355-5-B18603 143.32 267.91 0.534 961 0.057 04 0.002 9 0.095 44 0.007 14 0.012 98 0.000 37 493 118 93 7 83 2 ZK355-5-B18604 134.32 267.69 0.501 769 0.045 44 0.004 15 0.093 41 0.011 29 0.014 18 0.000 48 31 194 91 10 91 3 ZK355-5-B18605 150.14 237.78 0.631 420 0.049 07 0.004 68 0.082 15 0.010 64 0.013 08 0.000 52 151 219 80 10 84 3 ZK355-5-B18606 158.76 234.25 0.677 730 0.045 24 0.003 05 0.081 95 0.007 7 0.013 66 0.000 42 8 151 80 7 87 3 ZK355-5-B18607 113.28 228.05 0.496 748 0.051 43 0.004 81 0.096 84 0.012 36 0.014 18 0.000 56 260 217 94 11 91 4 ZK355-5-B18608 177.34 265.89 0.666 989 0.050 82 0.004 64 0.105 23 0.012 56 0.014 61 0.000 47 233 211 102 12 93 3 ZK355-5-B18609 147.48 260.13 0.566 939 0.051 29 0.005 64 0.097 17 0.013 57 0.014 13 0.000 48 254 249 94 13 90 3 ZK355-5-B18610 83.92 91.85 0.913 599 0.048 32 0.003 00 0.088 75 0.008 43 0.013 25 0.000 47 122 132 86 8 85 3 ZK355-5-B18611 104.94 131.30 0.799 245 0.048 09 0.001 38 0.087 24 0.002 49 0.013 20 0.000 12 102 67 85 2 85 1 ZK355-5-B18612 89.31 110.97 0.804 861 0.049 39 0.002 48 0.090 55 0.004 47 0.013 31 0.000 13 165 112 88 4 85 1 ZK355-5-B18613 114.05 150.44 0.758 125 0.047 73 0.000 98 0.087 19 0.001 81 0.013 26 0.000 10 87 82 85 2 85 1 ZK355-5-B18614 93.86 129.29 0.725 981 0.048 74 0.002 30 0.086 83 0.004 15 0.012 91 0.000 10 200 111 85 4 83 1 ZK355-5-B18615 106.88 127.49 0.838 367 0.048 97 0.001 42 0.088 18 0.002 77 0.013 06 0.000 20 146 69 86 3 84 1 ZK355-5-B18616 135.75 106.84 1.270 621 0.049 61 0.003 66 0.088 87 0.005 65 0.013 11 0.000 36 176 163 86 5 84 2 ZK355-5-B18617 290.73 241.51 1.203 813 0.050 11 0.000 76 0.091 84 0.001 53 0.013 27 0.000 10 211 35 89 1 85 1 ZK355-5-B18618 130.16 137.53 0.946 394 0.049 82 0.002 18 0.092 70 0.004 58 0.013 45 0.000 23 187 104 90 4 86 2 表 6 嘎拉勒-尕尔穷铜金矿床辉钼矿Re-Os同位素测年结果
Table 6. Re-Os isotopic data of molybdenites from Galale-Gaerqiong Cu-Au deposits
原样名 样重(g) Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK42-267.91 0.039 51 178.80 2.00 0.032 5 0.024 7 112.40 1.20 166.8 1.50 89.00 1.47 ZK42-246.15 0.040 44 218.60 2.10 0.121 7 0.019 8 137.40 1.30 203.0 1.60 88.63 1.33 ZK42-227.1 0.040 05 211.80 2.20 0.043 2 0.008 0 133.10 1.40 196.8 1.60 88.68 1.38 ZK42-211.84 0.040 52 174.50 2.00 0.014 3 0.011 0 109.60 1.20 161.2 1.30 88.19 1.43 ZK21-432.7 0.034 02 110.90 0.90 0.050 3 0.009 2 69.71 0.54 103.0 0.90 88.62 1.24 ZK21-411.1 0.040 11 195.00 2.20 0.030 2 0.019 1 122.60 1.40 183.1 1.60 89.63 1.49 ZK42-279.97 0.010 21 31.24 0.29 0.007 9 0.026 6 19.64 0.18 29.3 0.25 89.50 1.34 ZK42-191.1 0.011 50 29.33 0.26 0.011 7 0.039 5 18.44 0.16 27.7 0.33 90.11 1.52 -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [2] Bilchert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258.doi: 10.1016/S0012-821X(97)00040-X [3] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002(in Chinese with English abstract). [4] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196.doi: 10.1111/j.1751-908x.2002.tb00886.x [5] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982(in Chinese with English abstract). https://www.researchgate.net/publication/285918531_The_geochronology_and_geochemistry_of_intrusive_rocks_in_Bange_area_Constraints_on_the_evolution_time_of_the_Bangong_Lake-Nujiang_ocean_basin [6] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet [7] Griffin, W.L., Pearson, N., Belousova, J., E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/S0016-7037(99)00343-9 [8] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8 [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). https://www.researchgate.net/publication/252929356_In_situ_U-Pb_zircon_dating_using_laser_ablation-multi_ion_couting-ICP-MS [10] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011.Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin.Earth Science, 36(6):1021-1032(in Chinese with English abstract). [11] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract). [12] Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):1209.doi: 10.1029/2001tc001332 [13] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). https://www.researchgate.net/publication/305417557_Geochronology_geochemistry_and_Zircon_Hf_isotopic_compositions_of_the_ore-bearing_porphyry_in_the_Lakang'e_porphyry_Cu-Mo_deposit_Tibet [14] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16(in Chinese with English abstract). [15] Li, G.M., Li, J.X., Qin, K.Z., et al., 2007.High Temperature, Salinity and Strong Oxidation Ore-Forming Fluid at Duobuza Gold-Rich Porphyry Copper Deposit in the Bangonghu Tectonic Belt, Tibet:Evidence from Fluid Inclusions.Acta Petrologica Sinica, 23(5):935-952(in Chinese with English abstract). http://www.oalib.com/paper/1471679 [16] Li, G.M., Li, J.X., Qin, K.Z., et al., 2011.Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet.Resource Geology, 62(1):99-118.doi: 10.1111/j.1751-3928.2011.00182.x [17] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica, 24(3):531-543(in Chinese with English abstract). https://www.researchgate.net/publication/279598497_Geochemistry_of_porphyries_and_volcanic_rocks_and_ore-forming_geochronology_of_Duobuza_gold-rich_porphyry_copper_deposit_in_Bangonghu_belt_Tibet_Constraints_on_mettalogenic_tectonic_settings [18] Li, J.X., Qin, K.Z., Li, G.M., et al., 2014.Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos, 198-199:77-91.doi: 10.1016/j.lithos.2014.03.025 [19] Lü, L.N., 2012.Metallogenic Model of Rich Iron and Copper (Gold) Deposits in Western Part of Bangong Co-Nujiang Metallogenie Belt, Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [20] Lü, L.N., Cui, Y.B., Song, L., et al., 2011.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold(Copper) Deposit, Tibet and Its Significance.Earth Science Frontiers, 18(5):224-242(in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet [21] Pan, G.T., Wang, L.Q., Zhu, D.C., 2004.Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau.Geological Bulletin of China, 23(1):12-19(in Chinese with English abstract). [22] Pearce, J.A., Deng, W.M., 1988.The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986).Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):215-238.doi: 10.1098/rsta.1988.0127 [23] Qin, K.Z., Li, G.M., Zhang, Q., et al., 2006.Metallogenic Conditions and Possible Occurrences for Epithermal Gold Mineralizations in Gangdese and Bangonghu Belts, Tibet—In View of Porphyry-Epithermal Cu-Au Metallogenetic Systematic.In:Chen, Y.C., Mao, J.W., Xue, C.J., eds., Proceedings of 8th National Conference of Mineral Deposits, China.Geological Publishing House, Beijing, 666-670 (in Chinese). [24] Qu, W.J., Du, A.D., 2003.Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion.Rock and Mineral Analysis, 22(4):254-257, 262(in Chinese with English abstract). https://www.researchgate.net/publication/302500144_Highly_Precise_Re-Os_Dating_of_Molybdenite_by_ICP-MS_with_Carius_Tube_Sample_Digestion [25] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14(in Chinese with English abstract). https://www.researchgate.net/publication/291884183_Ages_of_Post-Collisional_A-Type_Granite_and_Constraints_on_the_Closure_of_the_Oceanic_Basin_in_the_Middle_Segment_of_the_Bangonghu-Nujiang_Suture_the_Tibetan_Plateau [26] Ren, J.S., Xiao, L.W., 2004.Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1:250 000 Geological Mapping.Geological Bulletin of China, 23(1):1-11(in Chinese with English abstract). https://www.researchgate.net/publication/286656319_15_million_international_geological_map_of_Asia [27] Scherer, E.E., Cameron, K.L., Blichert-Toft, J., 2000.Lu-Hf Garnet Geochronology:Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions.Geochimica et Cosmochimica Acta, 64(19):3413-3432.doi: 10.1016/s0016-7037(00)00440-3 [28] Soderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219:311-324.doi: 10.1016/S0012-821X(04)00012-3 [29] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30(in Chinese with English abstract). [30] Tang, J.X., Zhang, Z., Li, Z.J., et al., 2013.The Metallogenesis, Deposit Model and Prospecting Direction of the Ga'erqiong-Galale Copper-Gold Ore Field, Tibet.Acta Geoscientia Sinica, (4):385-394(in Chinese with English abstract). https://www.researchgate.net/publication/282281893_Determination_and_genesis_of_magnesian_skarn_or_ultramafite_of_Galale_Cu-Au_deposit_in_Tibet_China [31] Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33.doi: 10.13039/100007834 [32] Wang, Z.H., Wang, Y.S., Xie, Y.H., et al., 2005.The Tarenben Oceanic-Island Basalts in the Middle Part of the Bangong-Nujiang Suture Zone, Xizang and Their Geological Implications.Sedimentary Geology and Tethyan Geology, 25(1-2):155-162(in Chinese with English abstract). https://www.researchgate.net/publication/275718191_Geochemistry_Geochronology_Sr-Nd_Isotopic_Compositions_of_Jiang_Tso_Ophiolite_in_the_Middle_Segment_of_the_Bangong-_Nujiang_Suture_Zone_and_Their_Geological_Significance [33] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126.doi: 10.1016/j.chemgeo.2006.05.003 [34] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and It's Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602(in Chinese). [35] Xu, R.K., Zheng, Y.Y., Zhao, P.J., et al., 2007.Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet.Geology in China, 34(5):768-777(in Chinese with English abstract). https://www.researchgate.net/publication/291959586_Definition_and_geological_significance_of_the_Gacangjian_volcanic_arc_north_of_Dongqiao_Tibet [36] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211 [37] Zhang, D.Y., Zhang, Z.C., Encarnación, J., et al., 2012.Petrogenesis of the Kekesai Composite Intrusion, Western Tianshan, NW China:Implications for Tectonic Evolution during Late Paleozoic Time.Lithos, 146-147:65-79.doi: 10.1016/j.lithos.2012.04.002 [38] Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013.Mapping the Lhasa Terrane through Zircon Hf Isotopes:Constraints on the Nature of the Crust and Metallogenic Potential.Acta Petrologica Sinica, 29(11):3681-3688(in Chinese with English abstract). https://www.researchgate.net/publication/279581411_The_Paleocene_metamorphism_of_the_southeastern_margin_of_Lhasa_terrane_and_its_tectonic_significance [39] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2013a.Geological and Skarn Mineral Characteristics of Galale Cu-Au Deposit in Tibet.Mineral Deposits, 32(5):915-931(in Chinese with English abstract). [40] Zhang, Z., Tang, J.X., Li, Z.J., et al., 2013b.Petrology and Geochemistry of Intrusive Rocks in the Ga'erqiong-Galale Ore Concentration Area, Tibet and Their Geological Implications.Geology and Exploration, 49(4):676-688(in Chinese with English abstract). [41] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet.Earth Science, 40(1):77-97 (in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet [42] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011.Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English abstract). https://www.researchgate.net/publication/293318899_Geochemical_characteristics_chronology_and_the_significance_of_Laqing_copper_polymetallic_skarn_deposit_Bange_county_Tibet [43] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17.doi: 10.1016/j.lithos.2015.06.023 [44] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546(in Chinese with English abstract). http://www.oalib.com/paper/1472180 [45] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255.doi: 10.13039/501100001809 [46] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.doi: 10.13039/501100001809 [47] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003 [48] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm [49] 高顺宝, 郑有业, 王进寿, 等, 2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm [50] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm [51] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [52] 江军华, 王瑞江, 曲晓明, 等, 2011.青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用.地球科学, 36(6):1021-1032. http://www.earth-science.net/WebPage/Article.aspx?id=2178 [53] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物.岩石学报, 24(2):303-314. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm [54] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312 [55] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001 [56] 李光明, 李金祥, 秦克章, 等, 2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报, 23(5):935-952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm [57] 李金祥, 李光明, 秦克章, 等, 2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报, 24(3):531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm [58] 吕立娜, 2012. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型(学位论文). 北京: 中国地质科学院. [59] 吕立娜, 崔玉斌, 宋亮, 等, 2011.西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MS定年及意义.地学前缘, 18(5):224-242. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105021.htm [60] 潘桂棠, 王立全, 朱弟成, 2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报, 23(1):12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401003.htm [61] 秦克章, 李光明, 张旗, 等, 2006. 西藏浅成低温金-银矿的成矿条件与可能产出区分析——从斑岩-浅成低温铜金成矿系统的角度. 见: 陈毓川, 毛景文, 薛春纪, 编, 第八届全国矿床会议论文集. 北京: 地质出版社, 666-670. [62] 屈文俊, 杜安道, 2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试, 22(4):254-257, 262. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200304003.htm [63] 曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm [64] 任纪舜, 肖黎薇, 2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 23(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm [65] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [66] 唐菊兴, 张志, 李志军, 等, 2013.西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向.地球学报, 34(4):385-394. doi: 10.3975/cagsb.2013.04.01 [67] 王忠恒, 王永胜, 谢元和, 等, 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质, 25(1):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm [68] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [69] 许荣科, 郑有业, 赵平甲, 等, 2007.西藏东巧北尕苍见岛弧的厘定及地质意义.中国地质, 34(5):768-777. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200705002.htm [70] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm [71] 张志, 陈毓川, 唐菊兴, 等, 2013a.西藏嘎拉勒铜金矿床地质特征及矽卡岩矿物学特征研究.矿床地质, 32(5):915-931. http://cdmd.cnki.com.cn/Article/CDMD-10616-1012500530.htm [72] 张志, 唐菊兴, 李志军, 等, 2013b.西藏尕尔穷-嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义.地质与勘探, 49(4):676-688. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201304012.htm [73] 张志, 陈毓川, 唐菊兴, 等, 2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学, 40(1):77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024 [74] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107021.htm [75] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm 期刊类型引用(27)
1. 董艳蕊,赵晓燕,杨竹森,刘畅. 羌塘南缘青草山斑岩铜矿床地质特征与岩浆属性. 岩石矿物学杂志. 2024(06): 1531-1552 . 百度学术
2. 何云龙,王立强,洛桑塔青,李保亮,高腾. 班-怒成矿带西段切隆铜金矿点成矿物质来源:来自矿石硫化物原位S同位素的证据. 沉积与特提斯地质. 2024(04): 683-696 . 百度学术
3. 魏永峰,肖倩茹,吴建鑫,肖渊甫,刘海永,罗巍. 西藏纳木错地区晚白垩世过铝质花岗岩成因及对构造演化的制约. 地球化学. 2023(04): 458-474 . 百度学术
4. 刘洪,李光明,李文昌,黄瀚霄,李佑国,欧阳渊,张向飞,周清. 西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究. 岩石学报. 2022(01): 230-252 . 百度学术
5. 王洋,方念乔,刘景昱. 多金属结壳Os同位素组成区域性和阶段性偏高异常. 地球科学. 2021(02): 719-728 . 本站查看
6. 刘洪,李光明,李文昌,张景华,李佑国,张智林,黄瀚霄,欧阳渊,张腾蛟. 西藏布东拉金矿床浅成低温热液成矿作用:来自流体包裹体和H-O同位素的证据. 矿床地质. 2021(02): 311-328 . 百度学术
7. 王欣欣,闫国强,刘洪,黄瀚霄,赖杨,田恩源,欧阳渊. 中拉萨地块晚白垩世曲桑格勒花岗岩的成因:地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素的约束. 地球科学. 2021(08): 2832-2849 . 本站查看
8. Hai Jiang,Shao-Yong Jiang,Wenqian Li,Kuidong Zhao. Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition. Journal of Earth Science. 2019(01): 70-79 . 必应学术
9. 彭勃,李宝龙,刘海永,秦广洲,龚福志,周磊. 西藏班公湖-怒江成矿带主碰撞期成矿作用:荣嘎钼矿岩石地球化学及同位素年龄的证据. 岩石学报. 2019(03): 705-723 . 百度学术
10. 魏永峰,肖倩茹,李有波,罗巍,冉杰,林美英. 西藏纳木错早白垩世流纹岩锆石U-Pb年龄、地球化学及其构造意义. 现代地质. 2019(03): 487-500 . 百度学术
11. 赵苗,杨竹森,张洪瑞. 伊朗大理矿区中新世成矿及无矿斑岩地球化学对比及其对成矿的启示. 地球科学. 2019(06): 2187-2196 . 本站查看
12. 魏永峰,肖倩茹,罗巍,陈大健,杨亚民,江小强,冉杰. 冈底斯带加杜早白垩世花岗闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及地质意义. 新疆地质. 2019(03): 334-342 . 百度学术
13. 宋俊龙,丁俊,王保弟,刘严松,赵荣春,舒跃红. 云南景东县文玉铜(银)矿成矿地质背景:来自赋矿火山岩年代学和地球化学的证据. 地球科学. 2018(03): 696-715 . 本站查看
14. 程晨,夏斌,郑浩,袁亚娟,殷征欣,陆野,徐迟,张霄. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义. 地球科学. 2018(04): 975-990 . 本站查看
15. 李发桥,刘治博,唐菊兴,宋扬,高轲,李海峰,赵志强,滕磊. 西藏玛日埃错地区花岗斑岩岩石成因及其对班公湖-怒江缝合带中段演化的制约. 地球科学. 2018(04): 1051-1069 . 本站查看
16. 张诗启,戚学祥,韦诚,陈松永. 拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义. 地球科学. 2018(04): 1085-1109 . 本站查看
17. 董随亮,张志,张林奎,李光明,卿成实,梁维,付健刚,曹华文,李海平,许昌辉,李智鹏. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学. 2018(08): 2701-2714 . 本站查看
18. 张林奎,张志,李光明,董随亮,夏祥标,梁维,付健刚,曹华文. 特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因. 地球科学. 2018(08): 2664-2683 . 本站查看
19. 代作文,李光明,丁俊,黄勇,曹华文. 西藏努日晚白垩世埃达克岩:洋脊俯冲的产物. 地球科学. 2018(08): 2727-2741 . 本站查看
20. 邹洁琼,余红霞,王保弟,黄丰,曾云川,黄文龙,文雅倩,张钊,范子尘,谈荣钰. 南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义. 地球科学. 2018(08): 2795-2810 . 本站查看
21. 罗亮,王冬兵,楚道亮,吴庆杰,李开成. 南澜沧江带中三叠世叶肢介化石的发现及形态学研究. 地球科学. 2018(08): 2833-2847 . 本站查看
22. 郑海涛,郑有业,徐净,吴松,郭建慈,高顺宝,次琼. 西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因. 地球科学. 2018(08): 2858-2874 . 本站查看
23. LIU Hong,LI Guangming,HUANG Hanxiao,CAO Huawen,YUAN Qian,LI Yingxu,OUYANG Yuan,LAN Shuangshuang,Lü Menghong,YAN Guoqiang. Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica(English Edition). 2018(04): 1396-1414 . 必应学术
24. 赵冰爽,李杰,龙晓平,袁超. 东天山梅岭铜矿床黄铁矿Re-Os等时线年龄:Os同位素不均一的结果. 地球科学. 2018(09): 2966-2979 . 本站查看
25. 张志,唐菊兴,陈毓川,姚晓峰,宋俊龙,李志军. 西藏尕尔穷-嘎拉勒铜金矿集区两套火山岩浆源区及其地质意义——来自Hf同位素特征的指示. 矿物岩石. 2018(03): 87-95 . 百度学术
26. 邱婵媛,肖倩茹,魏永峰,罗巍,杨亚民,肖渊甫. 冈底斯带西北缘别若则错地区晚白垩世闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及地质意义. 地质学报. 2018(11): 2215-2226 . 百度学术
27. 唐菊兴,王勤,杨欢欢,高昕,张泽斌,邹兵. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报. 2017(05): 571-613 . 百度学术
其他类型引用(6)
-