Visual Seepage Experiment Based on Transparent Rock-Soil Material and Its Application Prospect
-
摘要: 渗流模型实验能够模拟天然岩土体中的渗流过程以及流体在介质中的运动规律,因此被广泛地应用于岩土、石油工程等多个领域的研究中.然而在传统的渗流模型实验中,由于模型介质的不透明,流体在介质中具体的渗流过程、扩散规律和赋存状态并不能被直观地观测到.因此在总结了可视化渗流实验的研究进展,归纳了现有成果取得的进展与存在的不足;提出了一种基于透明岩土相似材料,并结合光学观测手段、数字图像处理技术和示踪技术的可视化渗流实验新技术,对比分析了该技术与传统可视化渗流实验的优缺点.结果表明相较于传统渗流实验,该技术除了可以实现具体渗流过程的可视化观测外,还具有装置简单、易于操作、经济适用等方面的优点.表明利用这种材料开展渗流实验的可视化观测是可行的,为基于透明岩土材料的可视化渗流模型实验的开展奠定了理论基础.Abstract: Seepage model experimentis widely utilized in many engineering fields such as geotechnical engineering and oil engineering since it can simulate the seepage process and movement law of fluid in porous media. While in the traditional seepage model experiment, due to the opacity of model medium, the specific seepage process, diffusion law and occurrence state of fluid cannot be observed directly. This paper presents the research progress of current visual seepage experiment, including its limitations. And a new technique of seepage experiment based on transparent rock-soil material, combining with optical observation method, tracer technique and digital imaging processing technology is proposed. In addition, the advantages and disadvantages between this technology and the traditional visual seepageexperiment are analyzed. Compared with the traditional seepage experiment, this technology can not only achieve the visual observation of the specific seepage process, but also has the advantages of invlovement of simple devices, easy operation and low cost, which indicates that it is feasible to use of this material to carry out visual observation of seepage experiment, laying a theoretical foundation for carrying out the visual seepage model experiment based on transparent rock-soil material.
-
Key words:
- seepage mechanics /
- transparent rock-soil material /
- model test /
- flow visualization /
- petroleum geology
-
图 1 渗流实验微观模型
a.岩心铸体薄片;b.玻璃薄片模型;c.硅胶薄片(4 cm×4 cm);据杨珂和徐守余(2009)、于明旭等(2013)
Fig. 1. Microscopic model for seepage experiment
图 4 模型内部变形可视化观测装置示意
Fig. 4. The sketch of visual observation system for internal deformation
图 6 基于透明岩土材料的渗流实验
a.渗流实验系统;b.示踪剂和流体的色谱分离现象;据Liu(2003)
Fig. 6. Seepage experiment based on transparent rock-soil material
表 1 不同类别透明岩土材料物理力学参数
Table 1. Physical and mechanical parameters of different typestransparent rock-soil materials
骨料类别 第1类(无定型硅粉) 第2类(硅胶) 第3类(熔融石英) 第4类(水凝胶) 第5类(合成锂皂石) 折射率 1.442 1.442 1.458 1.333 1.336 饱和容重(kN/m3) 9.4~16.0 11.0~14.0 13.4~16.4 10.0 10.0 内摩擦角(°) 19~36 29~42 44~59 - - 粘聚力(kPa) 20~44 0 0 - - 压缩指数 1.60~3.00 - 0.34~0.54 0.10~0.15 16.60~20.60 渗透系数(cm/s) 2.3×10-7~2.5×10-5 1.5×10-4~7.0×10-3 1.3×10-5~2.1×10-5 7×10-2~6×10-8 5.0×10-9~1.6×10-6 固有渗透率(μm2) 0.015~0.160 1~45 24~40 - - 匹配孔隙流体 矿物油或者溴化钙溶液 矿物油或者溴化钙溶液 矿物油、蔗糖溶液或STSI 水 水 适用模拟对象及问题 性质与黏土相似 性质与砂土相似 饱和-非饱和砂岩 土体中渗流问题 软弱湖、海相沉积物 注:据 Iskander et al.(2015) . -
[1] Ahmed, M., Iskander, M., 2011.Analysis of Tunneling-Induced Ground Movements Using Transparent Soil Models.Journal of Geotechnical and Geoenvironmental Engineering, 137(5):525-535.doi: 10.1061/(asce)gt.1943-5606.0000456 [2] Ahmed, M., Iskander, M., 2012.Evaluation of Tunnel Face Stability by Transparent Soil Models.Tunnelling and Underground Space Technology, 27(1):101-110.doi: 10.1016/j.tust.2011.08.001 [3] Cui, Z.X., 2005.Experiment on Hydro-Mechanical Coupling Mechanism of Rock Based on CT Real-Time Observation (Dissertation).Xi'an University of Technology, Xi'an (in Chinese with English abstract). [4] Ezzein, F., 2014.Investigation of Soil-Geogrid Interaction Using a Novel Pullout Test Apparatus and Transparent Granular Soil (Dissertation).Royal Military College of Canada, Kingston. [5] Fang, Y., Xie, S.Y., He, Z.L., et al., 2016.Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates.Earth Science, 41(5):779-791 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201605005.htm [6] Goldrein, H.T., Grantham, S.G., Proud, W.G., et al., 2001.The Study of Internal Deformation Fields in Granular Materials Using 3D Digital Speckle X-Ray Flash Photography.Proceedings of the SPIE International Conference on Optical Science and Technology, San Diego. [7] Guo, S.P., Liu, C.Q., Huang, Y.Z., et al., 1986.The Recent Developments of Flow through Porous Media.Advances in Mechanics, 16(4):441-454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ198604001.htm [8] Head, D., Vanorio, T., 2016.Effects of Changes in Rock Microstructures on Permeability:3-D Printing Investigation.Geophysical Research Letters, 43(14):7494-7502.doi: 10.1002/2016gl069334 [9] Hou, J., Qiu, M.X., Lu, N., et al., 2014.Characterization of Residual Oil Microdistribution at Pore Scale Using Computerized Tomography.Acta Petrolei Sinica, 35(2):319-325 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/abstract/abstract4567.shtml [10] Iskander, M.G., 2010.Modeling with Transparent Soils.Springer, Berlin, 451-460. http://www.springer.com/us/book/9783642025006 [11] Iskander, M.G., Bathurst, R.J., Omidvar, M., 2015.Past, Present and Future of Transparent Soils.Geotechnical Testing Journal, 38(5):557-573.doi: 10.1520/GTJ20150079 [12] Iskander, M.G., Liu, J.Y., Sadek, S., 2002a.Transparent Amorphous Silica to Model Clay.Journal of Geotechnical and Geoenvironmental Engineering, 128(3):262-273.doi: 10.1061/(asce)1090-0241(2002)128:3(262) [13] Iskander, M.G., Sadek, S., Liu, J.Y., 2002b.Optical Measurement of Deformation Using Transparent Silica Gel to Model Sand.International Journal of Physical Modelling in Geotechnics, 2(4):13-26.doi: 10.1680/ijpmg.2002.2.4.13 [14] Ju, Y., Xie, H.P., Zheng, Z.M., et al., 2014.Visualization of the Complex Structure and Stress Field inside Rock by Means of 3D Printing Technology.Chinese Science Bulletin, 59(32):3109-3199 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw201436025&dbname=CJFD&dbcode=CJFQ [15] Kong, G.Q., Zhou, L.D., Wang, Z.T., et al., 2016.Shear Modulus and Damping Ratios of Transparent Soil Manufactured by Fused Quartz.Materials Letters, 182:257-259.doi: 10.1016/j.matlet.2016.07.012 [16] Li, Y.H., Lin, Z.B., Qin, X.L., 2015.Study of Development of Transparent Rock Mass for Physical Similarity Experiment and Its Mechanical Properties.Journal of China University of Mining and Technology, 44(6):977-982 (in Chinese with English abstract). [17] Liu, J.Y., 2003.Visualization of 3D Deformations Using Transparent"Soil"Models (Dissertation).Polytechnic University, New York. [18] Liu, J.Y., Iskander, M., Sadek, S., 2003.Consolidation and Permeability of Transparent Amorphous Silica.Geotechnical Testing Journal, 26(4):390-401.doi: 10.1520/GTJ11257J [19] Mannheimer, R.J., 1990.Slurries You Can See through.Technology Today, 3:2. [20] Mannheimer, R.J., Oswald, C.J., 1993.Development of Transparent Porous Media with Permeabilities and Porosities Comparable to Soils, Aquifers, and Petroleum Reservoirs.Groundwater, 31(5):781-788.doi: 10.1111/j.1745-6584.1993.tb00851.x [21] Pi, Y.F., 2010.Technology and Application of Making Artificial Cores by the Cementation of Quartzite and Colophony.Science Technology and Engineering, 10(28):6998-7010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201028036.htm [22] Sadek, S., 2002.Soil Structure Interaction in Transparent Synthetic Soils Using Digital Image Correlation (Dissertation).Polytechnic University, New York. [23] Scarano, F., Riethmuller, M.L., 1999.Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset.Experiments in Fluids, 26(6):513-523.doi: 10.1007/s003480050318 [24] Serrano, R.F., Iskander, M., Tabe, K., 2011.3D Contaminant Flow Imaging in Transparent Granular Porous Media.Géotechnique Letters, 1(3):71-78.doi: 10.1680/geolett.11.00027 [25] Siemens, G.A., Peters, S.B., Take, W.A., 2013.Comparison of Confined and Unconfined Infiltration in Transparent Porous Media.Water Resources Research, 49(2):851-863.doi: 10.1002/wrcr.20101 [26] Song, R., Liu, J.J., Cui, M.M., 2016.Single-and Two-Phase Flow Simulation Based on Equivalent Pore Network Extracted from Micro-CT Images of Sandstone Core.Springer Plus, 5(1):817.doi: 10.1186/s40064-016-2424-x [27] Song, R., Liu, J.J., Li, G., 2015.Researches on the Pore Permeability of Core Sample Based on 3D Micro-CT Images and Pore-Scale Structured Element Models.Journal of Southwest Petroleum University (Science & Technology Edition), 37(3):138-145 (in Chinese with English abstract). [28] Song, Z.H., Hu, Y.X., O'loughlin, C., et al., 2009.Loss of Anchor Embedment during Plate Anchor Keying in Clay.Journal of Geotechnical and Geoenvironmental Engineering, 135(10):1475-1485.doi: 10.1061/(ASCE)GT.1943-5606.0000098 [29] Sui, W.H., Gao, Y., Liu, J.Y., 2011.Status and Prospect of Transparent Soil Experimental Technique.Journal of China Coal Society, 36(4):577-582 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000004/art00007 [30] Toiya, M., Hettinga, J., Losert, W., 2007.3D Imaging of Particle Motion during Penetrometer Testing:From Microscopic to Macroscopic Soil Mechanics.Granular Matter, 9(5):323-329.doi: 10.1007/s10035-007-0044-4 [31] Wang, Z.Z., Wang, R.H., Qiu, H., et al., 2015.A New Method for Artificial Core Preparation with Multiple Pore Structures and Its Application.Geophysical Prospecting for Petroleum, 54(2):150-156 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-SYWT201502006.htm [32] Wen, Z., Liu, K., Chen, X.L., 2015.Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrating Well.Earth Science, 40(5):918-924 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201505015.htm [33] Xu, G.A., 2011.Research on the Mechanism and Evolution Law of Rock Deformation and Cracking around DeepTunnels (Dissertation).Chinese University of Mining and Technology, Xuzhou (in Chinese with English abstract). [34] Xu, X., Wang, J.P., Tian, S.S., 2016.Non-Darcy Seepage Law and Its Application in Low Permeability Water-Bearing Gas Reservoir.Journal of Southwest Petroleum University (Science & Technology Edition), 38(5):90-96 (in Chinese with English abstract). [35] Xue, C.G., He, Q., Yang, Z.M., 2011.Experimental Study of the Nonlinear Seepage with the Two-Dimensional Physical Model.Journal of Southwest Petroleum University (Science & Technology Edition), 33(6):101-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY201106019.htm [36] Yan, F., Zhan, M.L., Su, B.Y., 2004.Model Test on Unsaturated Seepage of Dike.Chinese Journal of Geotechnical Engineering, 26(2):296-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200402031.htm [37] Yan, G.L., Sun, J.M., Liu, X.F., et al., 2013.Accuracy Evaluation on 3D Digital Cores Reconstruction by Process-Based Method.Journal of Southwest Petroleum University (Science & Technology Edition), 35(2):71-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201302012.htm [38] Yan, Y.J., Chen, J.Y., Guo, J.S., et al., 2012.A Visualized Experiment on Gas-Water Two-Phase Seepage through Oolitic Reservoirs in the Longgang Gas Field, Sichuan Basin.Natural Gas Industry, 32(1):64-66 (in Chinese with English abstract). [39] Yang, K., Xu, S.Y., 2009.Experiment Methods of Microcosmic Remaining Oil.Fault-Block Oil & Gas Field, 16(4):75-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DKYT200904026.htm [40] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [41] Yu, M.X., Zhu, W.Y., Song, H.Q., 2013.Development of Microscopic Visualization Flow Model of Low-Permeability Reservoir.Journal of Liaoning Technical University (Natural Science), 32(12):1646-1650 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/lngcjsdxxb201312014 [42] 崔中兴, 2005. 基于CT实时观测的水-岩力学耦合机理研究(博士学位论文). 西安: 西安理工大学. http://cdmd.cnki.com.cn/article/cdmd-10700-2005051078.htm [43] 方旸, 谢淑云, 何治亮, 等, 2016.基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀.地球科学, 41(5): 779-791. http://earth-science.net/WebPage/Article.aspx?id=3292 [44] 郭尚平, 刘慈群, 黄延章, 等, 1986.渗流力学的新发展.力学进展, 16(4): 441-454. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198604001.htm [45] 侯健, 邱茂鑫, 陆努, 等, 2014.采用CT技术研究岩心剩余油微观赋存状态.石油学报, 35(2): 319-325. doi: 10.7623/syxb201402012 [46] 鞠杨, 谢和平, 郑泽民, 等, 2014.基于3D打印技术的岩体复杂结构与应力场的可视化方法.科学通报, 59(32): 3109-3119. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201432002.htm [47] 李元海, 林志斌, 秦先林, 等, 2015.透明岩体相似材料物理力学特性研究.中国矿业大学学报, 44(6): 977-982. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201506003.htm [48] 皮彦夫, 2010.石英砂环氧树脂胶结人造岩心的技术与应用.科学技术与工程, 10(28): 6998-7010. doi: 10.3969/j.issn.1671-1815.2010.28.034 [49] 宋睿, 刘建军, 李光, 2015.基于CT图像及孔隙网格的岩心孔渗参数研究.西南石油大学学报(自然科学版), 37(3): 138-145. doi: 10.11885/j.issn.1674-5086.2015.04.03.03 [50] 隋旺华, 高岳, Liu, J.Y., 2011.透明土实验技术现状与展望.煤炭学报, 36(4): 577-582. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201104011.htm [51] 王子振, 王瑞和, 邱浩, 等, 2015.一种多重孔隙结构人造岩心的制备新方法及其应用.石油物探, 54(2): 150-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201502006.htm [52] 文章, 刘凯, 陈晓恋, 2015.承压含水层中非完整井附近"非达西-达西"两区渗流模型近似解析解.地球科学, 40(5): 918-924. http://earth-science.net/WebPage/Article.aspx?id=3089 [53] 许国安, 2011. 深部巷道围岩变形损伤机理及破裂演化规律研究(博士学位论文). 徐州: 中国矿业大学. http://cdmd.cnki.com.cn/article/cdmd-10290-1011281016.htm [54] 徐轩, 王继平, 田姗姗, 等, 2016.低渗含水气藏非达西渗流规律及其应用.西南石油大学学报(自然科学版), 38(5): 90-96. doi: 10.11885/j.issn.16745086.2014.09.09.02 [55] 薛成国, 何青, 杨正明, 等, 2011.低渗透平板模型非线性渗流物理模拟实验研究.西南石油大学学报(自然科学版), 33(6): 101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201106019.htm [56] 严飞, 詹美礼, 速宝玉, 2004.堤坝非饱和渗流模型实验.岩土工程学报, 26(2): 296-298. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200402031.htm [57] 闫国亮, 孙建孟, 刘学锋, 等, 2013.过程模拟法重建三维数字岩芯的准确性评价.西南石油大学学报(自然科学版), 35(2): 71-76. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201302012.htm [58] 鄢友军, 陈俊宇, 郭静姝, 等, 2012.龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析.天然气工业, 32(1): 64-66. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201201014.htm [59] 杨珂, 徐守余, 2009.微观剩余油实验方法研究.断块油气田, 16(4): 75-77. http://cdmd.cnki.com.cn/Article/CDMD-10220-2005154429.htm [60] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [61] 于明旭, 朱维耀, 宋洪庆, 2013.低渗透储层可视化微观渗流模型研制.辽宁工程技术大学学报(自然科学版), 32(12): 1646-1650. doi: 10.3969/j.issn.1008-0562.2013.12.014