• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    储层多孔介质波动渗流力学研究进展与挑战

    蒲春生 郑黎明 刘静

    蒲春生, 郑黎明, 刘静, 2017. 储层多孔介质波动渗流力学研究进展与挑战. 地球科学, 42(8): 1247-1262. doi: 10.3799/dqkx.2017.518
    引用本文: 蒲春生, 郑黎明, 刘静, 2017. 储层多孔介质波动渗流力学研究进展与挑战. 地球科学, 42(8): 1247-1262. doi: 10.3799/dqkx.2017.518
    Pu Chunsheng, Zheng Liming, Liu Jing, 2017. Innovations and Challenges of Vibration Coupled Seepage Mechanics in Oil and Gas Reservoir Development. Earth Science, 42(8): 1247-1262. doi: 10.3799/dqkx.2017.518
    Citation: Pu Chunsheng, Zheng Liming, Liu Jing, 2017. Innovations and Challenges of Vibration Coupled Seepage Mechanics in Oil and Gas Reservoir Development. Earth Science, 42(8): 1247-1262. doi: 10.3799/dqkx.2017.518

    储层多孔介质波动渗流力学研究进展与挑战

    doi: 10.3799/dqkx.2017.518
    基金项目: 

    教育部长江学者创新团队发展计划项目 IRT1294

    国家自然科学基金项目 51274229

    中国博士后科学基金项目 134268

    国家科技重大专项(No 20011ZX05009-004

    详细信息
      作者简介:

      蒲春生(1959-), 男, 教授, 主要从事复杂油气藏物理-化学强化开采和资源环境保护理论与技术方面研究

    • 中图分类号: P618.13

    Innovations and Challenges of Vibration Coupled Seepage Mechanics in Oil and Gas Reservoir Development

    • 摘要: 随着石油工业对低渗、特低渗、稠油、超稠油、小断块、薄油层及高含水等复杂油藏开发的不断加强,波动强化采油技术作为一项高效低成本、不伤害储层、不污染环境的储层增产增注新技术,具有广阔的发展与应用前景.基于对国内外相关成果的广泛调研,揭示了弹性波作用下储层渗流动力学机制是提高波动强化采油技术矿场应用效果的关键,阐述了在弹性波作用下波动渗流力学与传统孔隙介质弹性波传播理论和经典油水渗流力学之间的本质差异,分析了定量描述储层多孔介质波动渗流动力学机理与规律的主要难点,总结了储层波动渗流力学研究的最新进展,展望了波动渗流力学理论研究需要进一步解决的重点问题.

       

    • 图  1  不同震源类型、研究对象、边界条件的差异

      Fig.  1.  Different wave sources with corresponding research objects and boundaries

      图  2  不同振动加速度下渗透率和孔隙度随距离的变化

      据刘静等(2014a)

      Fig.  2.  The permeability and porosityat different position in different pulsing time

      图  3  包含初始宏观渗流的数值算例模型及其边界条件

      a.等效为开发油藏-维驱替分析;b.等效为岩土工程变压加载下岩土固结;据Vuong et al.(2015)

      Fig.  3.  Physical model for seepage with initial macro flow and boundary conditions under vibration

      图  4  图 3a中模型静态或动载固结条件下物性随时间的变化

      a.压力对比;b.孔隙度对比

      Fig.  4.  Property over time for quasi-stationary and instationary simulation from model Fig. 3 (a)

      图  5  毛细管尺度模型

      a.直管;b.具有一定迂回度的毛细管

      Fig.  5.  Capillary model for simulation

      图  6  刚性管(g=0) 中不同谐振波频率下流体流速(Re=1, xl=2)

      a.流速随时间变化;b.流速相图;据Yan(1999)

      Fig.  6.  Response of a fluid in a rigid channel to harmonic perturbation (Re=1, xl=2)

      图  7  弹性波作用下孔隙喉道非润湿相突破、剥离临界条件

      Fig.  7.  Condition for nonwetting phase breakthrough or detach from the pore-throat under wave

      图  8  不同振动加速度、表面活性剂注入量与有效作用距离的关系

      据刘静等(2013)

      Fig.  8.  The effective distance under different vibration acceleration and injection volume

      图  9  不同振动参数下酸液流速的变化关系(10 min)

      何延龙等(2016)

      Fig.  9.  Acidvelocityunder different vibration parameter (10 min)

      图  10  弹性波作用下考虑压力梯度和物性耦合变化的径向模型模拟结果(ϕi=0.156,Pin=11 MPa,Pe=8.0 MPa)

      a.孔隙压力;b.孔隙度

      Fig.  10.  Change of pressure and porosity under vibration in radial model considering the obvious pressure gradient and coupled petrophysics (ϕi=0.156, Pin=11 MPa, Pe=8.0 MPa)

      图  11  弹性波作用下仅考虑Biot流动诱导物性耦合变化的径向模型模拟结果(ϕi=0.156,P0=8.0 MPa)

      a.孔隙压力;b.孔隙度

      Fig.  11.  Change of pressure and porosity under vibration in radial model only considering the coupled petrophysics due to Biot flow (ϕi=0.156, P0=8.0 MPa)

      图  12  波动条件下微观流动的复杂性(初始流动、Biot流与Squirt流共存)

      Fig.  12.  Complexity of micro flow under wave (coexistence of initial, Biot and Squirt flow)

    • [1] Ariadji, T., 2005.Effect of Vibration on Rock and Fluid Properties:On Seeking the Vibroseismic Technology Mechanisms.SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta.doi:10.2118/93112-ms
      [2] Berryman, J.G., Thigpen, L., Chin, R.C.Y., 1988.Bulk Elastic Wave Propagation in Partially Saturated Porous Solids.Journal of the Acoustical Society of America, 84(1):360-373.doi: 10.1121/1.396938
      [3] Biot, M.A., 1956a.Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid:I.Low-Frequency Range.Journal of the Acoustical Society of America, 28(2):168-178.doi: 10.1121/1.1908239
      [4] Biot, M.A., 1956b.Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid:Ⅱ.Higher Frequency Range.Journal of the Acoustical Society of America, 28(2):179-191.doi: 10.1121/1.1908241
      [5] Bobet, A., 2003.Effect of Pore Water Pressure on Tunnel Support during Static and Seismic Loading.Tunnelling and Underground Space Technology, 18:377-393.doi: 10.1016/S0886-7798(03)00008-7
      [6] Cidoncha, J.G., 2007.Application of Acoustic Waves for Reservoir Stimulation.International Oil Conference and Exhibition, Veracruz.doi:10.2118/108643-MS
      [7] Ciz, R., Gurevich, B., 2005.Amplitude of Biot's Slow Wave Scattered by a Spherical Inclusion in a Fluid-Saturated Poroelastic Medium.Geophysical Journal International, 160(3):991-1005.doi: 10.1111/j.1365-246x.2005.02556.x
      [8] Diallo, M.S., Appel, E., 2000.Acoustic Wave Propagation in Saturated Porous Media:Reformulation of the Biot/Squirt Flow Theory.Journal of Applied Geophysics, 44(4):313-325.doi: 10.1016/s0926-9851(00)00009-4
      [9] Ding, B.Y., Chen, J, ,Pan, X.D., 2011.The Solutions of Green's Function for Lamb's Problem in a Two-Phase Saturated Medium.Chinese Journal of Theoretical and Applied Mechanics, 43(3):533-541 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxkb201105014&dbname=CJFD&dbcode=CJFQ
      [10] Dusseault, M., Davidson, B., Spanos, T., 2000.Pressure Pulsing:The Ups and Downs of Starting a New Technology.Journal of Canadian Petroleum Technology, 39(4):13-17.doi: 10.2118/00-04-TB
      [11] Dvorkin, J., Nur, A., 1993.Dynamic Poroelasticity:A Unified Model with the Squirt and the Biot Mechanisms.Geophysics, 58(4):524-533.doi: 10.1190/1.1443435
      [12] E, J., 2007.Theory of One Dimension Non-Linear Consolidation of Cohesive Soil Based on Non-Linear Seepage (Dissertation).China University of Geosciences, Wuhan, 18-26 (in Chinese with English abstract).
      [13] Fang, Z.H., 2011.A Semi-Analytical Solution for One Dimensional Transient Response of Single Layered Fluid-Saturated Porous Media (Dissertation).Zhejiang University, Hangzhou, 11-29 (in Chinese with Englishabstract).
      [14] Frehner, M., Schmalholz, S.M., Podladchikov, Y., 2007.Interaction of Seismic Background Noise with Oscillating Pore Fluids Causes Spectral Modifications of Passive Seismic Measurements at Low Frequencies.SEG Annual Meeting, San Antonio, 1307-1311.doi:10.1190/1.2792742
      [15] He, Y.L., Pu, C.S., Dong, Q.L., et al., 2016.Kinetic Model of Plug Removal Reaction Based on a Synergy between Hydraulic Pulse Wave and Multi-Hydracid Acidification.Acta Petrolei Sinica, 37(4):499-507 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/abstract/abstract5060.shtml
      [16] Hou, Z.Y., Guo, C.S., Wang, J.Q., et al., 2016.Using Gassmann Equation Predict Marine Sediment Porosity.Earth Science, 41(7):1198-1204 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607009.htm
      [17] Hsu, W.Y., Yang, R.Y., Hsu, T.J., et al., 2014.Boundary Layer Structure Under Wave-Mud Interactions.International Journal of Offshore and Polar Engineering, 24(4):247-252. https://www.onepetro.org/conference-paper/ISOPE-I-13-341
      [18] Huh, C., 2006.Improved Oil Recovery by Seismic Vibration:A Preliminary Assessment of Possible Mechanisms.International Oil Conference and Exhibition, Cancun.doi:10.2118/103870-ms
      [19] Kostrov, S., Wooden, W., 2008.Possible Mechanisms and Case Studies for Enhancement of Oil Recovery and Production Using In-Situ Seismic Stimulation.SPE Improved Oil Recovery Symposium, Tulsa.
      [20] Lan, H.T., Liu, C., Guo, Z.Q., et al., 2013.A Viscoelastic Representation of Wave Attenuation and Velocity Dispersion in Fractured Porous Media.SEG Annual Meeting, Houston, 2942-2947.doi:10.1190/segam2013-0974.1
      [21] Li, X.H., Liu, M., Pu, C.S., et al., 2014.Study on Polymer Gel Crosslink with Effect of Low-Frequency Vibration.Petroleum Geology and Recovery Efficiency, 21(3):86-88 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YQCS201403023.htm
      [22] Li, Y.F., Yang, J., Liu, Q., et al., 2012.Application of Vibration-Fracturing Coupled Acidizing Technology in Xifeng Oilfield.Petrochemical Industry Application, 31(10):36-38 (in Chinese).
      [23] Liu, H., Liu, J.P., 2014.Comparison of Natural Seismic Numerical Simulation and Practical Example.Earth Science, 39(12):1783-1792 (in Chinese with English abstract).
      [24] Liu, J., Pu, C.S., Lin, C.Y., et al., 2014a.Reseach on Single-Phase Fluid Mechanical Model under Low-Frequency Vibration.Science Technology and Engineering, 14(10):31-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KXJS201410008.htm
      [25] Liu, J., Pu, C.S., Lin, C.Y., et al., 2014b.Mathematical Model of Microscopic Dynamics about Single-Phrase Incompressible Fluid Flows in Thin Tube under Low Frequency Vibration.Natural Gas Geoscience, 25(10):1610-1614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201410016.htm
      [26] Liu, J., Pu, C.S., Zheng, L.M., et al., 2012.Experiment Research on Effects of Low Frequency Vibration Wave for Crude Oil Viscosity.Science Technology and Engineering, 12(27):7061-7067 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KXJS201227044.htm
      [27] Liu, J., Pu, C.S., Zheng, L.M., et al., 2013.Research on Decreasing Adsorption Characteristics of Surfactant under Low Frequency Resonance Wave.Journal of Basic Science and Engineering, 21(5):946-952 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YJGX201305015.htm
      [28] Liu, R.C., Li, B., Jiang, Y.J., et al., 2016.Review:Mathematical Expressions for Estimating Equivalent Permeability of Rock Fracture Networks.Hydrogeology Journal, 24(7):1623-1649.doi: 10.1007/s10040-016-1441-8
      [29] Luo, Y.T., Davidson, B., Dusseault, M., 1996.Measurements in Ultra-Low Permeability Media with Time-Varying Properties.ISRM International Symposium, Turin. http://www.onepetro.org/conference-paper/ISRM-EUROCK-1996-157
      [30] Navas, P., López-Querol, S., 2013.Generalized Unconfined Seepage Flow Model Using Displacement Based Formulation.Engineering Geology, 166:140-151.doi: 10.1016/j.enggeo.2013.09.009
      [31] Pedro, N., Susana, L.Q., 2013.Generalized Unconfined Seepage Flow Model Using Displacement Based Formulation.Engineering Geology, 166:140-151.doi: 10.1016/j.enggeo.2013.09.009
      [32] Pu, C.S., Liu, J., 2015.Physical and Physical-Chemical Compound Enhanced Oil Recovery Theory and Technique in Complex Reservoir (Volume 5):Enhanced Oil Recovery Theory and Technique under Low-Frequency Vibration Compound with Chemicals in Low-Permeability Reservoir.Petroleum Industry Press, Beijing, 105 (in Chinese).
      [33] Pu, C.S., Wang, X.Z., 2014.Physical and Physical-Chemical Compound Enhanced Oil Recovery Theory and Technique in Complex Reservoir (Volume 3):Enhanced Oil Recovery Theory and Technique under Vibration in Complex Reservoir.Petroleum Industry Press, Beijing, 87 (in Chinese).
      [34] Pu, C.S., Xu, J.X., Liu, X., 2016.Study on Influence of High Frequency Vibration on Viscosity and Temperature Parameters of Heavy Oil in Porous Elastic Medium.Journal of Xi'an Shiyou University (Natural Science Edition), 31(6): 54-59, 107 (in Chinesewith English abstract).
      [35] Qian, J., 2010.Seismic Numerical Simulation and Inversion of Fractured Coal Reservoirs (Dissertation).China University of Mining & Technology, Xuzhou, 8-10 (in Chinese with English abstract).
      [36] Rubino, J.G., Quintal, B., Müller, T.M., et al., 2015.Energy Dissipation of P-and S-Waves in Fluid-Saturated Rocks:An Overview Focusing on Hydraulically Connected Fractures.Journal of Earth Science, 26(6):785-790.doi: 10.1007/s12583-015-0613-0
      [37] Shang, X.S., Pu, C.S., Yu, G.L., et al., 2013.Study on Micro-Dynamic Mechanism of Droplet Motion under Vibration.Science Technology and Engineering, 13(8):2166-2169 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KXJS201308028.htm
      [38] Spanos, T., Davidson, B., Dusseault, M.B., et al., 1999.Pressure Pulsing at the Reservoir Scale:A New IOR Approach.Annual Technical Meeting, Calgary.doi:10.2118/99-11
      [39] Sun, F., Ge, H.K., Xue, S.F., et al., 2009.A Research into Drawdown Pressure Impacts on Sand Production from Unconsolidated Sand Reservoirs.China Offshore Oil and Gas, 21(1):39-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD200901010.htm
      [40] Vuong, A.T., Yoshihara, L., Wall, W.A., 2015.A General Approach for Modeling Interacting Flow through Porous Media under Finite Deformations.Computer Methods in Applied Mechanics and Engineering, 283:1240-1259.doi: 10.1016/j.cma.2014.08.018
      [41] Wang, R.F., Sun, W., Zhang, R.J., et al., 2006.The Research on Downhole Low Frequency Vibration for EOR.Journal of Northwest University (Natural Science Edition), 36(3):457-460 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200603029.htm
      [42] White, J.E., 1975.Computed Seismic Speeds and Attenuation in Rocks with Partial Gas Saturation.Geophysics, 40(2):224-232.doi: 10.1190/1.1440520
      [43] Wu, X.M., Zhang, J.G., Wang, Y., et al., 2008.Laboratory Experiment and Oilfield Application of the Oil Viscosity Reduction Method with Chemical Reagent Assisted by Oscillation.Petroleum Geology and Recovery Efficiency, 15(6):89-91 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200806028.htm
      [44] Yan, P., 1999.Reservoir Analysis Using Intermediate Frequency Excitation (Dissertation).Stanford University, Palo Alto, 41-113. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.5152
      [45] Yang, Q.J., Liu, C., Guo, Z.Q., et al., 2015.Wave Propagation in Two-Phase Isotropic Medium Based on BISQ Model in Frequency-Space Domain.Progress in Geophysics, 30(1):249-260 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201501036.htm
      [46] Zheng, L.M., Liu, J., Pu, C.S., et al., 2016.Seepage Analysis under Low-Frequency Vibration in One-Dimensional Porous Media Model Saturated with Single-Phase Percolating Fluid.Chinese Journal of Rock Mechanics and Engineering, 35(10):2098-2105 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSLX201610016.htm
      [47] Zheng, L.M., Pu, C.S., Li, Y.J., et al., 2017.Biot's Consolidation with Variables for Influence of Low-Frequency Vibration Stimulation on Radial Flow in Low-Permeability Developed Reservoir.Chinese Journal of Geotechnical Engineering, 39(4):752-758 (in Chinese with English abstract).
      [48] Zheng, L.M., Pu, C.S., Xu, J.X., et al., 2016.Modified Model of Porosity Variation in Seepage Fluid-Saturated Porous Media under Elastic Wave.Journal of Petroleum Exploration and Production Technology, 6(4):569-575.doi: 10.1007/s13202-015-0217-3
      [49] Zhu, B.J., Xiong, H., 2013.Analysis of Active Vibration Isolation by Open Trench in Two-Dimensional Saturated Ground.Rock and Soil Mechanics, 34(2):462-467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201302025.htm
      [50] Zienkiewicz, O.C., Chang, C.T., Bettess, P., 1980.Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils.Geotechnique, 30(4):385-395.doi: 10.1016/0148-9062(81)91040-8
      [51] 丁伯阳, 陈军, 潘晓东, 2011.饱和多孔介质中Lamb问题的Green函数解答.力学学报, 43(3): 533-541. doi: 10.6052/0459-1879-2011-3-lxxb2010-090
      [52] 鄂建, 2007. 粘性土-维非线性渗流固结理论研究(硕士学位论文). 北京: 中国地质大学, 18-26. http://cdmd.cnki.com.cn/Article/CDMD-10491-2007142942.htm
      [53] 房志辉, 2011. 单层饱和多孔介质一维瞬态响应半解析解(硕士学位论文). 杭州: 浙江大学, 11-29. paperuri:(40646505f917c71f1ec463678d3e2cbd)
      [54] 何延龙, 蒲春生, 董巧玲, 等, 2016.脉冲波协同多氢酸酸化解堵反应动力学模型.石油学报, 37(4): 499-507. doi: 10.7623/syxb201604009
      [55] 侯正瑜, 郭常升, 王景强, 等, 2016.利用Gassmann方程预测海底沉积物孔隙度.地球科学, 41(7): 1198-1204. http://earth-science.net/WebPage/Article.aspx?id=3328
      [56] 李星红, 刘敏, 蒲春生, 等, 2014.低频振动对聚合物凝胶交联过程的影响.油气地质与采收率, 21(3): 86-88. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201403023.htm
      [57] 李亚峰, 杨杰, 刘强, 等, 2012.振动-压裂复合酸化解堵技术在西峰油田的应用.石油化工应用, 31(10): 36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201210011.htm
      [58] 柳浩, 刘江平, 2014.天然地震数值模拟与实例对比.地球科学, 39(12): 1783-1792. http://earth-science.net/WebPage/Article.aspx?id=3002
      [59] 刘静, 蒲春生, 林承焰, 等, 2014a.低频谐振波作用下单相流体渗流模型研究.科学技术与工程, 14(10): 31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201410008.htm
      [60] 刘静, 蒲春生, 林承焰, 等, 2014b.低频振动单相不可压缩流体细管流动微观动力学数学模型研究.天然气地球科学, 25(10): 1610-1614. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410016.htm
      [61] 刘静, 蒲春生, 郑黎明, 等, 2012.低频振动对原油黏度影响的实验研究.科学技术与工程, 12(27): 7061-7067. doi: 10.3969/j.issn.1671-1815.2012.27.043
      [62] 刘静, 蒲春生, 郑黎明, 等, 2013.低频谐振波降低表面活性剂吸附特性的研究.应用基础与工程科学学报, 21(5): 946-952. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201305015.htm
      [63] 蒲春生, 刘静, 2015.复杂油藏物理法、物理-化学复合发强化开采理论与技术丛书(卷五):低渗透油藏低频谐振波化学复合强化开采理论与技术.北京:石油工业出版社, 105.
      [64] 蒲春生, 王香增, 2014.复杂油藏物理法、物理-化学复合发强化开采理论与技术丛书(卷三):复杂油藏波场强化开采理论与技术.北京:石油工业出版社, 87.
      [65] 蒲春生, 徐加祥, 刘玺, 等, 2016.高频波动对多孔弹性介质中稠油黏温参数影响规律研究.西安石油大学学报(自然科学版), 31(6): 54-59, 107. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY201606008.htm
      [66] 钱进, 2010. 含裂隙煤储层地震数值模拟与反演方法研究(博士学位论文). 徐州: 中国矿业大学, 8-10. http://cdmd.cnki.com.cn/article/cdmd-10290-2010280185.htm
      [67] 尚校森, 蒲春生, 于光磊, 等, 2013.波动下液滴运动微观动力学机理研究.科学技术与工程, 13(8): 2166-2169. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201308028.htm
      [68] 孙峰, 葛洪魁, 薛世峰, 等, 2009.生产压差对疏松砂岩储层出砂影响规律研究.中国海上油气, 21(1): 39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200901010.htm
      [69] 王瑞飞, 孙卫, 张荣军, 等, 2006.井下低频振动提高原油采收率技术研究.西北大学学报(自然科学版), 36(3): 457-460. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200603029.htm
      [70] 吴晓明, 张建国, 王颖, 等, 2008.振动辅助化学剂降粘的室内实验及现场应用.油气地质与采收率, 15(6): 89-91. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200806028.htm
      [71] 杨庆节, 刘财, 郭智奇, 等, 2015.基于BISQ模型双相各向同性介质弹性波传播的频率-空间域有限差分模拟.地球物理学进展, 30(1): 249-260. doi: 10.6038/pg20150136
      [72] 郑黎明, 刘静, 蒲春生, 等, 2016.波动采油对饱和单相一维储层模型渗流的影响分析.岩石力学与工程学报, 35(10): 2098-2105. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610016.htm
      [73] 郑黎明, 蒲春生, 李悦静, 等, 2017.低频振动对低渗油藏径向渗流影响的变参量Biot固结分析.岩土工程学报, 39(4): 752-758. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704029.htm
      [74] 朱兵见, 熊浩, 2013.二维饱和地基中空沟主动隔振分析.岩土力学, 34(2): 462-467. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302025.htm
    • 加载中
    图(12)
    计量
    • 文章访问数:  4496
    • HTML全文浏览量:  1803
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-22
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回