Kinematics Analysis and Formation Mechanism of Qidashan Ductile Shear Zone, Eastern Anshan, Liaoning Province, NE China
-
摘要: 关于太古宙早期地壳演化构造机制的争论已经持续了数十年,其焦点主要集中于水平构造还是垂向构造两大经典构造模式的探讨.对于早期地壳构造演化方面的研究,将会有助于我们更好地理解早前寒武纪的地球动力学机制.本文对华北克拉通东北部鞍山地区花岗-绿岩带内齐大山韧性剪切带的构造变形特征进行了详细的解析,揭示了该区新太古代垂向构造作用样式.研究结果表明,齐大山韧性剪切带内花岗质岩石长英质矿物塑性拉长特征明显,条带状构造发育,面理向NWW方向陡倾,不对称组构特征和矿物拉伸线理产状指示向NWW的陡倾正滑移剪切作用.变形岩石中的长英质矿物均发育中低温显微变形特征,石英C轴电子背散射衍射(EBSD)组构分析揭示石英以菱面<a>和底面<a>滑移系为主,岩石经历了中低温非共轴变形.根据矿物的变形行为以及石英的结晶优选方位推测变形温度约为400~500℃,岩石变形特征以位错蠕变为主.有限应变分析结果表明,靠近铁矿带方向,构造岩类型由L=S构造岩过渡为LS构造岩,岩石应变强度呈明显增强趋势.运动学涡度测量结果显示齐大山韧性剪切带内大多数岩石样品的Wk值大于0.75,岩石形成于以简单剪切作用为主的一般剪切作用.对比花岗-绿岩带西侧的白家坟韧性剪切带,显示二者均具有相向的陡倾正滑移运动学特征,表明新太古代时期鞍山地区地壳构造演化模式以垂向构造作用为主.Abstract: The controversy over the Archean tectonic regimes has lasted several decades focused on the horizontal and vertical tectonics, the two classical tectonic models for Archean.Thus, more studies of the early crustal tectonic evolution are requisite for better understanding geodynamic regimes in the early Precambrian. In this study, detailed structural analysis of Qidashan down-slip ductile shear zones which developed in the eastern Anshan area was carried out and an example for revealing Neoarchean vertical tectonics is provided. The ribbon structures formed by intensely elongated felsic minerals are widespread in the deformed gneisses. The quartz C-axis fabric patterns obtained by electron backscatter diffraction technique imply low to middle temperature non-coaxial deformation with active rhomb < a > slip and basal < a > slip. Deformation behaviors of minerals and quartz crystallographic preferred orientations demonstrate that the rocks underwent mylonitization at a temperature of 400-500℃ under greenschist facies metamorphic conditions. Dislocation creep is the main rock deformation mechanism within the shear zones. Finite strain measurement results suggest that toward the iron ore belt, the tectonites change from L=S-to LS-type and the strain intensity exhibits an enhanced trend across the shear zones. Kinematic vorticity values (>0.75) indicate that the deformed rocks in ductile shear zones were produced by steady-state simple-shear dominated general shear. Compared to the Baijiafen ductile shear zone to the west, the Qidashan and Baijiafen ductile shear zones both have mutually down-slip kinematic characteristics, indicating that the Neoarchean crust growth and tectonic evolution in Anshan area is dominated by vertical tectonics.
-
Key words:
- ductile shear zone /
- Archean gneiss /
- fabric analysis /
- sag duction /
- vertical tectonic /
- North China craton /
- tectonics
-
图 2 齐大山韧性剪切带野外实测构造剖面图及采样位置
剖面A测量于齐大山铁矿区齐欣选矿厂;剖面B测量于胡家庙子铁矿区;具体位置见图 1
Fig. 2. Field survey and sample location of the ductile Shear zone in the Qidashan area
图 8 鞍山东部花岗-绿岩带垂向构造模式及区域韧性剪切带分布(a)、白家坟韧性剪切带XZ有限应变椭圆分布(b)和齐大山韧性剪切带XZ有限应变椭圆分布(c)
图b据Li et al.(2017)
Fig. 8. Vertical tectonic model for the evolution of granite-greenstone domain and regional ductile shear zones in eastern Anshan area (a), Baijiadu ductile shear zone XZ finite strain elliptic distribution (b) and Qidashan ductile shear zone XZ finite strain elliptic distribution (c)
表 1 胡家庙子剖面B内测试样品显微组构特征
Table 1. Microstructure characteristics of analyzed samples in the Hujiamiaozi section B
岩性 样品号 矿物组合 显微变形特征 变形强度① 变形温度(℃)② 齐大
山花
岗质
片麻
岩15AS13-1 Pl+Mic+Qtz+
Mus+Bi+Ser+Epi石英:较平直的石英条带,塑性拉长,波状消光,BLG+SGR;斜长石:显微破裂,塑性拉长,条带状分布 弱 400~500 15AS13-4 Pl+Mic+Qtz+Mus+
Bi+Ser+Epi石英:较平直的石英条带,塑性拉长,波状消光,变形纹,BLG+SGR;斜长石:显微破裂,塑性拉长,条带状分布 弱 400~500 15AS13-6 Pl+Mic+Qtz+Mus+
Bi+Ser+Epi石英:较平直的石英条带,塑性拉长,波状消光,变形带,BLG+SGR;斜长石:显微破裂,塑性拉长,条带状分布 弱 400~500 15AS13-7 Pl+Mic+Qtz+Mus+
Bi+Ser+Epi石英:较平直的石英条带,塑性拉长,波状消光,变形带,BLG+SGR;长石:条带状分布,斜长石显微破裂,塑性拉长,微斜长石发育机械双晶 中等 400~500 15AS13-8 Pl+Mic+Qtz+Mus+
Bi+Ser+Epi石英:较平直的石英条带,塑性拉长,波状消光,变形带,BLG+SGR;斜长石:显微破裂,塑性拉长,条带状分布 中等 400~500 15AS13-9 Pl+Mic+Qtz+Mus+
Bi+Ser+Epi石英:石英条带,塑性拉长,波状消光,变形带,SGR;斜长石:显微破裂,塑性拉长,机械双晶 中等 420~500 云母
石英
片岩15AS13-10 Qtz+Mus+
Chl+Ser+Bi石英:石英条带,强烈塑性拉长,波状消光,BLG+SGR 强 400~500 15AS13-11 Qtz+Mus+Chl+
Ser+Bi石英:石英条带,强烈塑性拉长,波状消光,BLG+SGR 强 400~500 15AS13-12 Qtz+Mus+Chl+
Ser+Bi石英:石英条带逐渐透镜化,颗粒强烈塑性拉长,波状消光,BLG+SGR 强 400~500 15AS13-13 Qtz+Mus+
Chl+Ser+Bi石英:石英条带,透镜化且矿物细粒化特征明显,颗粒强烈塑性拉长,波状消光,变形纹,BLG+SGR 强 400~500 注:Qtz.石英;Pl.斜长石;Mic.微斜长石;Bi.黑云母;Mus.白云母;Chl.绿泥石;Ser.绢云母;Epi.绿帘石;BLG.膨凸;SGR.亚颗粒旋转;①变形强度是相对的,主要依据宏观、显微变形强弱特征以及有限应变测量结果综合判断;②变形温度是根据长石-石英的变形行为( Stipp et al., 2002 )以及石英EBSD组构特征综合判断的结果.表 2 研究区韧性剪切带内岩石Fry法有限应变测量结果
Table 2. Finite element strain measurement of rocks in the Qidashan ductile shear zone using Fry method
样品号 RXZ RYZ X Y Z ln(X/Y) ln(Y/Z) k γ ν Es 15AS13-1 1.51 1.17 1.25 0.97 0.83 0.26 0.16 1.62 1.46 -0.24 0.29 15AS13-4 1.24 1.10 1.12 0.99 0.90 0.12 0.10 1.26 1.23 -0.11 0.15 15AS13-6 1.27 1.10 1.14 0.98 0.89 0.14 0.10 1.51 1.25 -0.20 0.17 15AS13-7 1.78 1.26 1.36 0.96 0.76 0.35 0.23 1.49 1.67 -0.20 0.41 15AS13-8 1.90 1.29 1.41 0.96 0.74 0.39 0.25 1.52 1.76 -0.21 0.46 15AS13-9 1.96 1.30 1.44 0.95 0.73 0.41 0.26 1.56 1.81 -0.22 0.48 15AS13-10 2.05 1.20 1.52 0.89 0.74 0.54 0.18 2.94 1.91 -0.49 0.53 15AS13-11 2.16 1.19 1.58 0.87 0.73 0.60 0.17 3.43 2.01 -0.55 0.57 15AS13-12 2.38 1.14 1.71 0.82 0.72 0.74 0.13 5.62 2.23 -0.70 0.66 15AS13-13 2.32 1.17 1.66 0.84 0.72 0.68 0.16 4.36 2.15 -0.63 0.63 注:k=ln(X/Y)/ln(Y/Z);γ=X/Y+Y/Z-1;ν=(2ε2-ε1-ε3)/(ε1-ε3);Es={[(ε1-ε2)2+(ε2-ε3)2+(ε3-ε1)2]/3}1/2. 表 3 研究区韧性剪切带内岩石的运动学涡度值
Table 3. Kinematic vorticity values of analyzed rocks in the Qidashan ductile shear zone
样品号 极摩尔圆法 石英条带斜交面理法 RXZ β α Wk θ Wk 15AS13-1 1.51 27 26 0.899 35 0.940 15AS13-4 1.24 26 32 0.848 31 0.883 15AS13-6 1.27 32 21 0.934 34 0.927 15AS13-7 1.78 23 31 0.857 32 0.899 15AS13-8 1.90 24 25 0.906 33 0.914 15AS13-9 1.96 27 19 0.946 36 0.951 15AS13-10 2.05 25 21 0.934 33 0.914 15AS13-11 2.16 24 23 0.921 35 0.940 15AS13-12 2.38 22 25 0.906 34 0.927 15AS13-13 2.32 24 20 0.940 37 0.961 表 4 铁矿带东西两侧韧性剪切带对比
Table 4. Comparison of ductile shear zones on both sides of the Qidashan iron ore belt
剪切带名称 白家坟韧性剪切带
(Li et al., 2017)齐大山韧性剪切带 空间位置 花岗绿岩带西侧(花岗-绿岩接触带内) 花岗绿岩带东侧(花岗-绿岩接触带内) 岩性 斑状花岗质片麻岩、奥长花岗质片麻岩 齐大山花岗质片麻岩、鞍山群云母片岩及云母石英片岩 宏观变形 条带状构造发育,陡倾面理、线理 条带状构造发育,陡倾面理、线理 显微构造 石英波状消光,BLG+SGR重结晶等 石英波状消光,BLG+SGR重结晶等 应变类型 平面-拉伸应变 平面-拉伸应变 剪切类型 一般剪切 一般剪切 变形温度 400~500 ℃ 400~500 ℃ 运动学特征 SEE方向倾滑剪切 近W方向高角度倾滑剪切 应变特征 靠近铁矿带方向,岩石变形和应变强度越大,岩石类型从L=S型过渡为LS型构造岩 -
[1] Anhaeusser, .R., Mason, R., Viljoen, M.J., et al., 1969.A Reappraisal of Some Aspects of Precambrian Shield Geology.Geological Society of America Bulletin, 80(11):2175.doi:10.1130/0016-7606(1969)80[175:arosao].0.co; 2 [2] Bell, T.H., Etheridge, M.A., 1976.The Deformation and Recrystallization of Quartz in a Mylonite Zone, Central Australia.Tectonophysics, 32(3-4):235-267.doi: 10.1016/0040-1951(76)90064-0 [3] Bouhallier, H., Chardon, D., Choukroune, P., 1995.Strain Patterns in Archaean Dome-and-Basin Structures:The Dharwar Craton (Karnataka, South India).Earth and Planetary Science Letters, 135(1-4):57-75.doi: 10.1016/0012-821x(95)00144-2 [4] Bowring, S.A., Williams, I.S., 1999.Priscoan (4.00-4.03 Ga) Orthogneisses from Northwestern Canada.Contributions to Mineralogy and Petrology, 134(1):3-16.doi: 10.1007/s004100050465 [5] Bowring, S.A., Williams, I.S., Compston, W., 1989.3.96 Ga Gneisses from the Slave Province, Northwest Territories, Canada.Geology, 17(11):971.doi:10.1130/0091-7613(1989)017<0971:ggftsp>2.3.co;2 [6] Cagnard, F., Barbey, P., Gapais, D., 2011.Transition between"Archaean-Type" and "Modern-Type" Tectonics:Insights from the Finnish Lapland Granulite Belt.Precambrian Research, 187(1):127-142. https://www.sciencedirect.com/science/article/pii/S0301926811000453 [7] Calvert, A.J., Ludden, J.N., 1999.Archean Continental Assembly in the Southeastern Superior Province of Canada.Tectonics, 18(3):412-429.doi: 10.1029/1999tc900006 [8] Chardon, D., Choukroune, P., Jayananda, M., 1996.Strain Patterns, Décollement and Incipient Sagducted Greenstone Terrains in the Archaean Dharwar Craton (South India).Journal of Structural Geology, 18(8):991-1004.doi: 10.1016/0191-8141(96)00031-4 [9] Chardon, D., Gapais, D., Cagnard, F., 2009.Flow of Ultra-Hot Orogens:A View from the Precambrian, Clues for the Phanerozoic.Tectonophysics, 477(3-4):105-118.doi: 10.1016/j.tecto.2009.03.008 [10] Collins, W.J., 1989.Polydiapirism of the Archean Mount Edgar Batholith, Pilbara Block, Western Australia.Precambrian Research, 43(1-2):41-62.doi: 10.1016/0301-9268(89)90004-1 [11] Dai, Y.P., Zhang, L.C., Zhu, M.T., et al., 2013.Chentaigou BIF-Type Iron Deposit, Anshan Area Associated with Archean Crustal Growth:Constraints from Zircon U-Pb Dating and Hf Isotope.Acta Petrologica Sinica, 29(7):2537-2550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201307020.htm [12] de Wit, M.J.D., 1998.On Archean Granites, Greenstones, Cratons and Tectonics:Does the Evidence Demand a Verdict?Precambrian Research, 91(1-2):181-226.doi: 10.1016/s0301-9268(98)00043-6 [13] Dixon, J.M., Summers, J.M., 1983.Patterns of Total and Incremental Strain in Subsiding Troughs:Experimental Centrifuged.Models of Inter-Diapir Synclines.Canadian Journal of Earth Sciences, 20(12):1843-1861.doi: 10.1139/e83-175 [14] Ernst, W.G., 2009.Archean Plate Tectonics, Rise of Proterozoic Supercontinentality and Onset of Regional, Episodic Stagnant-Lid Behavior.Gondwana Research, 15(3-4):243-253.doi: 10.1016/j.gr.2008.06.010 [15] Fan, Z.G., Huang, X.Z., Tan, L., et al., 2013.Geological Structure and Deep Iron Deposits in the Anshan Area.Geology and Exploration, 49(6):1153-1163 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201306016.htm [16] Fan, Z.G., Huang, X.Z., Tan, L., et al., 2014.A Study of Iron Deposits in the Anshan Area, China Based on Interactive Inversion Technique of Gravity and Magnetic Anomalies.Ore Geology Reviews, 57:618-627.doi: 10.1016/j.oregeorev.2013.09.017 [17] Flinn, D., 1962.On Folding during Three-Dimensional Progressive Deformation.Quarterly Journal of the Geological Society, 118(1-4):385-428.doi: 10.1144/gsjgs.118.1.0385 [18] Gapais, D., Cagnard, F., Gueydan, F., et al., 2009.Mountain Building and Exhumation Processes through Time:Inferences from Nature and Models.Terra Nova, 21(3):188-194.doi: 10.1111/j.1365-3121.2009.00873.x [19] Guillope, M., Poirier, J.P., 1979.Dynamic Recrystallization during Creep of Single-Crystalline Halite:An Experimental Study.Journal of Geophysical Research, 84(B10):5557.doi: 10.1029/jb084ib10p05557 [20] Hamilton, W.B., 1998.Archean Magmatism and Deformation were not Products of Plate Tectonics.Precambrian Research, 91(1-2):143-179.doi: 10.1016/s0301-9268(98)00042-4 [21] Hamilton, W.B., 2003.An Alternative Earth.GSA Today, 13(11):4.doi:10.1130/1052-5173(2003)013<0004:aae>2.0.co; 2 [22] Hamilton, W.B., 2007.Earth's First Two Billion Years-The Era of Internally Mobile Crust.Geological Society of America Memoirs, 50:233-296.doi: 10.1130/2007.1200(13) [23] Hippertt, J., Davis, B., 2000.Dome Emplacement and Formation of Kilometre-Scale Synclines in a Granite-Greenstone Terrain (Quadrilátero Ferrl%CC%81fero, Southeastern Brazil).Precambrian Research, 102(1-2):99-121.doi: 10.1016/s0301-9268(00)00061-9 [24] Hirth, G., Tullis, J., 1992.Dislocation Creep Regimes in Quartz Aggregates.Journal of Structural Geology, 14(2):145-159.doi: 10.1016/0191-8141(92)90053-y [25] Hossack, J.R., 1968.Pebble Deformation and Thrusting in the Bygdin Area (Southern Norway).Tectonophysics, 5(4):315-339.doi: 10.1016/0040-1951(68)90035-8 [26] Kröner, A., 1981.Chapter 3 Precambrian Plate Tectonics.Developments in Precambrian Geology, 57-90.doi: 10.1016/s0166-2635(08)70008-2 [27] Kröner, A., Wilde, S.A., Li, J.H., et al., 2005.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China.Journal of Asian Earth Sciences, 24(5):577-595.doi: 10.1016/j.jseaes.2004.01.001 [28] Kruhl, J.H., 2003.Prism-and Basal-Plane Parallel Subgrain Boundaries in Quartz:A Microstructural Geothermobarometer.Journal of Metamorphic Geology, 14(5):581-589.doi: 10.1046/j.1525-1314.1996.00413.x [29] Kusky, T.M., Polat, A., 1999.Growth of Granite-Greenstone Terranes at Convergent Margins, and Stabilization of Archean Cratons.Tectonophysics, 305(1-3):43-73.doi: 10.1016/s0040-1951(99)00014-1 [30] Law, R.D., Searle, M.P., Simpson, R.L., 2004.Strain, Deformation Temperatures and Vorticity of Flow at the Top of the Greater Himalayan Slab, Everest Massif, Tibet.Journal of the Geological Society, 161(2):305-320.doi: 10.1144/0016-764903-047 [31] Li, J., Liu, Y.J., Li, W.M., et al., 2016.Structural Deformation and Rheology of Granitic Gneiss from the North China Craton Basement-An Example from the Sierbao Area in Western Liaoning Province.Geotectonica et Metallogenia, 40(5):891-907 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DGYK201605001.htm [32] Li, S.Z., Zhang, Z., Sun, W.J., et al., 2015a.Precambrian Geodynamics (Ⅰ):From Universal Environment to Proto-Earth.Earth Sci.Front., 22(6):1-9 (in Chinese with English abstract). https://www.researchgate.net/publication/230039336_An_Introduction... [33] Li, S.Z., Xu, L.Q., Zhang, Z., et al., 2015b.Precambrian Geodynamics (Ⅱ):Early Earth.Earth Sci.Front., 22(6):10-26 (in Chinese with English abstract). https://www.researchgate.net/publication/287251966_Precambrian... [34] Li, S.Z., Dai, L.M., Zhang, Z., et al., 2015c.Precambrian Geodynamics (Ⅲ):General Features of Precambrian Geology.Earth Sci.Front., 22(6):27-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201506005.htm [35] Liang, C.Y., Liu, Y.J., Meng, J.Y., et al., 2015a.Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Sulan Ductile Shear Zone.Earth Science, 40 (1):116-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501008.htm [36] Liang, C.Y., Liu, Y.J., Neubauer, F., et al., 2015b.Structural Characteristics and LA-ICP-MS U-Pb Zircon Geochronology of the Deformed Granitic Rocks from the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton.Tectonophysics, 650:80-103.doi: 10.1016/j.tecto.2014.05.010 [37] Liang, C.Y., Liu, Y.J., Neubauer, F., et al., 2015c.Structures, Kinematic Analysis, Rheological Parameters and Temperature-Pressure Estimate of the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton.Journal of Structural Geology, 78:27-51.doi: 10.1016/j.jsg.2015.06.007 [38] Lin, S., 2005.Synchronous Vertical and Horizontal Tectonism in the Neoarchean:Kinematic Evidence from a Synclinal Keel in the Northwestern Superior Craton, Canada.Precambrian Research, 139(3-4):181-194.doi: 10.1016/j.precamres.2005.07.001 [39] Lin, S.F., Beakhouse, G.P., 2013.Synchronous Vertical and Horizontal Tectonism at Late Stages of Archean Cratonization and Genesis of Hemlo Gold Deposit, Superior Craton, Ontario, Canada.Geology, 41(3):359-362.doi: 10.1130/g33887.1 [40] Lin, S.F., Jiang, D.Z., Williams, P.F., 2007.Importance of Differentiating Ductile Slickenside Striations from Stretching Lineations and Variation of Shear Direction across a High-Strain Zone.Journal of Structural Geology, 29(5):850-862.doi: 10.1016/j.jsg.2006.12.006 [41] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992.Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton.Geology, 20(4):339.doi:10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 [42] Liu, D.Y., Wan, Y.S., Wu, J.S., et al., 2007.Archean Crustal Evolution and the Oldest Rocks in the North China Craton.Geological Bulletin of China, 26(9):1131-1138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200709016.htm [43] Liu, D., Wilde, S.A., Wan, Y., et al., 2008a.New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton.American Journal of Science, 308(3):200-231.doi: 10.2475/03.2008.02 [44] Liu, J.L., Cao, S.Y., Zou, Y.X., et al., 2008b.EBSD Analysis of Rock Fabrics and Its Application.Geological Bulletin of China, 27(10):1638-1645 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810006.htm [45] Liu, J.L., Tang, Y., Tran, M.D., et al., 2012.The Nature of the Ailao Shan-Red River (ASRR) Shear Zone:Constraints from Structural, Microstructural and Fabric Analyses of Metamorphic Rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi Massifs.Journal of Asian Earth Sciences, 47:231-251.doi: 10.1016/j.jseaes.2011.10.020 [46] Luo, Y., Sun, M., Zhao, G.C., et al., 2004.LA-ICP-MS U-Pb Zircon Ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the Evolution of the Jiao-Liao-Ji Belt.Precambrian Research, 134(3-4):349-371.doi: 10.1016/j.precamres.2004.07.002 [47] Mareschal, J.C., West, G.F., 1980.A Model for Archean Tectonism.Part 2.Numerical Models of Vertical Tectonism in Greenstone Belts.Canadian Journal of Earth Sciences, 17(1):60-71.doi: 10.1139/e80-006 [48] McGregor, A.M., 1951.Some Milestones in the Precambrian of South Rhodesia.Parts 1-3.Transactions, Geological Society of South Africa, 54:27-71. [49] Means, W.D, Hobbs, B.E, Lister, G.S, et al., 1980.Vorticity and Non-Coaxiality in Progressive Deformations.Journal of Structural Geology, 2(3):371-378.doi: 10.1016/0191-8141(80)90024-3 [50] Moyen, J.F., Stevens, G., Kisters, A., 2006.Record of Mid-Archaean Subduction from Metamorphism in the Barberton Terrain, South Africa.Nature, 442(7102):559-562.doi: 10.1038/nature04972 [51] Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001a.Review of the Oldest (4 400-3 600 Ma) Geological and Mineralogical Record:Glimpses of the Beginning.Episodes, 24:93-101. http://www.sciencedirect.com/science/article/pii/B9780128096635000049 [52] Nutman, A.P., McGregor, V.R., Bennett, V.C., et al., 2001b.Age Significance of U-Th-Pb Zircon Data from Early Archaean Rocks of West Greenland-A Reassessment Based on Combined Ion-Microprobe and Imaging Studies-Comment.Chemical Geology, 175(3-4):191-199.doi: 10.1016/s0009-2541(00)00297-7 [53] Nutman, A.P., Wan, Y.S., Liu, D.Y., 2009.Integrated Field Geological and Zircon Morphology Evidence for ca.3.8 Ga Rocks at Anshan:Comment on "Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton" by Wu et al.[Precambrian Res.167 (2008) 339-362].Precambrian Research, 172(3):357-360. https://www.sciencedirect.com/science/article/pii/S0301926815000984 [54] Parmenter, A.C., Lin, S.F., Corkery, M.T., 2006.Structural Evolution of the Cross Lake Greenstone Belt in the Northwestern Superior Province, Manitoba:Implications for Relationship between Vertical and Horizontal Tectonism.Canadian Journal of Earth Sciences, 43(7):767-787.doi: 10.1139/e06-006 [55] Passchier, C.W., 1987.Stable Positions of Rigid Objects in Non-Coaxial Flow-A Study in Vorticity Analysis.Journal of Structural Geology, 9(5-6):679-690.doi: 10.1016/0191-8141(87)90152-0 [56] Passchier, C.W., Trouw, R.A.J., 2005.Microtectonics.2nd ed.Springer Verlag, Berlin. [57] Prior, D.J., 1996.Orientation Contrast Imaging of Microstructures in Rocks Using Forescatter Detectors in the Scanning Electron Microscope.Mineralogical Magazine, 60(403):859-869.doi: 10.1180/minmag.1996.060.403.01 [58] Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.American Mineralogist, 84(11-12):1741-1759.doi: 10.2138/am-1999-11-1204 [59] Ramberg, H., 1981.Gravity, Deformation, and the Earth's Crust:In Theory, Experiments, and Geological Application.Academic Press, Australia. [60] Ramsay, J.G., 1967.Folding and Fracturing of Rocks.McGraw-Hill, New York. [61] Roy, P., Jain, A.K., Singh, S., 2016.Kinematic Vorticity Analysis along the Karakoram Shear Zone, Pangong Mountains, Karakoram:Implications for the India-Asia Tectonics.Journal of the Geological Society of India, 87(3):249-260.doi: 10.1007/s12594-016-0392-y [62] Schmid, S.M., Casey, M., 1986.Complete Fabric Analysis of Some Commonly Observed Quartz c-Axis Patterns.Geophysical Monograph Series, 24:263-286.doi: 10.1029/gm036p0263 [63] Schmidt, N.H., Olesen, N.Ø., 1989.Computer-Aided Determination of Crystal-Lattice Orientation from Electron Channeling Patterns in the SEM.The Canadian Mineralogist, 27:15-22. http://canmin.geoscienceworld.org/content/27/1/15 [64] Simpson, C., de Paor, D.G.D., 1993.Strain and Kinematic Analysis in General Shear Zones.Journal of Structural Geology, 15(1):1-20.doi: 10.1016/0191-8141(93)90075-l [65] Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China.Precambrian Research, 78(1-3):79-94.doi: 10.1016/0301-9268(95)00070-4 [66] Stern, R.J., 2007.When and How did Plate Tectonics Begin?Theoretical and Empirical Considerations.Chinese Science Bulletin, 52(5):578-591.doi: 10.1007/s11434-007-0073-8 [67] Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002.The Eastern Tonale Fault Zone:A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃.Journal of Structural Geology, 24(12):1861-1884. doi: 10.1016/S0191-8141(02)00035-4 [68] Tikoff, B., Teyssier, C., 1994.Strain Modeling of Displacement-Field Partitioning in Transpressional Orogens.Journal of Structural Geology, 16(11):1575-1588.doi: 10.1016/0191-8141(94)90034-5 [69] Toy, V.G., Prior, D.J., Norris, R.J., 2008.Quartz Fabrics in the Alpine Fault Mylonites:Influence of Pre-Existing Preferred Orientations on Fabric Development during Progressive Uplift.Journal of Structural Geology, 30(5):602-621.doi: 10.1016/j.jsg.2008.01.001 [70] van Kranendonk, M.J.V., 2011.Cool Greenstone Drips and the Role of Partial Convective Overturn in Barberton Greenstone Belt Evolution.Journal of African Earth Sciences, 60(5):346-352.doi: 10.1016/j.jafrearsci.2011.03.012 [71] van Kranendonk, M.J.V., Collins, W.J., Hickman, A., et al., 2004.Critical Tests of Vertical vs.Horizontal Tectonic Models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia.Precambrian Research, 131(3-4):173-211.doi: 10.1016/j.precamres.2003.12.015 [72] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2012.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating.Acta Geologica Sinica, 86(9):1447-1478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209010.htm [73] Wan, Y.S., Liu, D.Y., Nutman, A., et al., 2012.Multiple 3.8-3.1 Ga Tectono-Magmatic Events in a Newly Discovered Area of Ancient Rocks (the Shengousi Complex), Anshan, North China Craton.Journal of Asian Earth Sciences, 54-55:18-30.doi: 10.1016/j.jseaes.2012.03.007 [74] Wan, Y.S., Liu, D.Y., Song, B., et al., 2005.Geochemical and Nd Isotopic Compositions of 3.8 Ga Meta-Quartz Dioritic and Trondhjemitic Rocks from the Anshan Area and Their Geological Significance.Journal of Asian Earth Sciences, 24(5):563-575.doi: 10.1016/j.jseaes.2004.02.009 [75] Wan, Y.S., Liu, D.Y., Yin, X.Y., et al., 2007.SHRIMP Geochronology and Hf Isotope Composition of Zircons from the Tiejiashan Granite and Supracrustal Rocks in the Anshan Area, Liaoning Province.Acta Petrologica Sinica, 23(2):241-252 (in Chinese with English abstract). http://www.oalib.com/paper/1471958 [76] Wan, Y.S., Song, B., Liu, D.Y., et al., 2006.SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event.Precambrian Research, 149(3-4):249-271.doi: 10.1016/j.precamres.2006.06.006 [77] Wan, Y.S., Song, B., Liu, D.Y., et al., 2001.Geochronology and Geochemistry of 3.8-2.5 Ga Ancient Rock Belt in the Dongshan Scenic Park, Anshan Area.Acta Geologica Sinica, 75(3):363-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200103012.htm [78] Wang, S.L., Zhang, R.H., 1995.U-Pb Isotope Age of Individual Zircon from Biotite Leptynite in the Qidashan Iron Deposit and Its Significance.Mineral Deposits, 14(3):216-219 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ503.002.htm [79] Wang, Y.F., Li, X.H., Jin, W., et al., 2015.Eoarchean Ultra-Depleted Mantle Domains Inferred from ca.3.81 Ga Anshan Trondhjemitic Gneisses, North China Craton.Precambrian Research, 263:88-107.doi: 10.1016/j.precamres.2015.03.005 [80] Wu, F.Y., Xu, Y.G., Gao, S., et al., 2008.Lithospheric Thinning and Destruction of the North China Craton.Acta Petrologica Sinica, 24(6):1145-1174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806001.htm [81] Wu, F.Y., Zhang, Y.B., Yang, J.H., et al., 2008.Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton.Precambrian Research, 167(3-4):339-362.doi: 10.1016/j.precamres.2008.10.002 [82] Wu, F.Y., Zhang, Y.B., Yang, J.H., et al., 2009.Are There any 3.8 Ga Rock at Anshan in the North China Craton?Reply to Comments on Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton by Nutman et al.Precambrian Research, 172:361-363. doi: 10.1016/j.precamres.2009.05.003 [83] Xia, H.R., Liu, J.L., 2011.The Crystallographic Preferred Orientation of Quartz and Its Applications.Geological Bulletin of China, 30(1):58-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201101007.htm [84] Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009.Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics.Acta Petrologica Sinica, 25(7):1721-1736 (in Chinese with English abstract). http://www.oalib.com/paper/1472350 [85] Xypolias, P., Koukouvelas, I.K., 2001.Kinematic Vorticity and Strain Rate Patterns Associated with Ductile Extrusion in the Chelmos Shear Zone (External Hellenides, Greece).Tectonophysics, 338(1):59-77.doi: 10.1016/s0040-1951(01)00125-1 [86] Zhai, M.G., Guo, J.H., Li, Y.G., et al., 2003.Two Linear Granite Belts in the Central-Western North China Craton and Their Implication for Late Neoarchaean-Palaeoproterozoic Continental Evolution.Precambrian Research, 127(1-3):267-283.doi: 10.1016/s0301-9268(03)00191-8 [87] Zhang, J.J., Zheng, Y.D., 1995.Kinematic Vorticity, Polar Mohr Circle and Thier Application in Quantitative Analysis of General Shear Zones.Journal of Geomechanics, 1(3):55-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX503.007.htm [88] Zhang, L.C., Dai, Y.P., Wang, C.L., et al., 2014.Age, Material Sources and Formation Setting of Precambrian BIFs Iron Deposits in Anshan-Benxi Area.J.Earth Sci.Environ., 36(4):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201404001.htm [89] Zhang, L.C., Zhai, M.G., Wan, Y.S., et al., 2012.Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions.Acta Petrologica Sinica, 28(11):3431-3445 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211002.htm [90] Zhang, L.C., Zhai, M.G., Zhang, X.J., et al., 2012.Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Province:Constraints from Geochemistry and SIMS Zircon U-Pb Dating.Precambrian Research, 222-223:325-338.doi: 10.1016/j.precamres.2011.09.007 [91] Zhao, G.C., 2009.Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton:Key Issues and Discussion.Acta Petrologica Sinica, 25(8):1772-1792 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98200908004 [92] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution.Precambrian Research, 103(1-2):55-88.doi: 10.1016/s0301-9268(00)00076-0 [93] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202.doi: 10.1016/j.precamres.2004.10.002 [94] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998.Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting.International Geology Review, 40(8):706-721.doi: 10.1080/00206819809465233 [95] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1999.Thermal Evolution of Two Textural Types of Mafic Granulites in the North China Craton:Evidence for Both Mantle Plume and Collisional Tectonics.Geological Magazine, 136(3):223-240.doi: 10.1017/s001675689900254x [96] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1-2):45-73.doi: 10.1016/s0301-9268(00)00154-6 [97] Zhou, H.Y., Liu, D.Y., Wan, Y.S., et al., 2007.3.3 Ga Magmatic Events in the Anshan Area:New SHRIMP Age and Geochemical Constraints.Acta Petrologica Et Mineralogica, 26(2):123-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200702002.htm [98] Zhou, H.Y., Liu, D.Y., Wan, Y.S., et al., 2008.3.3-3.1 Ga Magmatism in the Dongshan Complex, Anshan Area, Liaoning, China:Evidence from Zircon SHRIMP U-Pb Dating.Geological Bulletin of China, 27(12):2122-2126 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200812022.htm [99] 崔培龙, 2014. 鞍山-本溪地区铁建造型铁矿成矿构造环境与成矿、找矿模式研究(博士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267860.htm [100] 代堰锫, 张连昌, 朱明田, 等, 2013.鞍山陈台沟BIF铁矿与太古代地壳增生:锆石U-Pb年龄与Hf同位素约束.岩石学报, 29(7):2537-2550. http://d.wanfangdata.com.cn/Periodical/ysxb98201307019 [101] 徐仲元, 1991.鞍山地区太古宙铁矿中条带状构造的成因与演化.长春地质学院学报, 21(4):389-396. [102] 范正国, 黄旭钊, 谭林, 等, 2013.鞍山地区地质构造及深部铁矿.地质与勘探, 49(6):1153-1163. http://www.wenkuxiazai.com/doc/3e2d7a4559eef8c75fbfb3ad.html [103] 李婧, 刘永江, 李伟民, 等, 2016.华北克拉通基底花岗质片麻岩变形和流变学研究-以辽西寺儿堡地区为例.大地构造与成矿学, 40(5):891-907. http://d.wanfangdata.com.cn/Periodical/ddgzyckx201605001 [104] 李三忠, 张臻, 孙文军, 等, 2015a.前寒武纪地球动力学(Ⅰ):从宇宙环境到原始地球.地学前缘, 22(6):1-9. http://www.doc88.com/p-1184528299764.html [105] 李三忠, 许立青, 张臻, 2015b.前寒武纪地球动力学(Ⅱ):早期地球.地学前缘, 22(6):10-26. doi: 10.13745/j.esf.2015.06.002.html [106] 李三忠, 戴黎明, 张臻, 2015c.前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征.地学前缘, 22(6):27-45. http://www.doc88.com/p-0083138355919.html [107] 梁琛岳, 刘永江, 孟婧瑶, 等, 2015a.舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算.地球科学, 40(1):116-129. http://www.earth-science.net/WebPage/Article.aspx?id=3017 [108] 刘敦一, 万渝生, 伍家善, 等, 2007.华北克拉通太古宙地壳演化和最古老的岩石.地质通报, 26(9):1131-1138. http://www.doc88.com/p-696158896205.html [109] 刘俊来, 曹淑云, 邹运鑫, 等, 2008.岩石电子背散射衍射(EBSD)组构分析及应用.地质通报, 27(10):1638-1645. doi: 10.3969/j.issn.1671-2552.2008.10.005 [110] 万渝生, 董春艳, 颉颃强, 等, 2012.华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. http://d.wanfangdata.com.cn/Periodical/dizhixb201209008 [111] 万渝生, 刘敦一, 殷小艳, 等, 2007.鞍山地区铁架山花岗岩及表壳岩的锆石SHRIMP年代学和Hf同位素组成.岩石学报, 23(2):241-252. http://d.wanfangdata.com.cn/Periodical/ysxb98200702005 [112] 万渝生, 宋彪, 刘敦一, 等, 2001.鞍山东山风景区3.8-2.5 Ga古老岩带的同位素地质年代学和地球化学.地质学报, 75(3):363-370. http://d.wanfangdata.com.cn/Periodical/dizhixb200103009 [113] 王守伦, 张瑞华, 1995.齐大山铁矿黑云变粒岩单锆石年龄及意义.矿床地质, 14(3):216-219. http://www.cqvip.com/QK/93610X/199503/1822086.html [114] 吴福元, 徐义刚, 高山, 等, 2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报, 24(6):1145-1174. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200806001.htm [115] 夏浩然, 刘俊来, 2011.石英结晶学优选与应用.地质通报, 30(1):58-70. doi: 10.3969/j.issn.1671-2552.2011.01.006 [116] 许志琴, 王勤, 梁凤华, 等, 2009.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用.岩石学报, 25(7):1721-1736. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm [117] 杨秀清, 2013. 辽宁鞍山-本溪变质岩区铁成矿过程研究(硕士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013273000.htm [118] 张进江, 郑亚东, 1995.运动学涡度、极摩尔圆及其在一般剪切带定量分析中的应用.地质力学学报, 1(3):55-64. http://www.cqvip.com/QK/98414X/199503/1712307.html [119] 张连昌, 代堰锫, 王长乐, 等, 2014.鞍山-本溪地区前寒武纪条带状铁建造铁矿时代, 物质来源与形成环境.地球科学与环境学报, 36(4):1-15. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501005067.htm [120] 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211002.htm [121] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8):1772-1792. http://d.wanfangdata.com.cn/Periodical/ysxb98200908004 [122] 周红英, 刘敦一, 万渝生, 等, 2007.鞍山地区3.3 Ga岩浆热事件——SHRIMP年代学和地球化学新证据.岩石矿物学杂志, 26(2):123-129. http://d.wanfangdata.com.cn/Periodical/yskwxzz200702003 [123] 周红英, 刘敦一, 万渝生, 等, 2008.辽宁鞍山地区东山杂岩带3.3~3.1 Ga期间的岩浆作用——锆石SHRIMP U-Pb定年.地质通报, 27(12):2122-2126. doi: 10.3969/j.issn.1671-2552.2008.12.020