The Sedimentary Architecture Characteristics and Fluid System of the Deep Sea Turbidite-Lobe Complex Sandbodies:A Case Study of the Deep-Water Region in the Niger Delta Front
-
摘要: 尼日尔三角洲前缘浊积扇朵叶复合体是西非深水区重要的勘探开发目标,但相关的沉积构成特征与油气水系统研究相对滞后.通过对地震相识别、地震属性刻画、岩心观察及钻井储层进行对比分析,并对研究区的朵叶复合体的沉积构成及储层地质特征进行了研究;依据MDT(mouldar formation dynamics tester)和DST(drill stem testing)测试资料,对朵叶复合体的油气水系统进行了探讨.K油田深海浊积扇朵叶复合砂体在地震剖面上外形呈丘状,内部为弱反射,与泥岩分界面为强振幅反射面,在空间上具有侧向和沿古水流方向迁移的多期叠置特征,平面上呈扇形或"舌状";测井相以钟形或箱型为主,与周围泥岩呈突变接触;每期朵叶均由朵叶主体和朵叶侧缘构成,重力流水道较为发育.朵叶复合体中的块状砂岩是油田开发的优质储层,该类砂体分布面积相对较大,横向连续性好;目的层段发育多套独立的朵叶复合体油气水系统,每个单一的朵叶复合体油藏上下均受厚度较大的泥岩分隔,具有形成简单完整、统一压力系统、高速渗流能力且水体能量充足的高产油藏的有利条件.K油田朵叶复合体内部结构清晰、砂体侧向连通性好且具有统一油水系统,可作为大陆边缘三角洲前缘深水区富泥背景下深水油气田勘探和开发研究的典型范例.Abstract: The turbidite lobe complex sandbodies of the Niger Delta front are major oil and gas exploration targets in the deep-water area of the West Africa. But the study of the sedimentary architecture and fluid system is still insufficient. Based on the seismic facies, seismic attributes, core data and drilling reservoir correlation analysis, the characteristics of the sedimentary architecture and geological characteristics of the reservoirs in the study area were comprehensively studied. Besides, the fluid system of the lobe complex sandbodies is also discussed according to the MDT (mouldar formation dynamics tester) and DST (drill stem testing) data. In seismic profiles, the lobe complex sandbodies always with moderate amplitude characteristics and multiple stages can be seen upward. The sandbodies display migration in both lateral and along the paleocurrent direction and present meandering strip on the plane. The log facies of the complex sandbodies mainly correspond to bell shaped-box type, and always with a mutation contact with surrounding mudstone. Each lobe is composed of main lobe and side lobe, and the gravity flow channel is widely developed. The massive sandstone is a high quality reservoir in the oilfield, and the distribution area of the sandbodies is relatively on large scale. The sandbodies developed several sets of fluid system and the lobe reservoir was controlled by mudstone thickness partition, which may have favorable conditions to form a simple and unified pressure system with sufficient water energy. Thus, the sedimentary architecture of the complex sandbodies in the K oilfield is clear, and it has a unified fluid system, which can be used as a typical example of the petroleum exploration in the deep water area and mud-rich setting.
-
Key words:
- Niger Delta /
- lobe complex sandbodies /
- sedimentary architecture /
- fluid system /
- petroleum geology
-
图 3 K-2井朵叶复合体测井相与地震相特征
剖面位置见图 2
Fig. 3. K-2 well log facies and seismic facies of the channel-lobe complex and the lobe complex
表 1 K油田D~H油组朵叶类型划分
Table 1. The lobe classification of D-H reservoir for K oilfield
相 微相 垂向层序沉积特征 油组 深海浊积扇 水道发育的朵叶复合体 常位于水道末端,朵叶体中晚期多发育废弃水道,规模大于决口朵叶体.岩性为厚砂层、细~粗砂与泥岩互层,发育向上变粗的沉积序列. D油组 水道不发育的朵叶复合体 位于水道侧翼或前端,其沉积物比水道化朵叶粒度细,块状层理. E、F、G油组 表 2 K油田重力流水道和朵叶复合体储层物性特征统计
Table 2. The reservoir physical characteristics statistical table for gravity flow channel and lobe complex in K oilfield
砂体成因类型 孔隙度(%)范围
平均值(样品数)渗透率(mD)范围
平均值(样品数)油组 重力流水道 14.05~36.74
24.21(158)20.59~4 505.31
1 413.05(158)A-a、A-b、A-c、B、C 朵叶复合体 19.53~31.63
24.99(50)216.43~3 585.43
1 107.46(50)A-d、D、E、F、G 表 3 储层类岩石相物性特征统计
Table 3. The statistical table about the physical properties of the reservoir lithofacies
岩石相类型 孔隙度变化范围(%)
算术平均值(样品数)渗透率变化范围(mD)
算术平均值/几何平均值(样品数)交错层状砂岩 23.83~37.34
31.02(35)22.17~2 806.92
707.10/469.20(35)块状中~细粒砂岩 17.23~33.94
24.82(89)23.71~5 883.33
995.00/546.90(89)块状砾质~粗粒砂岩 16.53~30.64
23.25(109)52.78~4 531.52
1 409.30/890.50(109)块状含泥屑砾质~粗粒砂岩 21.76~24.58
20.34(12)0.94~2 743.51
735.80/387.30(12)底部滞留砂砾岩 14.05~24.90
18.25(32)20.59~2 868.70
966.60/609.70(32) -
[1] Alfhild, L.E., Bjørn, U., Henning, O., 1997.Stochastic Simulation of Porosity and Acoustic Impedance Conditioned to Seismic Data and Well Data.SEG Expanded Abstracts, 16(1):1614. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6075 [2] Blakely, 1995.Three-Dimensional Analysis of Sedimentary Basins Using Regional Gravity and Magnetic Data:A Case Study from the Southwestern United States.Geophysical Interpretation/Case Histories, Brazil, 31-33. [3] Bu, F.Q., Zhang, Y.K., Yang, B.Q., et al., 2015.Technique and Application of Fine Connectivity Characterization of Composite Deep Water Turbidite Channels.Fault-Block Oil & Gas Field, 22(3):309-313 (in Chinese with English abstract). [4] De Ruig, M.J., Hubbard, S.M., 2006.Seismic Facies and Reservoir Characteristics of a Deep-Marine Channel Belt in the Molasse Foreland Basin, Puchkirchen Formation, Austria.AAPG Bulletin, 90(5):735-752. doi: 10.1306/10210505018 [5] Deng, R.J., Deng, Y.H., Yu, S., et al., 2008.Hydrocarbon Geology and Reservoir Formation Characteristics of Niger Delta Basin.Petroleum Exploration and Development, 6(8):755-762 (in Chinese with English abstract). [6] Deptuck, M.E., Piper, D.J.W., Savoye, B., et al., 2008.Dimensions and Architecture of Late Pleistocene Submarine Lobes off the Northern Margin of East Corsica.Sedimentology, 55(4):869-898. doi: 10.1111/j.1365-3091.2007.00926.x [7] Dixon, J.F., Steel, R.J., Olariu, C., 2012.Shelf-Edge Delta Regime as a Predictor of Deep-Water Deposition.Journal of Sedimentary Research, 82(9):681-687. doi: 10.2110/jsr.2012.59 [8] Gardner, M.H., Borer, J.M., Melick, J.J., et al., 2003.Stratigraphic Process-Response Model for Submarine Channels and Related Features from Studies of Permian Brushy Canyon Outcrops, West Texas.Marine and Petroleum Geology, 20(6):757-787. doi: 10.1007/s00367-012-0280-4 [9] Hadler-Jacobsen, F., Johannessen, E.P., Ashton, N, et al., 2005.Submarine Fan Morphology and Lithology Distribution:A Predictable Function of Sediment Delivery, Gross Shelf-to-Basin Relief, Slope Gradient and Basin Topography.Petroleum Geology of Northwest Europe:Proceedings of the Conference, 6:1121-1145. http://www.academia.edu/2335627/Stratigraphic_evolution_of_the_upper_slope_and_shelf_edge_in_the_Karoo_Basin_South_Africa [10] Han, W.M., Deng, Y.H., Yu, S., et al., 2012.Challenges Faced with Deep Water Exploration and Research in Niger Delta and Its Strategies.Acta Geologic Sinica, 86(4):671-678 (in Chinese with English abstract). http://engineering.cae.cn/fem/EN/abstract/abstract18853.shtml [11] Hodgson, D.M., Kane, I.A., Flint, S.S., et al., 2016.Time-Transgressive Confinement on the Slope and the Progradation of Basin-Floor Fans:Implications for the Sequence Stratigraphy of Deep-Water Deposit.Journal of Sedimentary Research, 86(2):73-86. doi: 10.2110/jsr.2016.3 [12] Hodgson, D.M., 2009.Distribution and Origin of Hybrid Beds in Sand-Rich Submarine Fans of the Tanqua Depocentre, Karoo Basin, South Africa.Marine and Petroleum Geology, 26(10):1940-1956. doi: 10.1016/j.marpetgeo.2009.02.011 [13] Jiang, S., Wang, H., 2008.Sequence Stratigraphy Characteristics and Sedimentary Elements in Deepwater.Earth Science, 33(6):825-833 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200806011 [14] Kim, Y., Kim, W., Cheong, D., et al., 2013.Piping Coarse-grained Sediment to a Deep-Water Fan through a Shelf-Edge Delta Bypass Channel:Tank Xperiments.Journal of Geophysical Research, 118(4):2279-2291. http://independent.academia.edu/DCheong1 [15] Koo, W.G., Olariu, C., Steel, R.J., et al., 2016.Coupling between Shelf-Edge Architecture and Submarine-Fan Growth Style in a Supply-Dominated Margin.Journal of Sedimentary Research, 86(6):613-628. doi: 10.2110/jsr.2016.42 [16] Labourdette, R., 2007.Integrated Three-Dimensional Modeling Approach of Stacked Turbidite Channels.AAPG Bulletin, 91(11):1603-1618. doi: 10.1306/06210706143 [17] Li, C.R., Pan, J.P., Liu, Z.H., 2007.Tectonic Setting of the World's Giant Oil and Gas Fieldsand Its Revelation for Hydrocarbon Exploration.Offshore Oil, 27(3):34-40 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780080217352500227 [18] Li, L., Wang, Y.M., Huang, Z.C., et al., 2008.Study on Sequence Stratigraphy and Seismic Facies in Deep-Water Niger Delta.Acta Sedmentologica Sinica, 26(3):407-416 (in Chinese with English abstract). http://geologos.com.pl/pdf/Geologos_17_3_Reijers.pdf [19] Li, Y., Wang, X., Bao, Z.D., et al., 2012.Sedimentary Characteristics and Model of Turbidity Channel in Passive Continental Margin Basin-A Case Study of X Oilfield in the West African Basin.Inner Mongolia Petrochemical Industry, (9):109-113 (in Chinese with English abstract). [20] Lowrie, W., 1997.Fundamentals of Geophysics.Cambridge University Press, U.K.. [21] Lv, M., Wang, Y., Chen, Y., 2008.A Discussion on Origins of Submarine Fan Deposition Model and Its Exploration Significance in Nigeria Deep-Water Area.China Offshore Oil and Gas, 20(4):275-282 (in Chinese with English abstract). doi: 10.1007/s12182-013-0261-x [22] Lv, X.G., Wang, D.F., Jiang, H.F., 2000.Rservior Geologic Model and Random Modeling Technique.Petroleum Geology & Oilfield Development in Daqing, 19(1):10-13 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/5454468/ [23] Marchand, A., Apps, G., Weiguo, L., et al., 2015.Depositional Processes and Impact on Reservoir Quality in Deepwater Paleogene Reservoirs, US Gulf of Mexico.AAPG Bulletin, 99(9):1635-1648. doi: 10.1306/04091514189 [24] Menno, J.D.R., Stephen, M.H., 2006.Seismic Fades and Reservoir Characteristics of a Deep-Marine Channel Belt in the Molasse Foreland Basin, Puchkirchen Formation, Austria.AAPG Bulletin, 90(5):735-752. doi: 10.1306/10210505018 [25] Morris, E.A., Hodgson, D.M., Flint, S.S., et al., 2014.Sedimentology, Stratigraphic Architecture, and Depositional Context of Submarine Frontal-Lobe Complexes.Journal of Sedimentary Research, 84(9):763-780. doi: 10.2110/jsr.2014.61 [26] Mu, L.X., Jia, W.R., Jia, A.L., 1994.Some New Methods for Establishing Quantitative Reservoir Model.Petroleum Exploration and Development, 21(4):82-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK404.015.htm [27] Mulder, T., Callec, Y., Parize, D., et al., 2010.High-Resolution Analysis of Submarine Lobes Deposits:Seismic-Scale Outcrops of the Lauzanier Area (SE Alps, France).Sedimentary Geology, 229(3):160-191. doi: 10.1016/j.sedgeo.2009.11.005 [28] Mutti, E., 1977.Distinctive Thin-Bedded Turbidite Facies and Related Depositional Environments in the Eocene Hecho Group (South-Central Pyrenees, Spain).Sedimentology, 24(24):107-131. https://ar.scribd.com/document/326264625/Sharman-PhD-Dissertation [29] Nettleton, L.L., 1971.Elementary Gravity and Magnetics for Geologists and Seismologists.AAPG Bulletin, 5(10):1815-1838. [30] Normark, W.R., 1970.Growth Patterns of Deep Sea Fans.AAPG Bulletin, 54(11):2170-2195. [31] Pang, X., Zhu, M., Liu, B.J., et al., 2014.The Mechanism of Gravity Flow Deposition in Baiyun Sag Deepwater Area of the Northern South China Sea.Acta Petrolei Sinica, 35(4):646-653 (in Chinese with English abstract). [32] Phelps, G., 2016.Forward Modeling of Gravity Data Using Geostatistically Generated Subsurface Density Variations.Geophysics, 81(5):81-94. doi: 10.1190/geo2015-0663.1 [33] Phillips, J.D., 2010.Estimating Structural Dip from Gravity and Magnetic Profile Data.Seg Technical Program Expanded Abstracts, 1202-1206. [34] Posamentier, H.W., Kolla, V., 2003.Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings.Journal of Sedimentary Research, 73(3):367-388. doi: 10.1306/111302730367 [35] Posamentier, H.W., Vail, P.R., 1988.Eustatic Controls on Clastic Deposition:Ⅱ, Sequence and Systems Tract Models.In:Wilgus, C.K., Hastings, B.S., Ross, C.A., et al., eds., Sea-Level Changes:An Integrated Approach.SEPM, Special Publication, 42:125-154. [36] Prélat, A., Hodgson, D.M., Flint, S.S., 2009.Evolution, Architecture and Hierarchy of Distributary Deep-Water Deposits:A High-Resolution Outcrop Investigation from the Permian Karoo Basin, South Africa.Sedimentology, 56(7):2132-2154. doi: 10.1111/sed.2009.56.issue-7 [37] Qu, H., Zheng, M., Li, J.Z., et al., 2010.Advanced of Deep-Water Hydrocarbon Explorations in Globle Passive Continental Margin and Their Implication.Natural Gas Geoscience, 21(2):193-200 (in Chinese with English abstract). [38] Reading, H.G., Richards, M., 1994.Turbidite Systems in Deep-Water Basin Margins Classified by Grain Size and Feeder System.AAPG Bulletin, 78(5):792-822. http://www.doc88.com/p-319747621107.html [39] Richard, M., Bowman, M., 1998.Submarine Fans and Related Depositional Systems:Ⅱ.Variability in Reservoir Architecture and Wireline Log Character.Marine and Petroleum Geology, 15(8):821-839. doi: 10.1016/S0264-8172(98)00042-7 [40] Sawyer, D.E., Flemings, P.B., Shipp, R.C., et al., 2007.Seismic Geomorphology, Lithology, and Evolution of the Late Pleistocene Mars-Ursa Turbidite Region, Mississippi Canyon Area, Northern Gulf of Mexico.AAPG Bulletin, 91(2):215-234. doi: 10.1306/08290605190 [41] Schwarz, E., Arnott, R.W.C., 2007.Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera):Implications for Reservoir Characterization.Journal of Sedimentary Research, 77(1):89-109. [42] Sharpe, D.R., Russell, H.A.J., 2016.A Revised Depositional Setting for Halton Sediments in the Oak Ridges Moraine Area, Ontario.Canadian Journal of Earth Sciences, 53(3):281-303. doi: 10.1139/cjes-2015-0150 [43] Straub, K.M., Paola, C., Mohrig, D., et al., 2009.Compensational Stacking of Channelized Sedimentary Deposits.Journal of Sedimentary Research, 79(9):673-688. doi: 10.2110/jsr.2009.070 [44] Straub, K.M., Pyles, D.R., 2012.Quantifying the Hierarchical Organization of Compensation in Submarine Fans Using Surface Statistics.Journal of Sedimentary Research, 82(11):889-898. doi: 10.2110/jsr.2012.73 [45] Talling, P.J., Amy, L.A., Wynn, R.B., et al., 2004.Beds Comprising Debrite Sandwiched within Co-Genetic Turbidite:Origin and Widespread Occurrence in Distal Depositional Environments.Sedimentology, 51(1):163-194. doi: 10.1111/sed.2004.51.issue-1 [46] Twichell, D.C., Schwab, W.C., Nelson, C.H., et al., 1992.Characteristics of a Sandy Depositional Lobe on the Outer Mississippi Fan from SeaMARC IA Sidescan Sonar Images.Geology, 20(8):983-90. doi: 10.1007/978-1-4684-8276-8_19 [47] van Wagoner, J.C., Mitchum, R.M., Posamentier, H.W., et al., 1987.Seismic Stratigraphy Interpretation Using Sequence Stratigraphy, Part 2:Key Definitions of Sequence Stratigraphy.In:Bally, A.W., ed., Atlas of Seismic Stratigraphy.American Association of Petroleum Geologists.Studies in Geology, 27:11-14. [48] Walker, R.G., 1973.Turbidite Facies and Facies Associations.Turbidite and Deep-Water Sedimentation, 119-157. [49] Wan, Q.H., Wu, S.H., Wang, S., et al., 2014.Multi-Parameter Technology on the Study of Flow Units Division and Their Distribution in Deep-Water Turbidity Channel Reservoir.Geological Journal of China Universities, 20(2):317-323 (in Chinese with English abstract). [50] Wang, D.W., Wu, S.G., Dong, D.D., et al., 2009.Seismic Characteristics of Quaternary Mass Transport Deposition in Qiongdongnan Basin.Marine Geology & Quaternary Geology, 29(3):69-74 (in Chinese with English abstract). [51] Wang, Z., Chen, C.Y., Zhao, L., et al., 2010.Present Situation and Challenge of Exploration and Production for Deep Water Oil and Gas in the Whole World.Sino-Global Energy, 15(1):46-48 (in Chinese with English abstract). [52] Wang, Z.Z., Shi, Z.Z., 1999.The Technologies of Advanced Reservoir Characterization.Petroleum Industry Press, Beijing (in Chinese). [53] Wu, S.G., Qin, Y.S., 2009.The Reaearch of Deepwater Depositional System in the Northern South China Sea.Acta Sedmentologica Sinica, 27(5):922-930 (in Chinese with English abstract). [54] Xu, C.M., Cronin, T.P., McGinness, T.E., et al., 2009.Middle Atokan Sediment Gravity Flows in the Red Oak Field, Arkoma Basin, Oklahoma:A Sedimentary Analysis Using Electrical Borehole Images and Wireline Logs.AAPG Bulletin, 93(1):1-29. doi: 10.1306/09030808054 [55] Yu, S., Cheng, T., Chen, Y., 2012.Depositional Characteristics of Deepwater Systems in the Niger Delta Basin.Earth Science, 37(4):763-770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204016.htm [56] Zhao, P.F., Li, D., Yang, X.H., et al., 2014.Sedimentary Architecture Characteristics of the Gravity Flow Channel Sandbodies in the Niger Delta Front.Geological Science and Technology Information, 33(2):28-37 (in Chinese with English abstract). [57] Zhao, Y.J., Bao, Z.D., Wang, X., et al., 2012.Control Factors of a Submarine Fan in Niger Basin.Journal of Xi'an Shiyou University (Natural Science Edition), 27(2):6-12 (in Chinese with English abstract). doi: 10.1007%2FBF03182838.pdf [58] Zheng, R.C., Li, Y., Dai, C.C., et al., 2012.Depositional Features of Sandy Debris Flow of Submarine Fan in Zhujiang Formation, Baiyun Sag.Journal of Jilin University (Earth Science Edition), 42(6):1581-1589 (in Chinese with English abstract). https://www.scientific.net/amr.518-523.5605.pdf [59] Zhou, J.Y., Wu, C.L., Mao, X.P., et al., 1998.Overview about Reservoir Model and Simulation in Petroliferous Basin.Geological Science and Technology Information, 17(1):67-72 (in Chinese with English abstract). http://www.meeting.edu.cn/meeting/UploadPapers/1281432396218.pdf [60] Zou, C.N., Zai, G.M., Zhang, G.Y., et al., 2015.Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources.Petroleum Exploration and Development, 42(1):13-25 (in Chinese with English abstract). [61] 卜范青, 张宇焜, 杨宝泉, 等, 2015.深水复合浊积水道砂体连通性精细表征技术及应用.断块油气田, 22(3):309-313. http://d.wanfangdata.com.cn/Periodical/dkyqt201503009 [62] 邓荣敬, 邓运华, 于水, 等, 2008.尼日尔三角洲盆地油气地质与成藏特征.石油勘探与开发, 6(8):755-762. http://d.wanfangdata.com.cn/Periodical/syktykf200806020 [63] 韩文明, 邓运华, 于水, 等, 2012.尼日尔三角洲深水勘探研究面临的挑战及其对策.地质学报, 86(4):671-678. http://d.wanfangdata.com.cn/Periodical/dizhixb201204013 [64] 蒋恕, 王华, 2008.深水沉积层序特点及构成要素.地球科学, 33(6):825-833. http://earth-science.net/WebPage/Article.aspx?id=1774 [65] 李春荣, 潘继平, 刘占红, 2007.世界大油气田形成的构造背景及其对勘探的启示.海洋石油, 27(3):34-40. http://d.wanfangdata.com.cn/Periodical/hysy200703005 [66] 李磊, 王英民, 黄志超, 等, 2008.尼日尔三角洲深水区层序地层及地震相研究.沉积学报, 26(3):407-416. http://d.wanfangdata.com.cn/Periodical/cjxb200803007 [67] 李燕, 王星, 鲍志东, 等, 2012.被动大陆边缘盆地浊积水道沉积特征及模式——以西非地区某油田为例.内蒙古石油化工, (9):109-113. http://d.wanfangdata.com.cn/Periodical/nmgsyhg201209050 [68] 吕明, 王颖, 陈莹, 2008.尼日利亚深水区海底扇沉积模式成因探讨及勘探意义.中国海上油气, 20(4):275-282. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc200804016 [69] 吕晓光, 王德发, 姜洪福, 2000.储层地质模型及随机建模技术.大庆石油地质与开发, 19(1):10-13. http://d.wanfangdata.com.cn/Periodical/dqsydzykf200001004 [70] 穆龙新, 贾文瑞, 贾爱林, 1994.建立定量储层地质模型的新方法.石油勘探与开发, 21(4):82-86. http://d.wanfangdata.com.cn/Periodical/trqgy200203017 [71] 庞雄, 朱明, 柳保军, 等, 2014.南海北部珠江口盆地白云凹陷深水区重力流沉积机理.石油学报, 35(4):646-653. doi: 10.7623/syxb201404004 [72] 瞿辉, 郑民, 李建忠, 等, 2010.国外被动陆缘深水油气勘探进展及启示.天然气地球科学, 21(2):193-200. http://d.wanfangdata.com.cn/Conference/7815626 [73] 万琼华, 吴胜和, 王石, 等, 2014.深水浊积水道储层多参数流动单元划分方法及其分布规律研究.高校地质学报, 20(2):317-323. http://d.wanfangdata.com.cn/Periodical/gxdzxb201402017 [74] 王大伟, 吴时国, 董冬冬, 等, 2009.琼东南盆地第四纪块体搬运体系的地震特征分析.海洋地质与第四纪地质, 29(3):69-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hydz200903013&dbname=CJFD&dbcode=CJFQ [75] 王震, 陈船英, 赵林, 等, 2010.全球深水油气资源勘探开发现状及面临的挑战.中外能源, 15(1):46-48. http://d.wanfangdata.com.cn/Periodical/zwny201001007 [76] 王志章, 石占中, 1999.现代油藏描述技术.北京:石油工业出版社. [77] 吴时国, 秦蕴珊, 2009.南海北部陆坡深水沉积体系研究.沉积学报, 27(5):922-930. http://d.wanfangdata.com.cn/Periodical/dqwlxb201112018 [78] 于水, 程涛, 陈莹, 2012.尼日尔三角洲盆地深水沉积体系特征.地球科学, 37(4):763-770. http://earth-science.net/WebPage/Article.aspx?id=2282 [79] 赵鹏飞, 李丹, 杨香华, 等, 2014.尼日尔三角洲前缘重力流水道砂体的沉积构成特征.地质科技情报, 33(2):28-37. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201402006&dbname=CJFD&dbcode=CJFQ [80] 赵艳军, 鲍志东, 王星, 等, 2012.尼日尔盆地某深水海底扇发育的控制因素.西安石油大学学报(自然科学版), 27(2):6-12. http://d.wanfangdata.com.cn/Periodical/xasyxyxb201202002 [81] 郑荣才, 李云, 戴朝成, 等, 2012.白云凹陷珠江组深水扇砂质碎屑流沉积学特征.吉林大学学报(自然科学版), 42(6):1581-1589. http://d.wanfangdata.com.cn/Conference/7857646 [82] 周江羽, 吴冲龙, 毛小平, 等, 1998.含油气盆地储层建模和模拟研究评述.地质科技情报, 17(1):67-72. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq801.014&dbname=CJFD&dbcode=CJFQ [83] 邹才能, 翟光明, 张光亚, 等, 2015.全球常规-非常规油气形成分布、资源潜力及趋势预测.石油勘探与开发, 42(1):13-25. doi: 10.11698/PED.2015.01.02