• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    源-汇沉积过程的深时古气候意义

    杨江海 马严

    杨江海, 马严, 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
    引用本文: 杨江海, 马严, 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
    Yang Jianghai, Ma Yan, 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
    Citation: Yang Jianghai, Ma Yan, 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121

    源-汇沉积过程的深时古气候意义

    doi: 10.3799/dqkx.2017.121
    基金项目: 

    中央高校基本科研业务费专项资金资助项目 CUG160604

    国家自然科学基金项目 41572078

    详细信息
      作者简介:

      杨江海(1984-), 副教授, 主要从事沉积地质学方向的教学和科研工作

    • 中图分类号: P532

    Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes

    • 摘要: 源-汇沉积过程的实质是沉积物的产生、搬运和沉积.陆表岩石的风化、侵蚀是沉积物产生的主要过程,受气候和构造因素的联合控制.现代陆表风化层研究揭示,在特定风化机制下(供给限制型化学风化)表层土壤的化学风化强度主要与陆表温度和湿度(降雨量)有关,其关系可通过建立经验气候转换方程来描述.经源-汇过程,这些气候信息可随陆源碎屑沉积物从源到汇传递,并最终可能形成沉积记录而保存于地层序列中.由于源-汇系统的复杂性和自发波动性,气候信息传递受源区侵蚀和沉积路径等的影响和扰动,具有明显的选择性,其时效性与气候变化本身的幅度和频度有关.基于陆源碎屑沉积进行深时古气候研究需要加深对源-汇沉积过程的理解,并考虑沉积系统响应和可能气候变化的时间尺度.

       

    • 图  1  沉积物的路径系统的简化模型

      由侵蚀、搬运和堆积3个区域构成,受控于构造隆升、沉降和气候条件;修改自Castelltort and Driessche(2003)Romans et al.(2016)

      Fig.  1.  2-D profile of a general sediment-routing system

      图  2  源-汇沉积系统与陆源碎屑沉积物/岩的形成过程

      Fig.  2.  Source-to-Sink sedimentary system with the production processes of terrigenous clastic sediments/sedimentary rocks

      图  3  土壤中可溶组分(a)和稳定组分(b)的质量平衡简图

      土壤由下伏未风化基岩转变而成,其可溶组分经物理和化学侵蚀而丢失,稳定组分(如元素Zr)仅通过物理侵蚀而丢失,在平衡状态下土壤厚度(h)保持不变(修改自Riebe et al., 2003)

      Fig.  3.  Schematic showing mass balances of soluble (a) and insoluble (b) soil components

      图  4  化学风化机制的(a)概念模型和(b)数学模型简图

      修改自Ferrier et al.(2016)

      Fig.  4.  Schematic graphs for conceptual (a) and mathematic models of supply-limited and kinetic-limited weathering (b)

      图  5  沉积记录响应时间与气候变化频度、幅度的关系

      修改自Jerolmack and Paola(2010)

      Fig.  5.  Responding of sedimentary records to the timescale and frequency of climate change

    • [1] Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(17):274-276.doi: 10.1038/nature06586
      [2] Armitage, J.J., Jones, T.D., Duller, R.A., et al., 2013.Temperal Buffering of Climate-Driven Sediment Flux Cycles by Transient Catchment Response.Earth and Planetary Science Letters, 369-370:200-210.doi: 10.1016/j.epsl.2013.03.020
      [3] Berner, R.A., 2006.Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model.American Journal of Science, 306:295-302.doi: 10.2475/05.2006.01
      [4] Blöthe, J.H., Korup, O., 2013.Millennial Lag Times in the Himalayan Sediment Routing System.Earth and Planetary Science Letters, 382:38-46.doi: 10.1016/j.epsl.2013.08.044
      [5] Bouchez, J., Gaillarder, J., France-Lanord, C., et al., 2011.Grain Size Control of River Suspended Sediment Geochemistry:Clues from Amazon River Depth Profiles.Geochemistry Geophysics Geosystems, 12(3):428-452.doi: 10.1029/2010GC003380
      [6] Bridge, J., Demicco, R., 2008.Earth Surface Processes, Landforms and Sediment Deposits.Cambridge University Press, New York.
      [7] Castelltort, S., Driessche, J.V.D., 2003.How Plausible are High-Frequency Sediment Supply-Driven Cycles in the Stratigraphic Record? Sedimentary Geology, 157(1-2):3-13.doi: 10.1016/S0037-0738(03)00066-6
      [8] Chen, Z., Ding, Z., Tang, Z., et al., 2017.Paleoweathering and Paleoenvironmental Change Recorded in Lacustrine Sediments of the Early to Middle Eocene in Fushun Basin, Northeast China.Geochemistry Geophysics Geosystems, 18:41-51.doi: 10.1002/2016GC006573
      [9] Chetelat, B., Liu, C.Q., Wang, Q., et al., 2013.Assessing the Influence of Lithology on Weathering Indices of Changjiang River Sediments.Chemical Geology, 359:108-115.doi: 10.1016/j.chemgeo.2013.09.018
      [10] Clift, P.D., Hodges, K.V., Heslop, D., et al., 2008.Correlation of Himalayan Exhumation Raes and Asian Monsoon History.Nature Geoscience, 1:875-880.doi: 10.1038/ngeo351
      [11] Clift, P.D., Wan, S., Blusztajn, J., 2014.Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea:A Review of Competing Proxies.Earth-Science Reviews, 130:86-102.doi: 10.1016/j.earscirev.2014.01.002
      [12] Cox, R., Lowe, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9
      [13] Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51:181-203.doi: 10.1016/S0024-4937(99)00063-8
      [14] Dere, A.L., White, T.S., April, R.H., et al., 2015.Mineralogical Transformations and Soil Development in Shale across a Latitudinal Climosequence.Soil Sci.Soc.Am.J., 80:623-636.doi: 10.2136/sssaj2015.05.0202
      [15] Dere, A.L., White, T.S., April, R.H., et al., 2013.Climate Dependence of Feldspar Weathering in Shales Soils along a Latitudinal Gradient.Geochimica et Cosmochimica Acta, 122:101-126.doi: 10.1016/j.gca.2013.08.001
      [16] Ding, H., Ma, D., Yao, C.et al., 2009.Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China.Chinese Science Bulletin, 54:3283-3294.doi: 10.1007/s11434-009-0443-5
      [17] Dixon, J.L., Hartshorn, A.S., Heimsath, A.M., et al., 2012.Chemical Weathering Response to Tectonic Forcing:A Soils Perspective from the San Gabriel Mountains, California.Earth and Planetary Science Letters, 323-324:40-49.doi: 10.1016/j.epsl.2012.01.010
      [18] Donders, T.H., Weijers, J.W.H., Munsterman, D.K., et al., 2009.Strong Climate Coupling of Terrestrial and Marine Environments in the Miocene of Northwest Europe.Earth and Planetary Science Letters, 281:215-225.doi: 10.1016/j.epsl.2009.02.034
      [19] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921
      [20] Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004.New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China.Chinese Science Bulletin, 49(13):1420-1427.doi: 10.1360/03wd0572
      [21] Ferrier, K.L., Kirchner, J.W., 2008.Effects of Physical Erosion on Chemical Denudation Rates:A Numerical Modeling Study of Soil-Mantled Hillslopes.Earth and Planetary Science Letters, 272:591-599.doi: 10.1016/j.epsl.2008.05.024
      [22] Ferrier, K.L., Riebe, C.S., Hahm, W.J., 2016.Testing for Supply-Limited and Kinetic-Limited Chemical Erosion in Field Measurements of Regolith Production and Chemical Depletion.Geochemistry Geophysics Geosystems, 17:2270-2285.doi: 10.1002/2016GC006273
      [23] Foreman, B.Z., Heller, P.L., Clementz, M.T., 2012.Fluvial Response to Abrupt Global Warming at the Palaeocene/Eocene Boundary.Nature, 49:92-95.doi: 10.1038/nature11513
      [24] Gabet, E.J., Mudd, S.M., 2009.A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates.Geology, 37(2):151-154.doi: 10.1130/G25270A.1
      [25] Gaillardet, J., Dupré, B., Allegrè, C.J., 1999.Geochemistry of Large River Suspended Sediments:Silicate Weathering or Recycling Tracer? Geochimica et Cosmochimica Acta, 63(23/24):4037-4051.doi: 10.1016/S0016-7037(99)00307-5
      [26] Garzanti, E., Andó, S., France-Lanord, C., et al., 2011.Mineralogical and Chemical Variability of Fluvial Sediments 2.Suspended-Load Silt (Ganga-Brahmaputra, Bangladesh).Earth and Planetary Science Letters, 302:107-120.doi: 10.1016/j.epsl.2010.11.043
      [27] Garzanti, E., Doglioni, C., Vezzoli, G.et al., 2007.Orogenic Belts and Orogenic Sediment Provenance.The Journal of Geology, 115:315-334.doi: 10.1086/512755
      [28] Garzanti, E., Padoan M., Setti, M., et al., 2013.Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds.Geochemistry Geophysics Geosystems, 14(2):292-316.doi: 10.1002/ggge.20060
      [29] Garzanti, E., Padoan, M., Setti, M., et al., 2014.Provenance versus Weathering Control on the Composition of Tropical River Mud Southern Africa.Chemical Geology, 366:61-74.doi: 10.1016/j.chemgeo.2013.12.016
      [30] Ge, H.M., Zhang, C.L., 2016.Advances in GDGT Research in Chinese Marginal Seas:A Review.Science China:Earth Sciences, 46(4):473-488 (in Chinese).doi: 10.1007/s11430-015-5242-z
      [31] Gehrels, G., 2014.Detrital Zircon U-Pb Geochronology Applied to Tectonics.Annual Review of Earth and Planetary Sciences, 42:127-149.doi: 10.1146/annurev-earth-050212-124012
      [32] Goodbred-Jr., S.L., 2003.Response of the Ganges Dispersal System to Climate Change:A Source-to-Sink View since the Last Inerstade.Sedimentary Geology, 162:83-104.doi: 10.1016/S0037-0738(03)00217-3
      [33] Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6
      [34] Hietpas, J., Samson, S., Moecher, D., et al., 2010.Recovering Tectonic Events from the Sedimentary Record:Detrital Monazite Plays in High Fidelity.Geology, 38(2):167-170.doi: 10.1130/G30265.1
      [35] Hu, X., Garzanti, E., Moore, T.et al., 2015.Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma).Geology, 43(10):859-862.doi: 10.1130/G36872.1
      [36] Jerolmack, D.J., Paola, C., 2010.Shredding of Environmental Signals by Sediment Transport.Geophysical Research Letters, 37:L19401.doi: 10.1029/2010GL044638
      [37]