Restoration of the Paleo-Provenance of the Es12 in the Eastern of Shijiutuo Uplift and Its Control on Reservoir
-
摘要: 物源区原始剥蚀地貌的恢复以及与砂体、优质储层之间的关系是源-汇系统分析中非常重要的部分.利用钻井、三维地震以及分析化验等资料,恢复了石臼坨凸起东段围区沙一二段储层的古物源分布,并探讨了古物源对储层的影响.结果表明:(1)研究区沙一二段发育近源扇三角洲砂砾岩储层,东部古物源的母岩类型为白垩系中酸性火成岩,西部古物源的母岩类型为中生界碎屑岩夹薄层中酸性火成岩,均非现今残留的基岩分布.(2)受母岩差异的影响,东部火成岩的母岩剥蚀后更容易形成规模较大的砂砾岩体.(3)受物源区母岩和沉积区储层成岩作用差异的共同影响,东部储层中中酸性火成岩岩屑和砾石等易溶组分含量高,粒度较粗,以碳酸盐胶结为主,在成岩过程中,中酸性火成岩砾石、岩屑易遭受强烈溶蚀作用,次生孔隙发育,但受碳酸盐矿物进一步强烈的胶结,储层物性呈低孔低渗特点;西部储层中变质岩岩屑和石英等难溶组分含量高,填隙物以粘土类为主,原生孔隙发育,储层物性呈中高孔高渗的特点.Abstract: The restoration of the original eroded landforms of the source area and its association with sand bodies and high quality reservoirs are very important parts of the Source-to-Sink system analysis.Based on the drilling data, 3-D seismic data and other experimental analysis, the distribution of the paleo-provenance of the reservoirs of the Es12 in the eastern of Shijiutuo uplift was restoredin this study, using statistical method. The paleo-provenance's control on the reservoir was discussed as well. The results suggest:(1) The near-source fan-delta sandstone and conglomerate reservoirs in the study area received sediments. The parent rocks of the paleo-provenance in the eastern sub-uplift were Cretaceous acidic igneous rocks while the parent rocks of the paleo-provenance in western sub-uplift were Mesozoic clastic rocks with thin interlayers of intermediate-acidic igneous rocks, which were totally different from the residual bedrock. (2) Due to differences of the mother rock, the igneous rocks of the eastern sub-uplift were more likely to be eroded and formed large-scale sandstone and conglomerate. (3) The reservoir physical properties of the study area were affected by the source rock lithology and reservoir diagenesis. The eastern reservoirs were characterized by high content of the acid igneous rocks, gravels and other soluble components and coarse grain size. The interstitial substance was carbonate cements. In the process of diagenesis, the intermediate-acid igneous rocks and gravels were susceptible to the strong dissolution of organic acids, leading to the development of secondary pores. However, the reservoir featured low porosity and low permeability due to the further cementing of strong carbonate minerals. The western reservoirs were characterized by high content of refractory components such as metamorphic rocks and quartz, with clay as the interstitial substance. The primary porosity was preserved to be the dominant porosity, the reservoir featured medium-high porosity and high permeability.The results of this study are useful for sandstone and conglomerate reservoir prediction.
-
Key words:
- Es12 /
- paleo-provenance /
- sandstone and conglomerate /
- reservoir /
- Shijiutuo uplift /
- Bohai Sea /
- petroleum geology
-
图 2 研究区沙一二段沉积相(a)及砂岩厚度(b)
Fig. 2. Sedimentary facies and sandstone thickness of Es12 in the study area
图 4 石臼坨凸起东部物源区地层地震反射特征
剖面位置见图 5
Fig. 4. Stratum seismic reflection features of west provenance on Shijiutuo uplift
图 10 研究区沙一二段储层镜下特征
a.原生孔隙为主,中酸性火成岩发生部分溶蚀,Q-9井,3 339.50 m,铸体薄片,单偏光;b.次生溶蚀孔为主,中酸性火成岩发生强烈溶蚀,呈蜂窝状或铸模孔出现,Q-12井,3 406.00 m,铸体薄片,单偏光;c.颗粒溶蚀形成的高岭石充填于孔隙,Q-13井,3 445 m,扫描电镜;d.小米粒状高岭石胶结物发育,Q-12井,3 344.08 m,铸体薄片,正交光;e.酸性火成岩强烈溶蚀呈蜂窝状,颗粒表面发育泥晶白云石包壳,Q-12井,3 344.08 m,铸体薄片,正交光;f.铁白云石胶结或交代长石、中酸性火成岩,Q-12井,3 455.00 m
Fig. 10. Characteristics of the reservoir under microscope in the Es12 of the study area
表 1 研究区沙一二段岩芯中砾石成分(%)和镜下岩石成分(%)统计
Table 1. Statistical table of gravel composition(%) in the core and rock composition(%) in the microscope of Es12 in the study area
位置 砾石成分 镜下岩石成分 岩性特征 火成岩 变质岩 沉积岩 石英 长石 岩屑 填细物特征 总含量 火成岩 变质岩 沉积岩 东部 Q-12井区 94.5 3.2 2.3 17 15 74.1 83.7 10.5 1.9 以(含铁)白云石胶结物为主,少量方解石、高岭石等胶结 砾岩、砂质砾岩夹砂岩为主,砾石砾径大,粒度粗 Q-16井区 81.2 16.1 2.7 33.2 31.2 39.6 61.5 35.1 3.0 平均 87.9 9.7 2.5 25.1 23.1 51.8 77.4 17.6 2.3 西部 Q-9井区 27.5 70 2.5 27.1 34.5 37.9 34.8 63.1 0.8 以黏土矿物为主,局部见白云石、方解石等胶结 砂岩夹砾岩、砾质砂岩为主,砾径小,粒度细 Q-8井区 46.5 51.8 1.7 29.1 36.6 34.1 48.1 50.7 1.5 平均 37 60.9 2.1 28.1 35.6 36 41.1 57.2 1.1 表 2 不同位置锆石测年结果对比
Table 2. Comparison of zircon dating results at different positions
位置 锆石总数n(个) 锆石年龄分布特征 锆石加权平均值 代表的物源年代 示踪的物源岩性 东部 Q-16井 41 主要分布在116~393 Ma(n=28);少量分布在2 452~2 676 Ma(n=13) 主要分布在128.1 Ma;少量分布在2 380 Ma 白垩纪 火成岩 Q-12井 39 主要分布在98.9~310.0 Ma(n=18);2 476~2 552 Ma(n=15)次之;少量分布在1 702~1 894 Ma(n=6) 主要分布在122 Ma;2 509 Ma次之;少量分布在1 834 Ma 白垩纪 火成岩 西部 Q-9井 25 主要分布在2 380~2 783 Ma(n=21);少量分布在118~258 Ma(n=4) 主要分布在2 520 Ma;少量分布在126 Ma 太古代 碎屑岩 Q-6井 23 主要分布在2 398~2 540 Ma(n=19);少量分布在112~115 Ma(n=4) 主要分布在2 488 Ma;少量分布在113.8 Ma 元古代 碎屑岩 表 3 研究区沙一二段储层物性统计表
Table 3. Reservoir physical statistics of the Es12 in the study area
位置 孔隙度(%) 渗透率(μm2) 东部 0.23~37.20/16.10 0.01×10-3~340.00×10-3/18.90×10-3 西部 6.30~40.00/22.50 1.60×10-3~6 088.00×10-3/817.00×10-3 -
[1] Alexander, C., Walsh, J., Orpin, A., 2010.Modern Sediment Dispersal and Accumulation on the Outer Poverty Continental Margin.Marine Geology, 270(1):213-226. https://www.sciencedirect.com/science/article/pii/S0025322709002862 [2] Carter, L., Orpin, A., Kuehl, S., 2010.From Mountain Source to Ocean Sink-The Passage of Sediment across an Active Margin, Waipaoa Sedimentary System, New Zealand.Marine Geology, 270(1):55-71. http://cat.inist.fr/?aModele=afficheN&cpsidt=22567470 [3] Du, X.F., Jia, D.H., Wang, Q.M., et al., 2017.Local Provenance System and Its Oil and Gas Exploration Significance:A Case Study of the Paleogene in Bohai Sea Area.China Offshore Oil and Gas, 29(4):19-27 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zghsyq-gc201704003 [4] Fuller, I., Marden, M., 2010.Rapid Channel Response to Variability in Sediment Supply:Cutting and Filling of the Tarndale Fan, Waipaoa Catchment, New Zealand.Marine Geology, 270(1):45-54. http://cat.inist.fr/?aModele=afficheN&cpsidt=22567473 [5] Huang, Y.T., Yao, G.Q., Zhou, F.D., 2016.Provenance Analysis and Petroleum Geological Significance of Shallow Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea.Earth Science, 41(9):1526-1542 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201609008 [6] Li, S.Y., Yang, D.D., Wang, S., et al., 2014.Characteristics of Petrology, Geochemistry, Heavy Minerals and Isotope Chronology of Upper Carboniferous Detrita.Acta Geologica Sinica, 88(2):167-184 (in Chinese with English abstract). [7] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis.Earth Science Frontiers, 22(1):9-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201501002 [8] Lin, T., Wang, D.L., Wang, L., et al., 2013.The Provenance Feature of Jurassic Qigu Formation and Its Effect on Reservoir Development in the Southern Margin of Junggar Basin.Geology in China, 40(3):909-918 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303022.htm [9] Liu, J., Cao, Y.C., Fan, T.L, et al., 2014.An Analysis of the Source System and Its Effect on the Reservoir of the Middle-Lower Submember of 3rd Member of Shahejie Formation in Minfeng Area, Dongying Depression.Chinese Geology, 41(4):1399-1410 (in Chinese with English abstract). [10] Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2016.Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin.Acta Petrolei Sinica, 36(3):286-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201503005.htm [11] Liu, Q.H., Zhu, X.M, Li, S.L, et al., 2016.Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift.Earth Science, 41(11):1935-1949 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201611009.htm [12] Luo, J.L., Wei, X.S., Yao, J.L., et al., 2010.Provenance and Depositional Facies Controlling on the Upper Paleozoic Excellent Natural Gas-Reservoir in Northern Ordos Basin, China.Geologcal Bulletin of China, 29(5):811-820 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201006004.htm [13] Ma, D.X., Xu, Y., Lv, J.W., et al., 2016.Relationship between Provenance and Formation of Lower Shihezi Formation in Linxing Area, Ordos Basin, China.Natural Gas Geoscience, 27(7):1215-1224 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201607007.htm [14] Mi, W.T., Zhu, L.D., Yang, W.G., et al., 2017.Provenance of the Niubao Formation and Its Geological Implications in the North Depression of the Nima Basin in the Tibet.Earth Science, 42(2):240-257 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201702006 [15] Sun, Y.M., Li, Y.C., Gong, Z.S., et al., 2009.Fluid Inclusion Evidence for Late-Stage Petroleum Accumulation, Bozhong Depresion, Bohai Gulf Basin.Bulletin of Mineralogy Petrology and Geochemistry, 28(1):24-33 (in Chinese with English abstract). [16] The Eath Science Community, 2004.MARGINS Program Science Plans.MARGINS Office, America. http://d.wanfangdata.com.cn/Periodical/hydzydsjdz200501018 [17] Wang, G.M., Pang, X.J., Zhang, X.F., et al., 2012.Activity of Shinan Fault and Its Control on Hydrocarbon Accumulation in the Paleogene in Bozhong Depression.Oil & Gas Geology, 33(6):859-866 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201206006.htm [18] Wang, Q., Xu, Y., Li, S.T., et al., 2017.Dissolution Simulation of Chang-8 Tight Reservoir in Jiyuan Area of Ordos Basin, China and Its Influencing Factor.Journal of Earth Sciences and Environment, 39(2):225-237 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201702007.htm [19] Wang, Q.M., Du, X.F., Jia, D.H, et al., 2015.The 1st and 2nd Members of the Shahejie Formation in No.428 Uplifted Area, Bohai Sea:Sedimentary Systems and Their Controlling Factors.Sedimentary Geology and Tethyan Geology, 35(4):680-688 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201504002.htm [20] Wang, Y.M., Xu, Q., Li, D., et al., 2011.Late Miocene Red River Submarine Fan, Northwestern South China Sea.Chinese Sci.Bull., 56(10):781-787 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zngydxxb201505025 [21] Xu, C.G., 2013.Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins:Basic Idea, Conceptual Systems and Controlling and Models.China Offshore Oil and Gas, 25(4):1-11 (in Chinese with English abstract). [22] Xu, C.G., Du, X.F., Xu, W., et al., 2017.New Advances of the"Source-to-Sink"System Research in Sedimentary Basin.Oil & Gas Geology, 38(1):1-11 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201701002.htm [23] Yang, F., Chen, G., Chen, Q., et al., 2015.U-Pb Dating of Detrital Zircon from Upper Ordovician Pingliang Formation in Southwest Margin of the Ordos Basin and Provenance Analysis.Geological Review, 61(1):172-182 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201501020.htm [24] Zhang, Y.K., Hu, X.Q., Niu, T., et al., 2015.Controlling of Paleogeomorphology to Paleogene Sedimentary System of Shijiutuo Uplift in Bohai Basin.Journal of Jilin University (Earth Science Edition), 45(6):1589-1596 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201506003.htm [25] Zhou, X.H., Yu, Y.X., Tang, L.J., et al., 2010.Cenozoic Offshore Basin Architecture and Division of Structural Elements in Bohai Sea.China Offshore Oil and Gas, 22(5):285-289 (in Chinese with English abstract). [26] Zhu, Y.H., Zhu, W.l., Xu, Q., et al., 2011.Sedimentary Response to Shelf-Edge Delta and Slope Deep-Water Fan in 13.8 Ma of Miocene Epoch in Pearl River Mouth Basin.Journal of Central South University (Science and Technology), 42(12):3827-3834 (in Chinese with English abstract). [27] 杜晓峰, 加东辉, 王启明, 等, 2017.盆内局部物源体系及其油气勘探意义——以渤海海域古近系为例.中国海上油气, 29(4):19-27. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc201704003 [28] 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9):1526-1538. http://earth-science.net/WebPage/Article.aspx?id=3358 [29] 李双应, 杨栋栋, 王松, 等, 2014.南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束.地质学报, 88(2):167-184. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201402002&dbname=CJFD&dbcode=CJFQ [30] 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. http://d.wanfangdata.com.cn/Thesis/D367359 [31] 林潼, 王东良, 王岚, 等, 2013.准噶尔盆地南缘侏罗系齐古组物源特征及其对储层发育的影响.中国地质, 40(3):909-918. http://d.wanfangdata.com.cn/Periodical/zgdizhi201303021 [32] 刘杰, 操应长, 樊太亮, 等, 2014.东营凹陷民丰地区沙三段中下亚段物源体系及其控储作用.中国地质, 41(4):1399-1410. http://d.wanfangdata.com.cn/Periodical/zgdizhi201404029 [33] 刘强虎, 朱红涛, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制.石油学报, 36(3):286-299. doi: 10.7623/syxb201503004 [34] 刘强虎, 朱筱敏, 李顺利, 等, 2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41(11):1935-1949. http://earth-science.net/WebPage/Article.aspx?id=3391 [35] 罗静兰, 魏新善, 姚泾利, 等, 2010.物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制.地质通报, 29(5):811-820. http://d.wanfangdata.com.cn/Periodical/zgqydz201006003 [36] 马东旭, 许勇, 吕剑文, 等, 2016.鄂尔多斯盆地临兴地区下石盒子组物源特征及其与储层关系.天然气地球科学, 27(7):1215-1224. doi: 10.11764/j.issn.1672-1926.2016.07.1215 [37] 密文天, 朱利东, 杨文光, 等, 2017.西藏尼玛盆地北部古近系牛堡组物源及地质意义.地球科学, 42(2):240-257. http://earth-science.net/WebPage/Article.aspx?id=3429 [38] 孙玉梅, 李友川, 龚再升, 等, 2009.渤海湾盆地渤中坳陷油气晚期成藏的流体包裹体证据.矿物岩石地球化学通报, 28(1):24-33. http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb200901004 [39] 王冠民, 庞小军, 张雪芳, 等, 2012.渤中凹陷古近系石南断层活动性及其对油气成藏条件的控制作用.石油与天然气地质, 33(6):859-866. doi: 10.11743/ogg20120606 [40] 王琪, 许勇, 李树同, 等, 2017.鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用模拟及其影响因素.地球科学与环境学报, 39(2):225-237. http://d.wanfangdata.com.cn/Periodical/xagcxyxb201702007 [41] 王启明, 杜晓峰, 加东辉, 等, 2015.渤海海域428凸起地区沙一二段沉积体系及其主控因素.沉积与特提斯地质, 35(4):14-18. http://d.wanfangdata.com.cn/Periodical/yxgdl201504002 [42] 王英民, 徐强, 李冬, 等, 2011.南海西北部晚中新世的红河海底扇.科学通报, 56(10):781-787. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201110012&dbname=CJFD&dbcode=CJFQ [43] 徐长贵, 2013.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式.中国海上油气, 25(4):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhsd201304002&dbname=CJFD&dbcode=CJFQ [44] 徐长贵, 杜晓峰, 徐伟, 等, 2017.沉积盆地源-汇系统研究新进展.石油与天然气地质, 38(1):1-11. doi: 10.11743/ogg20170101 [45] 杨甫, 陈刚, 陈强, 等, 2015.鄂尔多斯盆地西南缘上奥陶统平凉组碎屑岩锆石U-Pb年龄及物源分析.地质论评, 61(1):172-182. http://d.wanfangdata.com.cn/Periodical/dzlp201501019 [46] 张宇焜, 胡晓庆, 牛涛, 等, 2015. 古地貌对渤海石臼坨凸起古近系沉积体系的控制作用. 吉林大学学报(地球科学版), 45(6): 1589-159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz201506003&dbname=CJFD&dbcode=CJFQ [47] 周心怀, 余一欣, 汤良杰, 等, 2010.渤海海域新生代盆地结构与构造单元划分.中国海上油气, 22(5):285-289. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc201005001 [48] 祝彦贺, 朱伟林, 徐强, 等, 2011.珠江口盆地13.8 Ma陆架边缘三角洲与陆坡深水扇的"源汇"关系.中南大学学报(自然科学版), 42(12):3827-3834. http://d.wanfangdata.com.cn/Periodical/zngydxxb201112037