• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川甲基卡新三号超大型锂矿脉稀土元素地球化学

    刘丽君 王登红 代鸿章 侯江龙

    刘丽君, 王登红, 代鸿章, 侯江龙, 2017. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学. 地球科学, 42(10): 1673-1683. doi: 10.3799/dqkx.2017.113
    引用本文: 刘丽君, 王登红, 代鸿章, 侯江龙, 2017. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学. 地球科学, 42(10): 1673-1683. doi: 10.3799/dqkx.2017.113
    Liu Lijun, Wang Denghong, Dai Hongzhang, Hou Jianglong, 2017. Geochemical Characteristics of REE and Its Implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan. Earth Science, 42(10): 1673-1683. doi: 10.3799/dqkx.2017.113
    Citation: Liu Lijun, Wang Denghong, Dai Hongzhang, Hou Jianglong, 2017. Geochemical Characteristics of REE and Its Implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan. Earth Science, 42(10): 1673-1683. doi: 10.3799/dqkx.2017.113

    四川甲基卡新三号超大型锂矿脉稀土元素地球化学

    doi: 10.3799/dqkx.2017.113
    基金项目: 

    中国地质调查局项目 DD20160346

    中国地质调查局项目 DD20160055

    中国地质调查局项目 DD20160056

    详细信息
      作者简介:

      刘丽君(1991-),女,博士生,主要从事矿物学、岩石学、矿床学专业研究

      通讯作者:

      王登红

    • 中图分类号: P618.71

    Geochemical Characteristics of REE and Its Implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan

    • 摘要: 四川甲基卡新三号(X03) 超大型锂矿脉是近年发现且价值巨大的锂矿化伟晶岩脉,但相对缺少地球化学的研究,利用ICP-MS测试手段对该矿脉ZK1101钻孔中44件样品进行分析测试,发现该矿脉稀土总量很低(∑REE为0.180×10-6~8.613×10-6,平均值为2.543×10-6),配分曲线呈右倾斜型,相对富集轻稀土,总体表现铕负异常.围岩的稀土含量与一般片岩相近(∑REE为160.134×10-6~265.881×10-6,平均值为230.718×10-6),稀土配分曲线总体呈右倾平滑趋势,富集轻稀土,铕为负异常.铕的分布具有特殊性,表现为铕在伟晶岩脉的边部具有显著的正异常.∑REE与Li呈负相关性,δCe与Li则表现为弱正相关性.这一首次发现的低稀土总量和矿脉边部Eu显著正异常的特殊性,对于甲基卡伟晶岩的含矿性评价可能具有重要意义.

       

    • 图  1  川西甲基卡矿田地质简图

      唐国凡和吴盛先(1984)修改.1.二云母花岗岩;2.微斜长石型伟晶岩;3.微斜长石-钠长石型伟晶岩;4.钠长石型伟晶岩;5.钠长石-锂辉石型伟晶岩;6.钠长石-锂云母型伟晶岩;7.新发现矿脉及编号;8.伟晶岩类型分带线;9.伟晶岩类型;10.伟晶岩脉编号.Ⅰ.微斜长石伟晶岩带;Ⅱ.微斜长石-钠长石伟晶岩带;Ⅲ.钠长石伟晶岩带;Ⅳ.锂辉石伟晶岩带;Ⅴ.锂(白)云母伟晶岩带

      Fig.  1.  Geological map of the Jiajika ore field in western Sichuan Province

      图  2  甲基卡新三号脉平面地质简图(a)和剖面地质简图(b)

      付小方等(2015)刘丽君等(2016)修改.新三号矿脉实际未出露地表;a.矿体水平投影图.1.第四系坡积物;2.上三叠统西康群砂页岩;3.矿体及编号;4.地质界线;5.推测矿体界线;6.剖面线;7.图a钻孔及编号;8.图b钻孔及深度

      Fig.  2.  Simplified geological map (a) and profile (b) of X03 Li-bearing vein in the Jiajika field

      图  3  甲基卡新三号矿脉伟晶岩及围岩的典型镜下照片

      矿物代号参照国家标准《区域地质图图例GB958-2015》;a.矿脉中部的含锂辉石矿石;b.矿脉接触带的含锂辉石矿石;c.远离矿脉的围岩;d.靠近接触带的围岩,电气石化蚀变;Alm.铁铝榴石;Ab.钠长石;Bi.黑云母;Mic.微斜长石;Mu.白云母;Qz.石英;Spo.锂辉石;St.十字石;Tou.电气石

      Fig.  3.  Pictures of pegmatite and host rock of X03 Li-bearing vein

      图  4  甲基卡新三号锂矿脉ZK1101Li含量及稀土参数垂向分布

      标准值引自Taylor and McLennan, 1985

      Fig.  4.  Vertical distribution of Li content and REE parameters from ZK1101, X03 Li-bearing vein, Jiajika

      图  5  甲基卡矿区新三号锂矿脉稀土元素配分曲线对比

      标准化值引自Taylor and McLennan, 1985.a.甲基卡新三号锂矿脉矿石;b.甲基卡新三号锂矿脉接触带矿石;c.甲基卡新三号锂矿脉上矿层矿石;d.甲基卡新三号锂矿脉下矿层矿石;e.甲基卡新三号锂矿脉围岩;f.甲基卡矿区各类岩石对比

      Fig.  5.  REE distribution of X03 Li-bearing vein and host rocks in Jiajika

      图  6  伟晶岩脉稀土元素配分对比

      Fig.  6.  REE distribution of different pegmatite veins

      图  7  新三号锂矿脉中矿石的δEu值与其距离矿层中心点位置的相关性图解

      Fig.  7.  Relativity diagram of δEu and distance of ores to the center of each ore layer from ZK1101, X03 Li-bearing vein, Jiajika pegmatite ore field

      图  8  甲基卡新三号锂矿脉Li与稀土参数相关性图解

      Fig.  8.  Relativity diagram of REE parameter and Li content from ZK1101, X03 Vein, Jiajika

      表  1  甲基卡X03号锂矿脉ZK1101围岩样品锂及稀土含量(10-6)

      Table  1.   REE and Li contents (10-6) of host rock samples from ZK1101, X03 Li-vein, Jiajika pegmatite field

      样品原号 位置 Li La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE/
      HREE
      δEu δCe La/Yb Sm/Nd
      JJK1101-12.6 接触带 2212 39.842 83.217 9.404 38.070 7.958 1.513 7.996 1.094 6.014 1.209 3.975 0.490 3.576 0.511 29.053 233.922 7.239 0.574 0.981 11.140 0.209
      JJK1101-43.5 接触带 1272 41.451 82.047 9.712 38.420 7.980 1.742 8.399 1.035 6.296 1.182 3.887 0.499 3.500 0.516 31.232 237.898 7.164 0.646 0.933 11.842 0.208
      JJK1101-43.9 接触带 1195 42.791 86.450 10.035 37.742 8.294 1.660 8.655 0.984 5.907 1.105 3.703 0.491 3.320 0.509 28.675 240.320 7.578 0.595 0.952 12.891 0.220
      JJK1101-49.27 围岩1 574 42.320 85.643 10.111 37.351 8.169 1.777 8.313 1.015 6.076 1.157 3.882 0.479 3.481 0.516 31.933 242.223 7.439 0.653 0.946 12.158 0.219
      JJK1101-50.9 围岩1 611 27.956 57.230 6.379 24.779 5.395 1.124 5.397 0.728 4.227 0.803 2.541 0.318 2.273 0.328 20.838 160.315 7.394 0.631 0.974 12.301 0.218
      JJK1101-56.6 围岩1 710 44.973 91.687 10.798 40.366 8.974 1.822 8.617 1.028 5.978 1.155 3.774 0.489 3.340 0.522 30.164 253.686 7.976 0.625 0.952 13.466 0.222
      JJK1101-64.05 围岩1 626 44.874 91.454 10.395 38.921 8.327 1.596 8.546 1.022 6.025 1.215 3.950 0.532 3.775 0.593 31.307 252.531 7.622 0.574 0.965 11.888 0.214
      JJK1101-69.2 接触带 913 43.039 86.391 9.776 38.173 7.675 1.642 8.512 0.959 5.707 1.073 3.616 0.457 3.130 0.478 27.912 238.541 7.801 0.618 0.957 13.749 0.201
      JJK1101-69.7 接触带 2645 46.338 92.824 10.549 38.698 8.112 1.186 8.382 1.049 5.891 1.178 3.975 0.492 3.378 0.506 29.254 251.812 7.956 0.436 0.954 13.718 0.210
      JJK1101-80 接触带 825 34.683 69.748 7.633 30.605 6.052 1.224 6.596 0.796 4.421 0.821 2.867 0.351 2.446 0.367 21.714 190.324 8.034 0.589 0.970 14.180 0.198
      JJK1101-80.1 接触带 826 28.263 57.589 6.595 25.046 5.477 1.119 5.621 0.705 4.126 0.772 2.441 0.330 2.304 0.361 19.384 160.134 7.448 0.611 0.962 12.269 0.219
      JJK1101-85.7 围岩2 464 43.776 107.241 9.566 37.965 6.848 1.363 7.484 0.844 4.905 1.050 3.832 0.511 3.737 0.564 26.806 256.494 9.018 0.579 1.185 11.713 0.180
      JJK1101-86 围岩2 583 41.538 83.104 9.277 36.593 7.542 1.614 7.897 0.990 5.631 1.078 3.596 0.458 3.081 0.477 28.811 231.687 7.742 0.635 0.960 13.480 0.206
      JJK1101-86.9 围岩2 580 43.956 92.685 10.439 38.070 8.044 1.669 8.143 1.009 6.182 1.172 4.016 0.515 3.716 0.546 29.873 250.037 7.702 0.625 0.988 11.828 0.211
      JJK1101-107 围岩2 32 39.643 93.341 8.526 33.097 6.740 1.056 6.844 0.795 4.435 0.762 2.487 0.313 2.348 0.378 20.513 221.280 9.933 0.471 1.146 16.882 0.204
      JJK1101-107.13 围岩2 158 39.036 78.109 9.208 35.189 7.240 1.637 7.390 0.932 5.371 1.028 3.503 0.416 2.954 0.467 26.702 219.181 7.725 0.678 0.940 13.216 0.206
      JJK1101-110.77 围岩2 295 44.779 88.136 10.615 41.753 8.219 1.522 7.627 1.005 6.083 1.173 4.139 0.520 3.679 0.533 30.248 250.035 7.877 0.578 0.923 12.171 0.197
      JJK1101-111.07 围岩2 195 37.845 80.529 9.110 34.541 7.219 1.714 7.674 0.937 5.300 1.041 3.453 0.468 3.055 0.489 25.718 219.094 7.626 0.700 0.992 12.390 0.209
      JJK1101-118.54 围岩2 382 48.142 98.388 10.772 42.736 8.796 1.976 8.526 1.079 6.226 1.130 3.917 0.489 3.692 0.539 29.473 265.881 8.236 0.689 0.980 13.038 0.206
      JJK1101-125.6 围岩2 1171 43.260 87.495 9.895 37.508 8.369 1.726 8.235 1.057 5.705 1.055 3.588 0.462 3.269 0.459 26.885 238.968 7.900 0.629 0.962 13.234 0.223
      下载: 导出CSV

      表  2  甲基卡X03号锂矿脉矿石样品锂及稀土含量(10-6)

      Table  2.   REE and Li contents (10-6) of drill ores from ZK1101, X03 Li-vein, Jiajika pegmatite field

      样品原号 位置 Li La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE/
      HREE
      δEu δCe La/Yb Sm/Nd
      JJK1101-2.3 上矿层1 16 880 0.459 0.845 0.054 0.128 0.047 0.005 0.073 0.021 0.082 0.005 0.016 0.002 0.013 0.001 0.422 2.173 7.206 0.248 1.075 34.646 0.365
      JJK1101-5.6 上矿层1 17 970 0.146 0.266 0.017 0.076 0.016 0.002 0.027 0.005 0.023 0.003 0.007 0.001 0.012 0.001 0.118 0.721 6.631 0.274 1.065 12.144 0.206
      JJK1101-7.7 上矿层1 540 1.275 2.242 0.260 0.900 0.374 0.018 0.519 0.100 0.496 0.048 0.122 0.012 0.113 0.013 2.120 8.613 3.564 0.126 0.872 11.266 0.415
      JJK1101-9.4 上矿层1 9 878 0.185 0.207 0.014 0.028 0.013 0.004 0.019 0.003 0.014 0.004 0.005 0.000 0.007 0.000 0.094 0.596 8.474 0.757 0.716 24.827 0.472
      JJK1101-12.3 接触带 7 100 0.887 1.650 0.159 0.603 0.229 0.117 0.167 0.036 0.207 0.028 0.089 0.013 0.086 0.013 1.022 5.307 5.700 1.745 0.963 10.324 0.380
      JJK1101-12.8 接触带 7 217 0.907 1.656 0.168 0.568 0.370 0.564 0.230 0.046 0.218 0.036 0.109 0.018 0.162 0.023 1.367 6.442 5.030 5.506 0.935 5.611 0.652
      JJK1101-17.2 上矿层2 9 386 0.700 1.180 0.100 0.241 0.107 0.010 0.133 0.033 0.131 0.017 0.038 0.006 0.038 0.006 0.790 3.530 5.813 0.265 0.936 18.599 0.442
      JJK1101-21.3 上矿层2 13 560 0.615 1.121 0.084 0.205 0.084 0.003 0.128 0.032 0.118 0.013 0.018 0.004 0.010 0.002 0.530 2.967 6.492 0.088 1.023 64.001 0.410
      JJK1101-22.9 上矿层2 10 510 0.827 1.100 0.080 0.203 0.069 0.000 0.090 0.013 0.048 0.004 0.010 0.002 0.007 0.001 0.253 2.705 13.098 0.000 0.810 125.451 0.339
      JJK1101-23.72 上矿层2 15 130 0.245 0.381 0.028 0.086 0.028 0.000 0.048 0.011 0.049 0.004 0.011 0.000 0.005 0.002 0.233 1.130 5.963 0.000 0.912 49.576 0.324
      JJK1101-26.3 上矿层2 8 202 0.239 0.395 0.026 0.057 0.036 0.002 0.050 0.013 0.058 0.006 0.007 0.001 0.010 0.002 0.243 1.145 5.128 0.180 0.983 23.554 0.633
      JJK1101-30 上矿层2 5 347 0.778 1.277 0.088 0.151 0.071 0.003 0.103 0.031 0.142 0.011 0.014 0.003 0.022 0.003 0.589 3.286 7.185 0.105 0.966 35.135 0.474
      JJK1101-32.85 上矿层2 14 060 0.209 0.327 0.029 0.088 0.033 0.001 0.033 0.007 0.034 0.003 0.003 0.001 0.004 0.001 0.109 0.883 7.936 0.060 0.872 47.562 0.379
      JJK1101-35.6 上矿层2 17 330 0.029 0.068 0.003 0.010 0.005 0.003 0.006 0.001 0.008 0.001 0.002 0.001 0.001 0.000 0.042 0.180 5.832 1.427 1.410 56.516 0.540
      JJK1101-36.8 上矿层2 9 763 0.130 0.233 0.016 0.031 0.017 0.001 0.020 0.010 0.040 0.003 0.011 0.002 0.004 0.001 0.184 0.704 4.760 0.117 1.028 36.505 0.556
      JJK1101-37.93 上矿层2 13 190 0.377 0.555 0.046 0.089 0.053 0.002 0.081 0.023 0.070 0.006 0.009 0.001 0.008 0.001 0.342 1.664 5.620 0.094 0.851 44.790 0.596
      JJK1101-41.74 上矿层2 9 525 0.126 0.234 0.013 0.051 0.016 0.000 0.019 0.005 0.032 0.004 0.007 0.001 0.012 0.001 0.181 0.702 5.455 0.000 1.113 10.170 0.312
      JJK1101-42.97 接触带 259 0.358 0.547 0.060 0.239 0.219 0.292 0.118 0.019 0.089 0.015 0.061 0.009 0.053 0.007 0.544 2.629 4.634 5.026 0.810 6.804 0.918
      JJK1101-69.8 接触带 274 1.361 2.466 0.213 0.751 0.217 0.134 0.248 0.035 0.211 0.032 0.084 0.014 0.080 0.012 0.973 6.831 7.189 1.759 0.978 17.048 0.289
      JJK1101-70.50 下矿层 217 0.451 0.706 0.054 0.151 0.044 0.007 0.054 0.012 0.048 0.003 0.009 0.002 0.011 0.001 0.192 1.746 10.086 0.465 0.910 40.390 0.292
      JJK1101-70.95 下矿层 9 523 0.074 0.095 0.009 0.021 0.008 0.001 0.009 0.003 0.006 0.001 0.002 0.001 0.008 0.001 0.051 0.290 6.745 0.484 0.750 8.767 0.401
      JJK1101-75.75 下矿层 13 990 0.445 0.650 0.062 0.127 0.049 0.006 0.086 0.021 0.104 0.008 0.015 0.001 0.014 0.001 0.430 2.018 5.351 0.257 0.816 31.404 0.390
      JJK1101-77.3 下矿层 13 260 0.163 0.367 0.027 0.052 0.045 0.000 0.064 0.014 0.071 0.005 0.010 0.001 0.009 0.000 0.283 1.113 3.732 0.000 1.195 17.547 0.872
      JJK1101-79.4 下矿层 7 512 0.727 1.318 0.123 0.482 0.108 0.026 0.134 0.023 0.105 0.014 0.028 0.006 0.029 0.004 0.531 3.659 8.118 0.664 0.956 25.090 0.223
      下载: 导出CSV

      表  3  甲基卡矿区及不同伟晶岩脉稀土元素含量(10-6)

      Table  3.   REE contents (10-6) of Jiajika X03 pegmatite vein and other rare mineralization pegmatite veins

      位置 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE 原始数据来源
      四川甲基卡X03号脉ZK1101 内部伟晶岩矿石,n=20 0.410 0.678 0.057 0.159 0.061 0.005 0.085 0.019 0.084 0.008 0.017 0.002 0.017 0.002 0.387 1.991 本文
      四川甲基卡X03号脉ZK1101 接触带部伟晶岩矿石,n=4 0.878 1.580 0.150 0.540 0.259 0.277 0.191 0.034 0.181 0.028 0.086 0.013 0.095 0.014 0.977 5.302 本文
      四川甲基卡X03号脉ZK1101 伟晶岩矿石总,n=24 0.488 0.829 0.072 0.222 0.094 0.050 0.102 0.022 0.100 0.011 0.029 0.004 0.030 0.004 0.485 2.543 本文
      四川甲基卡X03号脉ZK1101 围岩,n=20 40.925 84.665 9.440 36.281 7.572 1.534 7.743 0.953 5.525 1.058 3.557 0.454 3.203 0.483 27.325 230.718 本文
      四川甲基卡 二云母花岗岩平均值,n=4 6.030 10.233 1.423 7.378 1.570 0.290 1.695 0.283 1.355 0.185 0.390 0.043 0.245 0.033 - 31.150 梁斌等,2016
      福建南平31号脉 白云母钠长石锂辉石伟晶岩 1.200 1.300 0.180 0.970 0.150 0.040 0.190 0.030 0.210 0.040 0.090 0.020 0.100 0.010 1.370 5.900 杨岳清等,1988
      新疆可可托海 冷凝边 0.940 3.280 0.300 1.270 0.210 0.060 0.220 0.040 0.210 0.040 0.100 0.020 0.120 0.020 0.870 7.700 冷成彪等,2007
      新疆可可托海 细粒钠长石岩 0.590 1.470 0.140 0.260 0.070 0.010 0.130 0.020 0.090 0.020 0.060 0.010 0.100 0.010 0.300 3.280 冷成彪等,2007
      新疆可可托海 薄片状钠长石岩 0.650 1.210 0.130 0.350 0.100 0.010 0.090 0.010 0.030 0.010 0.030 0.010 0.040 0.010 0.120 2.800 冷成彪等,2007
      青海沙流泉 电气石化花岗伟晶岩 0.800 1.690 0.230 0.870 0.440 0.050 0.520 0.070 0.280 0.050 0.100 0.050 0.170 0.050 1.560 6.930 李善平等,2016
      青海沙流泉 云英岩化花岗伟晶岩 2.600 5.240 0.940 3.360 2.210 0.050 2.380 0.520 2.360 0.260 0.670 0.120 1.170 0.200 13.600 35.680 李善平等,2016
        注:n代表样品数量;-代表无数据.
      下载: 导出CSV
    • [1] Chen, D.Q., Chen, G., 1990.Practical Rare Earth Element Geochemistry.Metallurgical Industry Press, Beijing (in Chinese).
      [2] Fu, X.F., Yuan, L.P., Wang, D.H., et al., 2015.Mineralization Characteristics and Prospecting Model of Newly Discovered X03 Rare Metal Vein in Jiajika Orefield, Sichuan.Mineral Deposits, 24(6):1172-1186 (in Chinese with English abstract).doi: 10.16111/j.0258-7106.2015.06.006
      [3] Hao, X.F., Fu, X.F., Liang, B., et al., 2015.Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance.Mineral Deposits, 34(6):1199-1208.doi: 10.16111/j.0258-7106.2015.06.008
      [4] Lan, X.H., Li, R.H., Mi, B.B., et al., 2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474. doi: 10.1007/s12665-015-4391-x
      [5] Leng, C.B., Wang, S.X., Gou, T.Z., et al., 2007.A Review of the Research on the Kokotokay No.3 Granitic Pegmatite Dyke, Altai, Xinjiang.Geology and Mineral Resources of South China, 1:14-20 (in Chinese with English abstract).
      [6] Li, C.N., 1992.Trace Element Petrology of Igneous Rock.China University of Geosciences Press, Wuhan (in Chinese).
      [7] Li, S.P., Zhao S.Z., Jin, T.T., et al., 2016.REE Geochemical Characteristics and Provenance Analysis of the Shaliuquan Niobium Tantalum Pegmatite Ore, Qinghai Province.Chinese Rare Earths, 37(1):39-46 (in Chinese with English abstract). http://www.academia.edu/23719887/Tectonic_and_Structural_Characteristics_of_Iron_Deposits_in_Attepe_and_Its_Vicinity_Kayseri-Adana_Basin_Turkey_
      [8] Liang, B., Fu, X.F., Tang, Y., et al., 2016.Granite Geochemical Characteristics in Jiajika Rare Metal Deposit, Western Sichuan.Journal of Guilin University of Technology, 36(2):42-49 (in Chinese with English abstract).doi: 10.3969/j.issn.1674-9057.2016.01.007
      [9] Liu, L.J., Fu, X.F., Wang, D.H., et al., 2015.Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposts.Mineral Deposits, 34(6):1187-1198 (in Chinese with English abstract).doi: 10.16111/j.0258-7106.2015.06.007
      [10] Liu, L.J., Wang, D.H., Hou, K.J., et al., 2017.Application of Lithium Isotope to Jiajika New No.3 Pegmatite Lithium Polymetallic Vein in Sichuan.Earth Science Frontiers, 24(5):167-171 (in Chinese with English abstract).doi: 10.13745/j.esf.yx.2017-1-16
      [11] Liu, L.J., Wang, D.H., Yang, Y.Q., et al., 2016.Metallogenic Characteristics of X03 Rare Metal Vein in Jiajika of Sichuan.Journal of Guilin University of Technology, 36(2):42-49 (in Chinese with English abstract).doi: 10.3969/j.issn.1674-9057.2016.01.008
      [12] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Elemental Geochemistry.Science Press, Beijing (in Chinese).
      [13] Mineralogist, A., Aur-R, R., 1975.Mineralogy and Rare Earth Geochemistry of Apatite and Xenotime from the Gloserheia Granite Pegmatite, Froland, Southern Norway.American Mineralogist, 60:607-620. doi: 10.1007/978-3-642-87262-4_1
      [14] Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PEG of the Cobalt-Rich from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757. http://www.academia.edu/7144356/Geochemistry_of_Paleocene-Eocene_limestones_from_Ching-dar_syncline_west_of_Birjand_east_of_Iran
      [15] Pan, M., Tang, Y., Xiao, R.Q., et al., 2016.The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District.Acta Geologica Sichuan, 36(3):422-425, 430 (in Chinese with English abstract).doi: 10.3969/j.issn.1006-0995.2016.03.016
      [16] Tang, G.F., Wu, S.X., 1984.Geological Research Report on Jiajika Granitic Pegmatite Lithium Deposit in Kangding, Sichuan.Beijing, Geological Publishing House (in Chinese).
      [17] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, Oxford, 57-114.
      [18] Taylor, B.E., Slack, J.F., 1984.Tourmalines from Appalachian-Caledonian Massive Sulfide Deposits; Textural, Chemical, and Isotopic Relationships.Economic Geology, 79(7):1703-1726. doi: 10.2113/gsecongeo.79.7.1703
      [19] Wang, D.H., Fu, X.F., 2013.Breakthrough of Lithium Prospecting on the Periphery of Jiajika, Sichaun.Rock and Mineral Analysis, 32(6):987-987 (in Chinese).doi: 10.15898/j.cnki.11-2131/td.2013.06.019
      [20] Wang, D.H., Wang, R.J., Fu, X.F., et al., 2016.A Discussion on the Major Problems Related to Geological Investigation and Assessment for Energy Metal Resources Base:A Case Study of the Jiajika Large Lithium Mineral Resource Base.Acta Geoscientica Sinica, 37(4):471-480 (in Chinese with English abstract).doi: 10.3975/cagsb.2016.04.09
      [21] Wang, D.H., Liu, L.J., Hou, J.L., et al., 2017.A Prime Review on Application of"Five Levels+Basement"Model for Jiajika-Style Rare Metal Deposits.Earth Science Frontiers, 24(5):1-7 (in Chinese with English abstract).doi: 10.13745/j.esf.yx.2017-1-1
      [22] Yang, Y.Q., Guo, Y.Q., Qiu, N.M., et al., 1988.The REE Geochemistry of the Nanping Granitic Pegamtite Ore Field in Fujian Province.Geological Publishing House, Beijing, 69-83 (in Chinese).
      [23] 陈德潜, 陈刚, 1990.实用稀土元素地球化学.北京:冶金工业出版社.
      [24] 付小方, 袁蔺平, 王登红, 等, 2015.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型.矿床地质, 24(6): 1172-1186. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506007.htm
      [25] 郝雪峰, 付小方, 梁斌, 等, 2015.川西甲基卡花岗岩和新三号矿脉的形成时代及意义.矿床地质, 34(6): 1199-1208. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506009.htm
      [26] 蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3): 463-474. http://earth-science.net/WebPage/Article.aspx?id=3272
      [27] 冷成彪, 王守旭, 苟体忠, 等, 2007.新疆阿尔泰可可托海3号伟晶岩脉研究.华南地质与矿产, 1: 14-20. doi: 10.3969/j.issn.1007-3701.2007.01.003
      [28] 李昌年, 1992.火成岩微量元素岩石学.武汉:中国地质大学出版社.
      [29] 李善平, 湛守智, 金婷婷, 等, 2016.青海沙流泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析.稀土, 37(1): 39-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201601008.htm
      [30] 梁斌, 付小方, 唐屹, 等, 2016.川西甲基卡稀有金属矿区花岗岩岩石地球化学特征.桂林理工大学学报, 36(2): 42-49. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601007.htm
      [31] 刘丽君, 付小方, 王登红, 等, 2015.甲基卡式稀有金属矿床的地质特征与成矿规律.矿床地质, 34(6): 1187-1198. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506008.htm
      [32] 刘丽君, 王登红, 侯可军, 等, 2017.锂同位素在四川甲基卡新三号矿脉研究中的应用.地学前缘, 24(5): 167-171. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705021.htm
      [33] 刘丽君, 王登红, 杨岳清, 等, 2016.四川甲基卡新三号稀有金属矿脉成矿特征的初步研究.桂林理工大学学报, 36(1): 50-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601008.htm
      [34] 刘英俊, 曹励明, 李兆麟, 等, 1984.元素地球化学.北京:科学出版社.
      [35] 潘蒙, 唐屹, 肖瑞卿, 等, 2016.甲基卡新3号超大型锂矿脉找矿方法.四川地质学报, 36(3): 422-425, 430. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201603016.htm
      [36] 任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10): 1745-1757. http://earth-science.net/WebPage/Article.aspx?id=3376
      [37] 唐国凡, 吴盛先, 1984.四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告.北京:地质出版社.
      [38] 王登红, 付小方, 2013.四川甲基卡外围锂矿找矿取得突破.岩矿测试, 32(6): 987-987. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201306031.htm
      [39] 王登红, 王瑞江, 付小方, 等, 2016.对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例.地球学报, 37(4): 471-480. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201604012.htm
      [40] 王登红, 刘丽君, 侯江龙, 等.2017.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型.地学前缘, 24(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705002.htm
      [41] 杨岳清, 郭永泉, 仇年铭, 等, 1988.福建南平花岗伟晶岩矿田中稀土元素地球化学.北京:地质出版社, 69-83.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  5036
    • HTML全文浏览量:  1826
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-04-18
    • 刊出日期:  2017-10-18

    目录

      /

      返回文章
      返回