• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西-渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式

    郭来源 张士万 解习农 李忠生 黄传炎 陈北辰

    郭来源, 张士万, 解习农, 李忠生, 黄传炎, 陈北辰, 2017. 鄂西-渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式. 地球科学, 42(7): 1235-1246. doi: 10.3799/dqkx.2017.100
    引用本文: 郭来源, 张士万, 解习农, 李忠生, 黄传炎, 陈北辰, 2017. 鄂西-渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式. 地球科学, 42(7): 1235-1246. doi: 10.3799/dqkx.2017.100
    Guo Laiyuan, Zhang Shiwan, Xie Xinong, Li Zhongsheng, Huang Chuanyan, Chen Beichen, 2017. Geochemical Characteristics and Organic Matter Enrichment of the Dongyuemiao Member Mudstone of Lower Jurassic in the Western Hubei-Eastern Chongqing. Earth Science, 42(7): 1235-1246. doi: 10.3799/dqkx.2017.100
    Citation: Guo Laiyuan, Zhang Shiwan, Xie Xinong, Li Zhongsheng, Huang Chuanyan, Chen Beichen, 2017. Geochemical Characteristics and Organic Matter Enrichment of the Dongyuemiao Member Mudstone of Lower Jurassic in the Western Hubei-Eastern Chongqing. Earth Science, 42(7): 1235-1246. doi: 10.3799/dqkx.2017.100

    鄂西-渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式

    doi: 10.3799/dqkx.2017.100
    基金项目: 

    国家重大油气专项 2016ZX05034-002-003

    中国地质调查局油气基础性公益性地质调查项目 DD20160185

    详细信息
      作者简介:

      郭来源(1989-), 男, 博士研究生, 主要从事非常规油气研究工作.ORCID:0000-0002-3288-6905.E-mail:Guoly0117@163.com

      通讯作者:

      解习农, ORCID:0000-0003-1960-9417.E-mail:xnxie@cug.edu.cn

    • 中图分类号: P618.13

    Geochemical Characteristics and Organic Matter Enrichment of the Dongyuemiao Member Mudstone of Lower Jurassic in the Western Hubei-Eastern Chongqing

    • 摘要: 我国不同地区页岩非均质性研究是亟待解决的基础地质问题,且四川盆地陆相页岩气的研究十分薄弱.通过对鄂西-渝东地区下侏罗统自流井组东岳庙段剖面和钻井岩心的岩石学特征、地球化学等方面的精细分析,结合测井曲线,查明了该层段地球化学垂向变化特征及有机质富集模式.结果表明,东岳庙段脆性矿物含量高,粘土矿物含量较少,下部有机质含量高于上部.地球化学指标所反映的古气候、古生产力、古氧化还原、古盐度表明东岳庙段垂向上具有明显差异;东岳庙段下部为干旱炎热古气候、贫氧-偏咸化水体和高古生产力,而东岳庙段上部为温暖湿润古气候、淡化水体和低古生产力,故东岳庙段下部更有利于有机质富集.

       

    • 图  1  鄂西-渝东地区综合地质图

      a.四川盆地地理图;b.鄂西-渝东地区地理位置;c.建页HF-1井综合柱状图;据黄江庆等(2014)

      Fig.  1.  The comprehensive geologic map of western Hubei-western Chongqing

      图  2  建页1井和北美主要页岩气盆地泥页岩的矿物三角图

      Fig.  2.  Mudstone and shale mineral ternary diagram of wells in major shale gas basins in North America and well Jianye 1

      图  3  建页HF-1井地球化学指标垂向变化

      Fig.  3.  Comprehensive column showing the vertical change of geochemical indicators in well HF-1

      图  4  东岳庙段古氧还原、古气候和古盐度指标垂向变化

      Fig.  4.  Vertical variations of paleoredox index ,paleoclimate index and paleosalinity index in the Dongyuemiao member

      图  5  东岳庙段古盐度指标和古生产力指标与TOC的关系

      Fig.  5.  Paleosalinity index vs. TOC and paleoproductivity index vs. TOC of the Dongyuemiao member

      图  6  古气候指标Sr/Cu(a)和Fe/Mn(b)与TOC的关系

      Fig.  6.  Sr/Cu vs. TOC (a) and Fe/Mn vs. TOC (b) of Dongyuemiao member

      图  7  古氧化还原指标V/Cr(a)和V/(V+Ni)(b)与TOC的关系

      Fig.  7.  V/Cr vs. TOC (a) and V/(V+Ni) vs. TOC (b) of the Dongyuemiao member

      图  8  东岳庙段古生产力指标和对应的富集因素指标的垂向变化

      Fig.  8.  Vertical variation of paleoproductivity index and its enrichment factors in the Dongyuemiao member

      图  9  东岳庙段有机质富集模式

      Fig.  9.  Organic matter enrichment model of the Dongyuemiao member

    • [1] Algeo, T.J., Rowe, H., 2012.Paleoceanographic Applications of Trace-Metal Concentration Data.Chemical Geology, 324-325:6-18.doi: 10.1016/j.chemgeo.2011.09.002
      [2] Calvert, S.E, Pedersen, T.F, 1993.Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record.Marine Geology, 113(1-2):67-88.doi:10.1016/0025-3227(93)90150-t
      [3] Chen, H.D., Huang, F.X., Xu, S.L., et al., 2009.Distribution Rule and Main Controlling Factors of the Marine Facies Hydrocarbon Substances in the Middle and Upper Parts of Yangtze Region, China.Journal of Chengdu University of Technology (Science & Technology Edition), 36(6):569-577 (in Chinese with English abstract). https://www.researchgate.net/publication/285852666_Distribution_rule_and_main_controlling_factors_of_the_marine_facies_hydrocarbon_substances_in_the_middle_and_upper_parts_of_Yangtze_region_China
      [4] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2010.Research Status and Trends of Shale Gas in China.Acta Petrolei Sinica, 31(4):689-694 (in Chinese with English abstract). https://www.researchgate.net/publication/283950026_Research_status_and_trends_of_shale_gas_in_China
      [5] de Oliveira, S.M.B., Saia, S.E.M.G., Pessenda, L.C.R., et al., 2009.Lacustrine Sediments Provide Geochemical Evidence of Environmental Change during the Last Millennium in Southeastern Brazil.Chemie der Erde-Geochemistry, 69(4):395-405.doi: 10.1016/j.chemer.2009.03.002
      [6] Dehairs, F., Chesselet, R., Jedwab, J., 1980.Discrete Suspended Particles of Barite and the Barium Cycle in the Open Ocean.Earth and Planetary Science Letters, 49(2):528-550.doi: 10.1016/0012-821x(80)90094-1
      [7] D'Elia, C.F., Nelson, D.M., Boynton, W.R., 1983.Chesapeake Bay Nutrient and Plankton Dynamics:Ⅲ.the Annual Cycle of Dissolved Silicon.Geochimica et Cosmochimica Acta, 47(11):1945-1955.doi: 10.1016/0016-7037(83)90212-0
      [8] Deng, H.W., Qian, K., 1990.The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones.Acta Sedimentologica Sinica, 8(3):1-21 (in Chinese with English abstract).
      [9] Dong, D.Z., Zou, C.N., Li, J.Z., et al., 2011.Resource Potential, Exploration and Development Prospect of Shale Gas in the Whole World.Geological Bulletin of China, 30(2):324-336 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1019.htm
      [10] Dymond, J., Suess, E., Lyle, M., 1992.Barium in Deep-Sea Sediment:A Geochemical Proxy for Paleoproductivity.Paleoceanography, 7(2):163-181.doi: 10.1029/92pa00181
      [11] Eagle, M., Paytan, A., Arrigo, K.R., et al., 2003.A Comparison between Excess Barium and Barite as Indicators of Carbon Export.Paleoceanography, 18(1):163-181.doi: 10.1029/2002PA000793
      [12] Fan, Y., 2011.The Characteristics of Sequence Stratigraphy and Sedimentary Filling of Lower Jurassic Ziliujing Formation in the Northeast Area of Sichuan Basin (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [13] Feng, H.Z., Yu, J.H., Fang, Y.T., et al., 1993.Analysis of Paleosalinity during the Wufeng Age in Upper Yangtze Sea.Journal of Stratigraphy, 17(3):179-185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199303002.htm
      [14] Feng, R.C., Wu, Y.Y., Tao, S.Z., et al., 2015.Sedimentary Microfacies Characteristics and their Control on Reservoirs in Daanzhai Member, Lower Jurassic, Sichuan Basin.Petroleum Geology & Experiment, 37(3):320-327 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201103008.htm
      [15] Fisher, T.R., Harding, L.W., Stanley, D.W., et al., 1988.Phytoplankton, Nutrients, and Turbidity in the Chesapeake, Delaware, and Hudson Estuaries.Estuarine, Coastal and Shelf Science, 27(1):61-93.doi: 10.1016/0272-7714(88)90032-7
      [16] Francois, R., Honjo, S., Manganini, S.J., et al., 1995.Biogenic Barium Fluxes to the Deep Sea:Implications for Paleoproductivity Reconstruction.Global Biogeochemical Cycles, 9(2):289-303.doi: 10.1029/95gb00021
      [17] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901 (in Chinese with English abstract). https://www.researchgate.net/publication/283808736_Major_factors_controlling_the_accumulation_and_high_productivity_in_marine_shale_gas_in_the_lower_paleozoic_of_Sichuan_Basin_and_its_periphery_A_case_study_of_the_Wufeng-Longmaxi_Formation_of_Jiaoshib
      [18] Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A..Chemical Geology, 99(1-3):65-82.doi: 10.1016/0009-2541(92)90031-y
      [19] Huang, J.Q., Liang, B., Che, S.Q., et al., 2014.The Main Factors Controlling the Continental Shale Gas Accumulation in Dongyuemiao Section of Western Hubei-Eastern Chongqing Area.Journal of Oil and Gas Technology, 36(4):30-33 (in Chinese with English abstract).
      [20] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geolology, 111(1-4):111-129.doi: 10.1016/0009-2541(94)90085-X
      [21] Li, J.J., Shi, Y.L., Zhang, X.W., et al., 2014.Control Factors of Enrichment and Producibility of Shale Oil:A Case Study of Biyang Depression.Earth Science, 39(7):848-857 (in Chinese with English abstract).
      [22] Li, M.H., Kang, S.C., Zhu, L.P., et al., 2008.Mineralogy and Geochemistry of the Holocene Lacustrine Sediments in Nam Co, Tibet.Quaternary International, 187(1):105-116.doi: 10.1016/j.quaint.2007.12.008
      [23] Liang, B., He, S., Chen, X.H., et al., 2015.Exploration Potential of Dongyuemiao Member Shale Gas in Western Hubei-Eastern Chongqing Area.Fault-Block Oil & Gas Field, 22(1):36-41 (in Chinese with English abstract).
      [24] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      [25] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309.doi: 10.1016/j.marpetgeo.2016.04.024
      [26] McManus, J., Berelson, W.M., Klinkhammer, G.P., et al., 1998.Geochemistry of Barium in Marine Sediments:Implications for Its Use as a Paleoproxy.Geochimica et Cosmochimica Acta, 62(21-22):3453-3473.doi: 10.1016/s0016-7037(98)00248-8
      [27] Nelson, B., 1967.Sedimentary Phoshate Method for Estimating Paleosality.Science, 158(3803):917-920.doi: 10.1126/science.158.3803.917
      [28] Ni, C., Hao, Y., Hou, G.F., et al., 2012.Cognition and Significance of Lower Jurassic Daanzhai Organic Muddy Shell Limestone Reservoir in Central Sichuan Basin.Marine Origin Petroleum Geology, 17(2):45-56 (in Chinese with English abstract). https://www.researchgate.net/publication/285099174_Cognition_and_significance_of_lower_Jurassic_Da'anzhai_organic_muddy_shell_limestone_reservoir_in_central_Sichuan_Basin
      [29] Piper, D.Z., Perkins, R.B., 2004.A Modern vs.Permian Black Shale—the Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition.Chemical Geology, 206(3):177-197.doi: 10.1016/j.chemgeo.2003.12.006
      [30] Qin, J.Z., Zheng, L.J., Tenger, 2007.Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Hydrocarbon Source Rocks.Earth Science, 32(6):853-860 (in Chinese with English abstract).
      [31] Raiswell, R., Plant, J., 1980.The Incorporation of Trace Elements into Pyrite during Diagenesis of Black Shales, Yorkshire, England.Economic Geology, 75(5):684-699.doi: 10.2113/gsecongeo.75.5.684
      [32] Sageman, B.B., Murphy, A.E., Werne, J.P., et al., 2003.A Tale of Shales:The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin.Chemical Geology, 195(1-4):229-273.doi: 10.1016/s0009-2541(02)00397-2
      [33] Sheldon, N.D., Tabor, N.J., 2009.Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols.Earth-Science Reviews, 95(1-2):1-52.doi: 10.1016/j.earscirev.2009.03.004
      [34] Sinha, R., Smykatz-Kloss, W., Stüben, D., et al., 2006.Late Quaternary Palaeoclimatic Reconstruction from the Lacustrine Sediments of the Sambhar Playa Core, Thar Desert Margin, India.Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3-4):252-270.doi: 10.1016/j.palaeo.2005.09.012
      [35] Smol, J.P., Cumming, B.F., 2000.Tracking Long-Term Changes in Climate Using Algal Indicators in Lake Sediments.Journal of Phycology, 36(6):986-1011.doi: 10.1046/j.1529-8817.2000.00049.x
      [36] Song, M.S., 2005.Sedimentary Environment Geochemistry in the Shasi Section of Southern Ramp, Dongying Depression.Journal of Mineralogy and Petrology, 25(1):67-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200501013.htm
      [37] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32.doi: 10.1016/j.chemgeo.2006.02.012
      [38] Wang, D.F., Gao, S.K., Dong, D.Z., et al., 2013.A Primary Discussion on Challenges for Exploration and Development of Shale Gas Resources in China.Natural Gas Industry, 33(1):8-17 (in Chinese with English abstract). https://www.researchgate.net/publication/290693888_A_primary_discussion_on_challenges_for_exploration_and_development_of_shale_gas_resources_in_China
      [39] Wang, J.M., Li, L., 1997.Recovery Method and Application for Primary State of Source Rock Richness and Type.Acta Sedimentologica Sinica, 15(2):45-48 (in Chinese with English abstract).
      [40] Wei, Z.Q., Zhong, W., Chen, Y.Q., et al., 2015.Supergene Geochemical Elements of Swampy Basin in the Subtropical Monsoon Region:A Case Study of Dingnan Dahu in Jiangxi Province.Progress in Geography, 34(7):909-917 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2015.07.012
      [41] Whitfield, M., 2001.Interactions between Phytoplankton and Trace Metals in the Ocean.Advances in Marine Biology, 41(3):1-128.doi: 10.1016/S0065-2881(01)41002-9
      [42] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). https://www.researchgate.net/publication/288230011_Reservoir_quality_characterization_of_upper_triassic_Chang_7_Shale_in_Ordos_Basin
      [43] Wu, Y.X., Zhong, S.Q., Pan, Y.P., et al., 2009.Stereoscopic Exploration New Progress of Natural Gas in Sichuan Basin.Lithologic Reservoirs, 21(1):128-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX200901028.htm
      [44] Yong, Y.Q., 2013.Research on Sedimentary Facies of the Lower Jurassic Ziliujing Group in the Yuanba Area of the Northeast Sichuan Basin (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [45] Zhang, D.X., Yang, T.Y., 2013.An Overview of Shale-Gas Production.Acta Petrolei Sinica, 34(4):792-801 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201304023.htm
      [46] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [47] Zhang, Y., Zheng, S.C., Gao, B., et al., 2017.Distribution Characteristics and Enrichment Factors of Organic Matter in Upper Permian Dalong Formation of Shangsi Section, Guangyuan, Sichuan Basin.Earth Science, 42(6):1008-1025 (in Chinese with English abstract). https://www.researchgate.net/publication/279594696_Main_factors_influencing_marine_carbonate_source_rock_formation
      [48] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China.Petroleum Exploration and Development, 37(6):641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      [49] Zou, C.N., Dong, D.Z., Yang, H., et al., 2011.Conditions of Shale Gas Accumulation and Exploration Practices in China.Natural Gas Industry, 31(12):26-39, 125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201112007.htm
      [50] 陈洪德, 黄福喜, 徐胜林, 等, 2009.中上扬子地区海相成烃物质聚集分布规律及主控因素.成都理工大学学报(自然科学版), 36(6): 569-577. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906001.htm
      [51] 陈尚斌, 朱炎铭, 王红岩, 等, 2010.中国页岩气研究现状与发展趋势.石油学报, 31(4): 689-694. doi: 10.7623/syxb201004034
      [52] 邓宏文, 钱凯, 1990.深湖相泥岩的成因类型和组合演化.沉积学报, 8(3): 1-21. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm
      [53] 董大忠, 邹才能, 李建忠, 等, 2011.页岩气资源潜力与勘探开发前景.地质通报, 30(2): 324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201505043.htm
      [54] 范昱, 2011. 川东北地区下侏罗统自流井组层序地层及沉积充填特征研究(硕士学位论文). 成都: 成都理工大学.
      [55] 冯洪真, 俞剑华, 方一亭, 等, 1993.五峰期上扬子海古盐度分析.地层学杂志, 17(3): 179-185. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199303002.htm
      [56] 冯荣昌, 吴因业, 陶士振, 等, 2015.四川盆地下侏罗统大安寨段沉积微相特征及对储层的控制.石油实验地质, 37(3): 320-327. doi: 10.11781/sysydz201503320
      [57] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3): 893-901. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm
      [58] 黄江庆, 梁榜, 车世琦, 等, 2014.鄂西渝东地区东岳庙段陆相页岩气富集主控因素分析.石油天然气学报, 36(4): 30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201404006.htm
      [59] 李吉君, 史颖琳, 章新文, 等, 2014.页岩油富集可采主要控制因素分析:以泌阳凹陷为例.地球科学, 39(7): 848-857. http://www.earth-science.net/WebPage/Article.aspx?id=2888
      [60] 梁榜, 何生, 陈学辉, 等, 2015.鄂西渝东地区东岳庙段页岩气勘探潜力研究.断块油气田, 22(1): 36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201501008.htm
      [61] 倪超, 郝毅, 厚刚福, 等, 2012.四川盆地中部侏罗系大安寨段含有机质泥质介壳灰岩储层的认识及其意义.海相油气地质, 17(2): 45-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201202009.htm
      [62] 秦建中, 郑伦举, 腾格尔, 2007.海相高演化烃源岩总有机碳恢复系数研究.地球科学, 32(6): 853-860. http://www.earth-science.net/WebPage/Article.aspx?id=3513
      [63] 宋明水, 2005.东营凹陷南斜坡沙四段沉积环境的地球化学特征.矿物岩石, 25(1): 67-73. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200501013.htm
      [64] 王道富, 高世葵, 董大忠, 等, 2013.中国页岩气资源勘探开发挑战初论.天然气工业, 33(1): 8-17. doi: 10.3787/j.issn.1000-0976.2013.01.002
      [65] 王吉茂, 李恋, 1997.烃源岩原始有机质丰度和类型的恢复方法.沉积学报, 15(2): 45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.008.htm
      [66] 魏志强, 钟巍, 陈永强, 等, 2015.亚热带季风区湖沼流域表生地球化学元素研究——以江西定南大湖为例.地理科学进展, 34(7): 909-917. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201507012.htm
      [67] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [68] 吴月先, 钟水清, 潘用平, 等, 2009.四川盆地天然气"立体勘探"新进展.岩性油气藏, 21(1): 128-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200901028.htm
      [69] 雍云乔, 2013. 川东北元坝地区下侏罗统自流井组沉积相特征研究(硕士学位论文). 成都: 成都理工大学.
      [70] 张东晓, 杨婷云, 2013.页岩气开发综述.石油学报, 34(4): 792-801. doi: 10.7623/syxb201304023
      [71] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机质储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [72] 张毅, 郑书粲, 高波, 等, 2017.四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素.地球科学, 42(6): 1008-1025. http://www.earth-science.net/WebPage/Article.aspx?id=3593
      [73] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6): 641-653. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
      [74] 邹才能, 董大忠, 杨桦, 等, 2011.中国页岩气形成条件及勘探实践.天然气工业, 31(12): 26-39, 125. doi: 10.3787/j.issn.1000-0976.2011.12.005
    • 加载中
    图(9)
    计量
    • 文章访问数:  4078
    • HTML全文浏览量:  2074
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-10
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回