• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因

    徐壮 石万忠 翟刚毅 包书景 张晓明 王任 王健 王超 袁琪

    徐壮, 石万忠, 翟刚毅, 包书景, 张晓明, 王任, 王健, 王超, 袁琪, 2017. 扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因. 地球科学, 42(7): 1223-1234. doi: 10.3799/dqkx.2017.099
    引用本文: 徐壮, 石万忠, 翟刚毅, 包书景, 张晓明, 王任, 王健, 王超, 袁琪, 2017. 扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因. 地球科学, 42(7): 1223-1234. doi: 10.3799/dqkx.2017.099
    Xu Zhuang, Shi Wanzhong, Zhai Gangyi, Bao Shujing, Zhang Xiaoming, Wang Ren, Wang Jian, Wang Chao, Yuan Qi, 2017. Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area. Earth Science, 42(7): 1223-1234. doi: 10.3799/dqkx.2017.099
    Citation: Xu Zhuang, Shi Wanzhong, Zhai Gangyi, Bao Shujing, Zhang Xiaoming, Wang Ren, Wang Jian, Wang Chao, Yuan Qi, 2017. Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area. Earth Science, 42(7): 1223-1234. doi: 10.3799/dqkx.2017.099

    扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因

    doi: 10.3799/dqkx.2017.099
    基金项目: 

    国家基础地质调查项目 12120114055801

    高等学校创新引智计划 B14031

    国家自然科学基金项目 41672134

    国家重大油气专项 2016ZX05034-002-003

    中国地质调查局油气基础性公益性地质调查项目 DD20160185

    详细信息
      作者简介:

      徐壮(1989-), 男, 博士研究生, 主要从事页岩气储层评价研究.ORCID:0000-0003-0877-7044.E-mail:xuzhuang@cug.edu.cn

      通讯作者:

      石万忠, ORCID:0000-0003-0207-708X.E-mail:shiwz@cug.edu.cn

    • 中图分类号: P618.13

    Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area

    • 摘要: 下寒武统牛蹄塘组与下志留统龙马溪组页岩是扬子地区发育的两套富有机质黑色页岩,由于其分布面积广、厚度大、有机质丰度高而成为页岩气勘探的重点层位.然而牛蹄塘组孔隙度表现出了与龙马溪组截然不同的规律,两套页岩的孔隙结构、有机碳含量、密度也存在显著差异.结合测井、埋深(上覆压力)、孔隙度、有机碳及成熟度测试数据进行了对比分析.结果显示,牛蹄塘组过高的有机碳含量和热演化程度严重影响了页岩的孔隙结构,使有机质碳化,有机质孔发生坍塌和充填;牛蹄塘组埋深大、上覆压力也大,导致无机孔被压实,因此其总孔隙度明显小于龙马溪组.

       

    • 图  1  扬子地区构造纲要图

      徐良伟等(2016)

      Fig.  1.  Tectonic outline map of Yangtze area

      图  2  下寒武统(a)与下志留统(b)的海相页岩沉积模式

      据林拓等(2015)

      Fig.  2.  Marine shale depositional pattern of the lower Cambrian(a) and the lower Silurian(b)

      图  3  Marcellus页岩(a)和龙马溪组、牛蹄塘组页岩(b)的有机碳含量与孔隙度关系

      Fig.  3.  The relations of organic carbon content and porosity of Marcellus shale (a) and Longmaxi-Niutitang shales (b)

      图  4  各井有机碳含量与密度交汇图

      Fig.  4.  Intersection figure of organic carbon content and density of different wells

      图  5  孔隙度、埋深与成熟度关系

      a.孔隙度与埋深关系;b.孔隙度与成熟度关系;c.在不同有机碳含量条件下孔隙度与成熟度关系,其中l1的条件为有机碳含量为2.0%、最大孔隙度为1.68%,l2的条件为有机碳含量为3.0%、最大孔隙度为2.50%,l3的条件为有机碳含量为4.0%、最大孔隙度为3.35%,l4的条件为有机碳含量为5.0%、最大孔隙度为4.20%,l5的条件为有机碳含量为6.0%、最大孔隙度为5.00%

      Fig.  5.  The relations of porosity, depth and maturity

      图  6  宣城地区牛蹄塘组页岩电阻率与有机碳含量、粘土矿物含量的关系

      Fig.  6.  The relation between resistivity and organic carbon content (a), and the relation between resistivity and clay mineral content (b) of Niutitang shale in Xucheng area

      图  7  扬子地区下志留统和下寒武统页岩有机碳含量直方图

      Fig.  7.  The histogram of organic carbon content in lower Cambrian and lower Silurian shales in Yangtze area

      图  8  龙马溪组与牛蹄塘组页岩Ro直方图

      Fig.  8.  The histogram of Ro of the Longmaxi-Niutitang shales

      图  9  牛蹄塘组与龙马溪组页岩不同孔径体积直方图

      据杨潇等(2015)

      Fig.  9.  The histogram of different aperture size of the Niutitang-Longmaxi shales

      图  10  威远地区龙马溪组(a)与牛蹄塘组(b)页岩有机质孔隙微观特征对比

      a.Ro>3.0%,有机质孔隙形态轮廓清晰,面孔率为11.9%~23.9%;b.Ro>3.0%,有基质孔隙部分出现坍塌且边界模糊,面孔率为4.6%~10.6%;据邹才能等(2010)王道富等(2013)

      Fig.  10.  Comparison of microscopic characteristics of organic porosity between Niutitang Formation and Longmaxi Formation in Weiyuan area

      表  1  宣页A井牛蹄塘组页岩岩矿与电阻率统计

      Table  1.   The statistics of resistivity and mineral contents of Niutitang shale in well XY A

      页岩井段
      (m)
      厚度
      (m)
      样品数 TOC
      (%)
      矿物含量(%)电阻率
      (Ω·m)
      石英 斜长石 方解石 黄铁矿 粘土矿物
      2 600~2 688 88 15 1.43~2.20 28~44 3.1~10.3 4.3~17.1 0.0~2.1 25~43 231.0~652.0
      2 688~2 708 20 19 2.41~3.14 32~46 2.2~10.0 3.9~19.7 0.0~3.2 27~44 76.0~187.0
      2 708~2 728 20 20 2.87~3.66 36~52 5.7~12.4 2.3~13.9 0.0~5.7 19~40 0.2~6.5
      2 728~2 748 20 19 3.42~7.25 35~79 1.2~11.6 0.0~18.5 0.0~7.1 17~38 0.1~2.1
      下载: 导出CSV
    • [1] Allen, P.A., Allen, J.R., 1990.Basin Analysis:Principles and Applications.Blackwell, Oxford.
      [2] Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2010.New Pore-Scale Considerations for Shale Gas in Place Calculations.SPE Unconventional Gas Conference, Pittsburgh.SPE131772.doi:10.2118/131772-ms
      [3] Athy, L.F., 1930.Density, Porosity, and Compaction of Sedimentary Rocks.AAPG Bulletin, 14(1):1-24. http://archives.datapages.com/data/bulletns/1917-30/data/pg/0014/0001/0000/0001.htm?doi=10.1306%2F3D93289E-16B1-11D7-8645000102C1865D
      [4] Bernard, S., Horsfield, B., Schulz, H.M., et al., 2012.Geochemical Evolution of Organic-Rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany).Marine and Petroleum Geology, 31:70-89.doi: 10.1016/j.marpetgeo.2011.05.010
      [5] Cander, H., 2012.Sweet Spots in Shale Gas and Liquids Plays:Prediction of Fluid Composition and Reservoir Pressure.AAPG Annual Convention and Exhibition, California. http://www.searchanddiscovery.com/documents/2012/40936cander/ndx_cander.pdf
      [6] Chalmers, G.R.L., Bustin, R.M., 2007.The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada.International Journal of Coal Geology, 70(1-3):223-239.doi: 10.1016/j.coal.2006.05.001
      [7] Chalmers, G.R.L., Bustin, R.M., 2008.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part I:Geological Controls on Methane Sorption Capacity.Bulletin of Canadian Petroleum Geology, 56(1):1-21.doi: 10.2113/gscpgbull.56.1.1
      [8] Chalmers, G.R.L., Bustin, R.M., Power, I.M., 2009.A Pore by Any Other Name Would be as Small:The Importance of Meso-and Microporosity in Shale Gas Capacity.AAPG Annual Convention and Exhibition, Denver. https://www.researchgate.net/publication/285117727_A_pore_by_any_other_name_would_be_as_small_The_importance_of_meso-_And_microporosity_in_shale_gas_capacity_abs
      [9] Cheng, K.M., Wang, T.G., Zhong, N.N., et al., 1995.Geochemistry of Source Rocks.Science Press, Beijing (in Chinese).
      [10] Cui, J.W., Zhu, R.K., Cui, J.G., 2013.Relationship of Porous Evolution and Residual Hydrocarbon:Evidence from Modeling Experiment with Geological Constrains.Acta Geologica Sinica, 87(5):730-736 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201305010.htm
      [11] Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012a.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31.doi: 10.1016/j.coal.2012.08.004
      [12] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012b.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677.doi: 10.1306/08151110188
      [13] Ding, Y.W., Zhu, H.J., Yun, L.L., et al., 1985.Infrastructures of Lower Yangtze Basin and Their Relation to Evolution of the Basin.Petroleum Geology & Expeximent, 7(1):70-78 (in Chinese with English abstract).
      [14] Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3):288-299, 308 (in Chinese with English abstract). https://www.researchgate.net/publication/284617068_Forming_conditions_and_characteristics_of_shale_gas_in_the_Lower_Paleozoic_of_the_Upper_Yangtze_region_China
      [15] Dong, D.Z., Zou, C.N., Yang, H., et al., 2012.Progress and Prospects of Shale Gas Exploration and Development in China.Acta Petrolei Sinica, 33(S1):107-114 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2012S1015.htm
      [16] Fan, W.F., Hou, D.J., Liang, Y., 2015.Comparative Study on Reservoir Forming Conditions between Niutitang and Longmaxi Formation of Shale Gas in South China:Taking Southeast Chongqing Area for Example.Petroleum Exploration and Development, 27(15):13-22 (in Chinese with English abstract).
      [17] Guo, N.F., Yan, J.Z., Chen, H., et al., 2002.Marin Oil and Gas Geological Characteristic and Exploration Targets in the Jiangsu, Zhejing and Anhui Provinces.Geological Review, 48(5):552-560 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0146638015000625
      [18] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901 (in Chinese with English abstract). https://www.researchgate.net/publication/283808736_Major_factors_controlling_the_accumulation_and_high_productivity_in_marine_shale_gas_in_the_lower_paleozoic_of_Sichuan_Basin_and_its_periphery_A_case_study_of_the_Wufeng-Longmaxi_Formation_of_Jiaoshib
      [19] He, F.Q., Zhu, T., 2012.Favorable Targets of Breakthrough and Built-Up of Shale Gas in Continental Facies in Lower Jurassic, Sichuan Basin.Petroleum Geology & Experiment, 34(3):246-251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201203002.htm
      [20] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [21] Kang, Y.Z., 2010.Great Hydrocarbon Potential in the Paleozoic Marine Sequences in China.Oil & Gas Geology, 31(6):699-706, 752 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201006005.htm
      [22] Kitty, L.M., Mark, R., David, N.A., et al., 2013.Organic Matter-Hosted Pore System, Marecellus Formation (Devonian), Pennsylvania.AAPG Bulletin, 97(2):177-200.doi: 10.1306/07231212048
      [23] Lin, T., Zhang, J.C., Bao, S.J., et al., 2015.The Optimum Selecting of Shale Gas Well Location and Gas Content of Lower Cambrian, Northwest Hunan:A Case Study of Well Chanye.Natural Gas Geoscience, 26(2):312-319 (in Chinese with English abstract). https://www.researchgate.net/publication/286178627_Study_of_stabilizer_location_and_well_deviation_control_mechanism_in_gas_drilling_horizontal_well
      [24] Liu, B.J., Zhou, M.K., Wang, R.Z., 1990.Early Paleozoic PalaeoGeography and Tectonic Evolution of South China.Bulletin of the Chinese Academy of Geological Sciences, (1):97-98 (in Chinese).
      [25] Liu, Z., 1997.Reservoir Seismic Stratigraphy.Geological Publishing House, Beijing (in Chinese).
      [26] Liu, Z., Shao, X.J., Jin, B., et al., 2007.Co-Effect of Depth and Burial Time on the Evolution of Porosity for Classic Rocks during the Stage of Compaction.Geoscience, 21(1):125-132 (in Chinese with English abstract). https://www.researchgate.net/publication/288924943_Co-effect_of_depth_and_burial_time_on_the_evolution_of_porosity_for_classic_rocks_during_the_stage_of_compaction
      [27] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092
      [28] Lv, B.F., 2005.The Tectonization and Petroleum Accumulation in Southeast Sichuan Basin (Dissertation).Guangzhou Institute of Geochemistry of Chinese Academic of Sciences, Guangzhou (in Chinese with English abstract).
      [29] Milliken, K.L., Rudnicki, M., Awwiller, D.N., et al., 2013.Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania.AAPG Bulletin, 97(2):177-200.doi: 10.1306/07231212048
      [30] Milner, M., McLin, R., Petriello, J., 2010.Imaging Texture and Porosity in Mudstones and Shales:Comparison of Secondary and Ion-Milled Backscatter SEM Methods.Canadian Unconventional Resources and International Petroleum Conference, Calgary.doi:10.2118/138975-ms
      [31] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340.doi: 10.1306/10240808059
      [32] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). https://www.researchgate.net/publication/279571586_Controlling_Factors_for_Shale_Gas_Accumulation_and_Prediction_of_Potential_Development_Area_in_Shale_Gas_Reservoir_of_South_ChinaJ
      [33] Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010.From Oil-Prone Source Rock to Gas-Producing Shale Reservoir-Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs.SPE 131350, Beijing.doi:10.2118/131350-ms
      [34] Pu, B.L., 2008.Analysis of the Reservoir-forming Conditions of Shale Gas Potential in Sichuan Basin (Dissertation).China University of Petroleum, Qingdao (in Chinese with English abstract).
      [35] Schmoker, J.W., Gautier, D.L., 1988.Sandstone Porosity as a Function of Thermal Maturity.Geology, 16(12):1007-1010.doi:10.1130/0091-7613(1988)016<1007:SPAAFO>2.3.CO; 2
      [36] Selley, R.C., 1978.Porosity Gradients in North Sea Oil Bearing Sandstones.Journal of the Geological Society of London, 135(1):119-132.doi: 10.1144/gsjgs.135.1.0119
      [37] Sisk, C., Diaz, E., Walls, J., et al., 2010.3D Visualization and Classification of Pore Structure and Pore Filling in Gas Shales.SPE Annual Technical Conference and Exhibition, Florence. http://www.ingrainrocks.com/media/files/user/-4-SPE2010.pdf
      [38] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      [39] Sondergeld, C.H., Ambrose, R.J., Rai, C.S., et al., 2010.Micro-Structural Studies of Gas Shales.SPE Unconventional Gas Conference, Pittsburgh. http://industry.wanfangdata.com.cn/dl/Detail/ExternalResource?id=trqgy201402003%5e17
      [40] Tissot, B.P., Welte, D.H., 1984.Petroleum Formation and Occurrence.Springer-Verlag, Berlin.
      [41] Wang, D.F., Wang, Y.M., Dong, D.Z., et al., 2013.Quantitative Characterization of Reservoir Space in the Lower Cambrian Qingzhusi Shale, Southern Sichuan Basin.Natural Gas Industry, 33(7):1-10 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854016000206
      [42] Wang, Y.M., Dong, D.Z., Li, J.Z., et al., 2012.Reservoir Characteristics of Shale Gas in Longmaxi Formation of the Lower Silurian, Southern Sichuan.Acta Petrolei Sinica, 33(4):551-561 (in Chinese with English abstract). doi: 10.1038/aps.2012.9
      [43] Wu, S.H., Xiong, Q.H., Peng, S.M., et al., 1998.Oil and Gas Reservoir Geology.Petroleum Industry Press, Beijing (in Chinese).
      [44] Wu, S.T., Zhou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). https://www.researchgate.net/publication/288230011_Reservoir_quality_characterization_of_upper_triassic_Chang_7_Shale_in_Ordos_Basin
      [45] Xu, L.W., Liu, L.F., Liu, Z.F., et al., 2016.Research on Shale Gas Occurrence Geological Condition of Permian in Yangzi Region.Geoscience, 30(6):1376-1389 (in Chinese with English abstract). http://file.scirp.org/pdf/EPE20110300017_88948334.pdf
      [46] Yan, C.Z., Dong, D.Z., Cheng, K.M., et al., 2009.Progress of Shale Gas in North America.Petroleum Industry Press, Beijing (in Chinese).
      [47] Yang, X., Jiang, Z.X., Li, Z., et al., 2015.Differences Analysis of Pore Structure Characteristics between Niutitang Formation and Wufeng-Longmaxi Formation of Shale in the Lower Yangtze Area.Journal of Jilin University (Earth Science Edition), 45(1):1515-1530 (in Chinese with English abstract).
      [48] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://www.researchgate.net/publication/305417638_A_new_method_for_microscopic_pore_structure_analysis_in_shale_matrix
      [49] Ye, T.R., Tang, J.M., Wen, X.K., et al., 2011.Application of 3D 3C Seismic Data for Predicting Deep Tight Gas Reservoir in Western Sichuan Basin.Geophysical Prospecting for Petroleum, 50(6):558-564 (in Chinese with English abstract). http://www.inovageo.com/ru/images/stories/resources/TLE_%20XinChang_Full_JUL%202009.pdf
      [50] Ye, Z., Liang, X., Ma, L., et al., 2006.An Approach to Exploration Deraction of Oil Gas in the Marine Residual Basins of Independent Lower Yangtze Block.Chinese Journal of Geology, 41(3):523-548 (in Chinese with English abstract).
      [51] Zhao, Z.Z., Ou, Y.J., Liu, D.L., et al., 2000.Technology and Interpretation Method of Well Logging of Low Resistivity Reservoirs in Bohai Bay Basin.Petroleum Industry Press, Beijing, 1-58 (in Chinese).
      [52] Zhao, C.L., Zhu, X.M., 2001.Sedimentary Petrology.Petroleum Industry Press, Beijing, 135-137 (in Chinese).
      [53] Zhang, D.W., 2010.Strategic Concepts of Accelerating the Survey, Exploration and Exploitation of Shale Gas Resources in China.Oil & Gas Geology, 31(2):135-139, 150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201002004.htm
      [54] Zhang, H.F., Zhang, W.X., 1997.Petroleum Geology.Petroleum Industry Press, Beijing, 266-273 (in Chinese).
      [55] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [56] Zhang, T.S., Jiang, Z.Y., Chen, X.H., 2008.Characteristics and Controlling Factors of the development of Paleozoic Reef-Banks in the Sichuan Basin.Geology in China, 35(5):1017-1030 (in Chinese with English abstract). https://www.researchgate.net/publication/289408035_Characteristics_and_controlling_factors_of_development_of_Paleozoic_reef-banks_in_the_Sichuan_basin
      [57] Zheng, L.J., Guan, D.F., Guo, X.W., et al., 2015.Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation.Earth Science, 40(5):909-917 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380410600249
      [58] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China.Petroleum Exploration & Development, 37(6):641-653 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201006003.htm
      [59] Zou, C.N., Dong, D.Z., Yang, H., et al., 2011.Conditions of Shale Gas Accumulation and Exploration Practices in China.Natural GasIndustry, 31(12):26-39, 125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201112007.htm
      [60] 程克明, 王铁冠, 钟宁宁, 等, 1995.烃源岩地球化学.北京:科学出版社.
      [61] 崔景伟, 朱如凯, 崔京钢, 2013.页岩孔隙演化及其残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 87(5): 730-736. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201305010.htm
      [62] 丁幼文, 朱慧娟, 恽舲玲, 等, 1985.下扬子盆地的地壳深部构造与盆地演化的研究.石油实验地质, 7(1): 70-78. doi: 10.11781/sysydz198501070
      [63] 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. doi: 10.11743/ogg20100304
      [64] 董大忠, 邹才能, 杨桦, 等, 2012.中国页岩气勘探开发进展与发展前景.石油学报, 33(S1): 107-114. doi: 10.7623/syxb2012S1013
      [65] 范文斐, 侯读杰, 梁钰, 2015.中国南方页岩气牛蹄塘组与龙马溪组成藏条件对比研究——以渝东南地区为例.科学技术与工程, 27(15): 13-22. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201527003.htm
      [66] 郭念发, 闫吉柱, 陈红, 等, 2002.苏浙皖地区海相油气地质特征及勘探目标的选择.地质评论, 48(5): 552-560. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200205016.htm
      [67] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石垠地区五峰组-龙马溪组为例.中国地质, 41(3): 893-901. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm
      [68] 何发岐, 朱彤, 2012.陆相页岩气突破和建产的有利目标——以四川盆地下侏罗统为例.石油实验地质, 34(3): 246-251. doi: 10.11781/sysydz201203246
      [69] 康玉柱, 2010.中国古生代海相油气资源潜力巨大.石油与天然气地质, 31(6): 699-706, 752. doi: 10.11743/ogg20100602
      [70] 林拓, 张金川, 包书景, 等, 2015.湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征——以常页1井为例.天然气地球科学, 26(2): 312-319. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502016.htm
      [71] 刘宝珺, 周名魁, 王汝植, 1990.中国南方早古生代古地理轮廓及构造演化.中国地质科学院院报, (1): 97-98. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199000011029.htm
      [72] 刘震, 1997.储层地震地层学.北京:地质出版社.
      [73] 刘震, 邵新军, 金博, 等, 2007.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响.现代地质, 21(1): 125-132. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200701015.htm
      [74] 吕宝凤, 2005. 川东南地区构造变形与下古生界油气成藏研究(博士学位论文). 广州: 中国科学院广州地球化学研究所.
      [75] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4): 484-491. doi: 10.7623/syxb200904002
      [76] 蒲泊伶, 2008. 四川盆地页岩气成藏条件分析(硕士学位论文). 青岛: 中国石油大学.
      [77] 王道富, 王玉满, 董大忠, 等, 2013.川南下寒武统筇竹寺组页岩储集空间定量表征.天然气工业, 33(7): 1-10. doi: 10.3787/j.issn.1000-0976.2013.07.001
      [78] 王玉满, 董大忠, 李建忠, 等, 2012.川南下志留统龙马溪组页岩气储层特征.石油学报, 33(4): 551-561. doi: 10.7623/syxb201204003
      [79] 吴胜和, 熊琦华, 彭仕宓, 等, 1998.油气储层地质学.北京:石油工业出版社.
      [80] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [81] 徐良伟, 刘洛夫, 刘祖发, 等, 2016.扬子地区二叠系页岩气赋存地质条件研究.现代地质, 30(6): 1376-1389. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201606021.htm
      [82] 阎存章, 董大忠, 程克明, 等, 2009.北美地区页岩气勘探开发新进展.北京:石油工业出版社.
      [83] 杨潇, 姜振学, 李卓, 等, 2015.下扬子地区牛蹄塘组和五峰组-龙马溪组页岩孔隙结构特征的差异性分析.吉林大学学报(地球科学版), 45(1): 1515-1530. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506004095.htm
      [84] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [85] 叶泰然, 唐建明, 文雪康, 等, 2011.三维三分量地震资料在川西深层致密砂岩气藏预测中的应用.石油物探, 50(6): 558-564. http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201106006.htm
      [86] 叶舟, 梁兴, 马力, 等, 2006.下扬子独立地块海相残留盆地油气勘探方向探讨.地质科学, 41(3): 523-548. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200603015.htm
      [87] 赵政璋, 欧阳健, 刘德来, 等, 2000.渤海湾地区低电阻油气层测井技术与解释方法.北京:石油工业出版社, 1-58.
      [88] 赵澄林, 朱筱敏, 2001.沉积岩石学.北京:石油工业出版社, 135-137.
      [89] 张大伟, 2010.加速我国页岩气资源调查和勘探开发战略构想.石油与天然气地质, 31(2): 135-139. doi: 10.11743/ogg20100201
      [90] 张厚福, 张万选, 1997.石油地质学.北京:石油工业出版社, 266-273.
      [91] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [92] 张廷山, 姜照勇, 陈晓慧, 2008.四川盆地古生代生物礁滩特征及发育控制因素.中国地质, 35(5): 1017-1030. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200805022.htm
      [93] 郑伦举, 关德范, 郭小文, 等, 2015.影响海相烃源岩热解生烃过程的地质条件.地球科学, 40(5): 909-917. http://www.earth-science.net/WebPage/Article.aspx?id=3091
      [94] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6): 641-653. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
      [95] 邹才能, 董大忠, 杨桦, 等, 2011.中国页岩气形成条件及勘探实践.天然气工业, 31(12): 26-39, 125. doi: 10.3787/j.issn.1000-0976.2011.12.005
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  5423
    • HTML全文浏览量:  1865
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-29
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回