• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化

    马义权 杜学斌 刘惠民 陆永潮

    马义权, 杜学斌, 刘惠民, 陆永潮, 2017. 东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化. 地球科学, 42(7): 1195-1208. doi: 10.3799/dqkx.2017.097
    引用本文: 马义权, 杜学斌, 刘惠民, 陆永潮, 2017. 东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化. 地球科学, 42(7): 1195-1208. doi: 10.3799/dqkx.2017.097
    Ma Yiquan, Du Xuebin, Liu Huimin, Lu Yongchao, 2017. Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es4 in the Dongying Depression. Earth Science, 42(7): 1195-1208. doi: 10.3799/dqkx.2017.097
    Citation: Ma Yiquan, Du Xuebin, Liu Huimin, Lu Yongchao, 2017. Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es4 in the Dongying Depression. Earth Science, 42(7): 1195-1208. doi: 10.3799/dqkx.2017.097

    东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化

    doi: 10.3799/dqkx.2017.097
    基金项目: 

    构造与油气资源"教育部重点实验室开放研究基金课题 TPR-2016-09

    国家重点基础研究发展计划("973"计划)项目 SQ2013CB021013

    国家十三五科技重大专项《中国典型盆地陆相页岩油勘探开发选区与目标评价》子课题四《济阳坳陷页岩油勘探开发目标评价》 2017ZX05049004

    详细信息
      作者简介:

      马义权(1988-), 男, 副研究员, 博士, 主要从事非常规油气储层非均质性研究.ORCID:0000-0001-7792-5165.E-mail:343559902@qq.com

      通讯作者:

      杜学斌, ORCID:0000-0002-1325-0039.E-mail:basindu@163.com

    • 中图分类号: P586

    Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es4 in the Dongying Depression

    • 摘要: 我国陆相湖盆页岩具有较大的生烃潜力,但是对其研究起步较晚,目前存在诸多不足,尤其对富生烃页岩岩相特征及其沉积作用过程、成因演化等方面的研究工作均处于探索阶段.综合岩心、薄片、XRD矿物含量分析、主微量元素和测井等数据,在沉积学、元素地球化学以及-R(湖进-湖退)层序理论的指导下,详细研究了东营凹陷沙四上亚段页岩的岩相特征及其沉积过程、岩相发育与层序耦合关系以及古气候和湖泊的演化过程.结果表明,沙四上亚段页岩自下而上主要由硬石膏薄夹层页岩相、含粉砂富粘土质页岩相、块状灰质页岩相和纹层状灰质页岩相组成,分别沉积于盐湖环境、前三角洲环境、浅湖环境和深湖-半深湖环境.页岩岩相组合的垂向演化与体系域的纵向分布具有明显的耦合关系,揭示了古气候由干旱转为潮湿、湖盆由小型湖泊演化为大型湖泊,并推断古气候的变化和控盆正断层的活动是控制研究区古湖泊演化的两个重要因素.

       

    • 图  1  东营凹陷构造地质简图(a)、东营凹陷构造单元组成及主要沉积地层分布(b)和东营凹陷地层综合柱状图(c)

      图a据Feng et al.(2013)修改;图b据Guo et al.(2012)修改;图c据Guo et al.(2012)修改

      Fig.  1.  The structural geological map (a), structural units and main sedimentary strata (b) and comprehensive stratigraphic column (c) of the Dongying depression

      图  2  NY1井沙四上亚段页岩岩相、岩相组合、矿物成分和TOC垂向变化

      Fig.  2.  Lithofacies, lithofacies associations, mineral composition and TOC variation of the upper submember of Es4 in well NY1

      图  3  页岩不同岩相矿物组成三端元图

      Fig.  3.  Ternary diagrams of mineralogy of different lithofacies in well NY1

      图  4  纹层状灰质页岩相沉积特征

      a.纹层普遍呈平直、连续和平行的形态;b.丰富的亮晶方解石纹层;c.亮晶方解石主要由垂直于层面发育的纤维状方解石组成,它们具有清晰轮廓且不规则的边缘;d.方解石透镜体切割和扭曲原始的页岩纹层;e.富粘土质纹层与隐晶方解石纹层韵律互层;f.鱼化石的横截面;g.介形虫碎片;h.颗石藻化石

      Fig.  4.  Sedimentary characteristics of the laminated calcareous shale

      图  5  块状灰质页岩相沉积特征

      a.块状构造;b.介形虫化石及石英粉砂;c.块状构造及介形虫化石

      Fig.  5.  Sedimentary characteristics of the massive calcareous shale

      图  6  含粉砂富粘土质页岩相沉积特征

      a.砂纸条带底部可见侵蚀面;b.波纹交错层理;c.稳定-强烈的生物扰动构造;d.单晶石英粉砂局部条带状富集

      Fig.  6.  Sedimentary characteristics of the silt-bearing clay-rich shale

      图  7  硬石膏薄夹层页岩相沉积特征

      a.硬石膏薄层;b.菱柱状硬石膏颗粒;c.硬石膏薄层与富有机质页岩韵律互层

      Fig.  7.  Sedimentary characteristics of the interbedded evaporate shale

      图  8  东营凹陷沙四上亚段页岩岩相组合发育与层序耦合关系

      Fig.  8.  Shale lithofacies associations and sequence unit for the upper submember of Es4 in Dongying depression

      图  9  东营凹陷沙四上亚段页岩岩相组合发育背景分析

      Fig.  9.  Shale lithofacies associations develop setting analysis of the upper submember of Es4 in Dongying depression

      图  10  东营凹陷沙四上亚段页岩岩相组合及同时期湖泊演化模式

      Fig.  10.  Shale lithofacies associations and lake evolution model for the upper submember of Es4

      表  1  各页岩岩相沉积特征及成因

      Table  1.   Characteristics and depositional processes of each shale lithofacies

      岩相名称颜色沉积构造生物特征岩相成因
      纹层状灰质页岩相黑棕色平直、连续和平行的纹层鱼类、介形虫、颗石藻、无生物扰动潮湿气候背景下温度分层的深湖-半深湖环境
      块状灰质页岩相浅灰-深灰色块状少量介形虫、轻微生物扰动浅湖环境
      含粉砂富粘土质页岩相浅灰色块状,夹粉砂质条带强烈生物扰动前三角洲沉积环境
      硬石膏薄夹层页岩相浅灰色块状,页岩与硬石膏薄层互层各类生物较少,无生物扰动干旱气候下的盐湖环境
      下载: 导出CSV

      表  2  各页岩岩相中主要的矿物组成及含量

      Table  2.   Mineral composition and contents of each shale lithofacies

      纹层状灰
      质页岩相
      块状灰质
      页岩相
      含粉砂富粘
      土质页岩相
      硬石膏薄夹
      层页岩相
      石英
      (%)
      5~35 20~47 22~53 0~24
      (18) (30) (30) (15)
      长石
      (%)
      1~15 1~18 6~21 3~17
      (3) (5) (11) (9)
      粘土矿物
      (%)
      2~31 9~41 12~54 2~49
      (15) (24) (43) (25)
      方解石
      (%)
      2~76 9~60 0~9 0~79
      (47) (35) (5) (18)
      白云石
      (%)
      0~76 0~8 3~12 0~38
      (13) (4) (6) (18)
      黄铁矿
      (%)
      0~11 0~4 1~5 0~5
      (3) (2) (4) (3)
       注:表中数据范围为最小值至最大值,括号内为平均值.
      下载: 导出CSV

      表  3  各页岩岩相的矿物学特征及划分标准

      Table  3.   Mineral characteristics and division standard of each shale lithofacies

      纹层状灰
      质页岩相
      块状灰质
      页岩相
      含粉砂富粘
      土质页岩相
      硬石膏薄夹
      层页岩相
      碳酸盐含
      量(%)
      >40 <70 10附近 <70
      石英和长
      石含量(%)
      <30 大于20小于50 >30 大于20小于40
      粘土矿物
      含量(%)
      <30 大于10小于40 >50 大于10小于70
      下载: 导出CSV
    • [1] Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116
      [2] Ashley, G.M., Southard, J.B., Boothroyd, J.C., 1982.Deposition of Climbing-Ripple Beds:A Flume Simulation.Sedimentology, 29(1):67-79.doi: 10.1111/j.1365-3091.1982.tb01709.x
      [3] Benison, K.C., Goldstein, R.H., 2001.Evaporites and Siliciclastics of the Permian Nippewalla Group of Kansas, USA:A Case for Non-Marine Deposition in Saline Lakes and Saline Pans.Sedimentology, 48(1):165-188.doi: 10.1046/j.1365-3091.2001.00362.x
      [4] Bohacs, K.M., Carroll, A.R., Neal, J.E., et al., 2000.Lake-Basin Type, Source Potential, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemical Framework.In:Gierlowski-Kordesch, E.H., Kelts, K.R., eds., Lake Basins through Space and Time.AAPG Studies in Geology, Tulsa.
      [5] Bohacs, K.M., Grabowski, G.J., Carroll, A.R., et al., 2005.Production, Destruction, and Dilution—The Many Paths to Source-Rock Development.In:Harris, N.B., ed., Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences.SEPM, Tulsa.doi:10.2110/pec.05.82.0061
      [6] Burwood, R., De Witte, S.M., Mycke, B., et al., 1995.Petroleum Geochemical Characterization of the Lower Congo Coastal Basin Bucomazi Formation.In:Katz, B.J., ed., Petroleum Source Rocks.Springer-Verlag, Berlin.doi:10.1007/978-3-642-78911-3_13
      [7] Carroll, A.R., Bohacs, K.M., 1999.Stratigraphic Classification of Ancient Lakes:Balancing Tectonic and Climatic Controls.Geology, 27(2):99.doi:10.1130/0091-7613(1999)027<0099:scoalb>2.3.co;2
      [8] Du, X.B., Liu, H., Liu, H.M., et al., 2016.Methods of Sequence Stratigraphy in the Fine-Grained Sediments:A Case from the Upper Fourth Sub-Member and the Lower Third Sub-Member of the Shahejie Formation in Well Fanye 1 of Dongying Depression.Geological Science and Technology Information, 35(4):1-11 (in Chinese with English abstract).
      [9] Feng, Y.L., Li, S.T., Lu, Y.C., 2013.Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China.Sedimentary Geology, 295:1-26.doi: 10.1016/j.sedgeo.2013.07.004
      [10] Feng, Y.L., Jiang, S., Hu, S.Y., et al., 2016.Sequence Stratigraphy and Importance of Syndepositional Structural Slope-Break for Architecture of Paleogene Syn-Rift Lacustrine Strata, Bohai Bay Basin, E.China.Marine and Petroleum Geology, 69:183-204.doi: 10.1016/j.marpetgeo.2015.10.013
      [11] Ghadeer, S.G., Macquaker, J.H.S., 2012.The Role of Event Beds in the Preservation of Organic Carbon in Fine-Grained Sediments:Analyses of the Sedimentological Processes Operating during Deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) Preserved in Northeast England.Marine and Petroleum Geology, 35(1):309-320.doi: 10.1016/j.marpetgeo.2012.01.001
      [12] Guo, X.W., Liu, K.Y., He, S., et al., 2012.Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China:Insight from Integrated Fluid Inclusion Analysis and Basin Modelling.Marine and Petroleum Geology, 32(1):21-35.doi: 10.1016/j.marpetgeo.2011.12.007
      [13] Hao, F., Zhou, X.H., Zhu, Y.M., et al., 2010.Charging of Oil Fields Surrounding the Shaleitian Uplift from Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China.Marine and Petroleum Geology, 27(9):1910-1926.doi: 10.1016/j.marpetgeo.2010.07.005
      [14] Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091
      [15] Harazim, D., McIlroy, D., Edwards, N.P., et al., 2015.Bioturbating Animals Control the Mobility of Redox-Sensitive Trace Elements in Organic-Rich Mudstone.Geology, 43(11):1007-1010.doi: 10.1130/g37025.1
      [16] Hickey, J.J., Henk, B., 2007.Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T.P.Sims Well, Wise County, Texas.AAPG Bulletin, 91(4):437-443.doi: 10.1306/12040606053
      [17] Huc, A.Y., Fournier, J.L., Vandenbroucke, M., et al., 1990.Northern Lake Tanganyika:An Example of Organic Sedimentation in an Anoxic Rift Lake.In:Katz, B.J., ed., Lacustrine Basin Exploration, Case Studies and Modern Analogs.AAPG Memoir, 50:169-185. http://archives.datapages.com/data/specpubs/basinar3/data/a133/a133/0001/0150/0169.htm?q=%2BtextStrip%3Asumatra+textStrip%3Asequence+textStrip%3Astratigraphy
      [18] Jia, J.L., Liu, Z.J., Bechtel, A., et al., 2013.Tectonic and Climate Control of Oil Shale Deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China).International Journal of Earth Sciences, 102(6):1717-1734.doi: 10.1007/s00531-013-0903-7
      [19] Jiang, H.C., Guo, G.X., Cai, X.M., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43.doi: 10.1016/j.palaeo.2016.01.017
      [20] Jiang, Z.X., Chen, D.Z., Qiu, L.W., et al., 2007.Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China.Sedimentology, 54(2):265-292.doi: 10.1111/j.1365-3091.2006.00834.x
      [21] Jiang, Z.X., Guo, L., Liang, C., 2013.Lithofacies and Sedimentary Characteristics of the Silurian Longmaxi Shale in the Southeastern Sichuan Basin, China.Journal of Palaeogeography, 2(3):238-251.doi.org/10.3724/SP.J.1261.2013.00029 http://www.journalofpalaeogeography.org/fileup/PDF/2013-3-238.pdf
      [22] Katz, B.J., 2005.Controlling Factors on Source Rock Development—A Review of Productivity, Preservation, and Sedimentation Rate.In:Harris, N.B., ed., Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences.SEPM, Tulsa.doi:10.2110/pec.05.82.0007
      [23] Könitzer, S.F., Davies, S.J., Stephenson, M.H., et al., 2014.Depositional Controls on Mudstone Lithofacies in a Basinal Setting:Implications for the Delivery of Sedimentary Organic Matter.Journal of Sedimentary Research, 84(3):198-214.doi: 10.2110/jsr.2014.18
      [24] Lazar, O.R., Bohacs, K.M., Macquaker, J.H.S., et al., 2015.Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections:Nomenclature and Description Guidelines.Journal of Sedimentary Research, 85(3):230-246.doi: 10.2110/jsr.2015.11
      [25] Li, G., Wang, Y., Lu, Z., et al., 2014.Geobiological Processes of the Formation of Lacustrine Source Rock in Paleogene.Science China Earth Sciences, 57(5):976-987. doi: 10.1007/s11430-013-4753-8
      [26] Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract). https://www.researchgate.net/publication/283873592_Major_and_trace_elements_geochemistry_and_geological_implications_of_dolomite-bearing_mudstones_in_lower_part_of_Shahejie_Formation_in_Tanggu_Area_Eastern_China
      [27] Li, S.M., Pang, X.Q., Li, M.W., et al., 2003.Geochemistry of Petroleum Systems in the Niuzhuang South Slope of Bohai Bay Basin—Part 1:Source Rock Characterization.Organic Geochemistry, 34(3):389-412.doi: 10.1016/s0146-6380(02)00210-3
      [28] Liang, C., Jiang, Z.X., Yang, Y.T., et al., 2012.Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin.Petroleum Exploration and Development, 39(6):691-698 (in Chinese with English abstract). https://www.researchgate.net/publication/316831049_Characteristics_of_shale_lithofacies_and_reservoir_space_of_the_Wufeng-Longmaxi_Formation_Sichuan_Basin
      [29] Lindqvist, J.K., Lee, D.E., 2009.High-Frequency Paleoclimate Signals from Foulden Maar, Waipiata Volcanic Field, Southern New Zealand:An Early Miocene Varved Lacustrine Diatomite Deposit.Sedimentary Geology, 222(1-2):98-110.doi: 10.1016/j.sedgeo.2009.07.009
      [30] Liu, C.L., Wang, P.X., 2013.The Role of Algal Blooms in the Formation of Lacustrine Petroleum Source Rocks—Evidence from Jiyang Depression, Bohai Gulf Rift Basin, Eastern China.Palaeogeography, Palaeoclimatology, Palaeoecology, 388:15-22.doi: 10.1016/j.palaeo.2013.07.024
      [31] Liu, S.G., Ma, W.X., Jansa, L.B., et al., 2011.Characteristics of the Shale Gas Reservoir Rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China.Acta Petrologica Sinica, 27(8):2239-2252 (in Chinese with English abstract). https://www.researchgate.net/publication/312371176_Characteristics_of_the_shale_gas_reservoir_rocks_in_the_Lower_Silurian_Longmaxi_Formation_East_Sichuan_basin_China
      [32] Loftus, G.W.F., Greensmith, J.T., 1988.The Lacustrine Burdiehouse Limestone Formation—A Key to the Deposition of the Dinantian Oil Shales of Scotland.Geological Society, London, Special Publications, 40(1):219-234.doi: 10.1144/gsl.sp.1988.040.01.19
      [33] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      [34] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016a.Climate-Driven Paleolimnological Change Controls Lacustrine Mudstone Depositional Process and Organic Matter Accumulation:Constraints from Lithofacies and Geochemical Studies in the Zhanhua Depression, Eastern China.International Journal of Coal Geology, 167:103-118.doi: 10.1016/j.coal.2016.09.014
      [35] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016b.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309.doi: 10.1016/j.marpetgeo.2016.04.024
      [36] Mitra, A., Warrington, D.S., Sommer, A., 2010.Application of Lithofacies Models to Characterize Unconventional Shale Gas Reservoirs and Identify Optimal Completion Intervals.Proceedings of SPE Western Regional Meeting, in Anaheim, California, U.S.A.
      [37] Pietras, J.T., Carroll, A.R., 2006.High-Resolution Stratigraphy of an Underfilled Lake Basin:Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A..Journal of Sedimentary Research, 76(11):1197-1214.doi: 10.2110/jsr.2006.096
      [38] Schieber, J., 1989.Facies and Origin of Shales from the Mid-Proterozoic Newland Formation, Belt Basin, Montana, USA.Sedimentology, 36(2):203-219.doi: 10.1111/j.1365-3091.1989.tb00603.x
      [39] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      [40] Slatt, R.M., Rodriguez, N.D., 2012.Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales:Commonality or Coincidence?Journal of Natural Gas Science and Engineering, 8:68-84.doi:10.1016/j.jngse.2012.01.008
      [41] Sun, P.C., Sachsenhofer, R.F., Liu, Z.J., et al., 2013.Organic Matter Accumulation in the Oil Shale-And Coal-Bearing Huadian Basin (Eocene; NE China).International Journal of Coal Geology, 105:1-15.doi: 10.1016/j.coal.2012.11.009
      [42] Surdam, R.C., Stanley, K.O., 1979.Lacustrine Sedimentation during the Culminating Phase of Eocene Lake Gosiute, Wyoming (Green River Formation).Geological Society of America Bulletin, 90(1):93-110.doi:10.1130/0016-7606(1979)90<93:lsdtcp>2.0.co; 2
      [43] Talbot, M.R., 1988.The Origins of Lacustrine Oil Source Rocks:Evidence from the Lakes of Tropical Africa.Geological Society, London, Special Publications, 40(1):29-43.doi: 10.1144/gsl.sp.1988.040.01.04
      [44] Tänavsuu-Milkeviciene, K., Sarg, J.F., 2012.Evolution of an Organic-Rich Lake Basin-Stratigraphy, Climate and Tectonics:Piceance Creek Basin, Eocene Green River Formation.Sedimentology, 59(6):1735-1768.doi: 10.1111/j.1365-3091.2012.01324.x
      [45] Wang, D.D., Li, Z.X., Lü, D.W., et al., 2016.Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin.Earth Science, 41(3):508-522 (in Chinese with English abstract).
      [46] Wang, G.C., Carr, T.R., 2012.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers & Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011
      [47] Wang, G.M., 2012.Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression.Journal of Jilin University (Earth Science Edition), 42(3):666-671, 680 (in Chinese with English abstract). https://www.researchgate.net/publication/287907461_Laminae_combination_and_genetic_classification_of_eogene_Shale_in_Jiyang_depression
      [48] Wang, G.M., Ren, Y.J., Zhong, J.H., et al., 2005.Genetic Analysis on Lamellar Calcite Veins in Paleogene Black Shale of the Jiyang Depression.Acta Geologica Sinica, 79(6):834-838 (in Chinese with English abstract). https://www.researchgate.net/publication/283763883_Combination_characteristics_of_lake_facies_source_rock_in_the_Shahejie_formation_Dongying_depression
      [49] Wang, J.D., Li, S.Z., Santosh, M., et al., 2013.Lacustrine Turbidites in the Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, North China Craton.Geological Journal, 48(5):561-578.doi: 10.1002/gj.2517
      [50] Wei, Z.F., Zou, Y.R., Cai, Y.L., et al., 2012.Kinetics of Oil Group-Type Generation and Expulsion:An Integrated Application to Dongying Depression, Bohai Bay Basin, China.Organic Geochemistry, 52:1-12.doi: 10.1016/j.orggeochem.2012.08.006
      [51] Wu, J., Jiang, Z.X., Qian, K., et al., 2014.Characteristics of Salinization Mechanism on the Upper Part of Fourth Member of Shahejie Formation in the Dongying Sag, Shandong Province.Acta Geoscientica Sinica, 35(6):733-740 (in Chinese with English abstract).
      [52] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, (11):1810-1823 (in Chinese with English abstract).
      [53] Xie, X.M., Li, M.W., Littke, R., et al., 2016.Petrographic and Geochemical Characterization of Microfacies in a Lacustrine Shale Oil System in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, Eastern China.International Journal of Coal Geology, 165:49-63.doi: 10.1016/j.coal.2016.07.004
      [54] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://www.researchgate.net/publication/305417638_A_new_method_for_microscopic_pore_structure_analysis_in_shale_matrix
      [55] Zhang, J.G., Jiang, Z.X., Jiang, X.L., et al., 2016.Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China.Marine and Petroleum Geology, 71:344-359.doi: 10.1016/j.marpetgeo.2016.01.007
      [56] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristic and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833. https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [57] Zhang, L.Y., Liu, Q., Zhu, R.F., et al., 2009.Source Rocks in Mesozoic-Cenozoic Continental Rift Basins, East China:A Case from Dongying Depression, Bohai Bay Basin.Organic Geochemistry, 40(2):229-242.doi: 10.1016/j.orggeochem.2008.10.013
      [58] Zhang, S., Chen, S.Y., Yan, J.H., et al., 2015.Characteristics of Shale Lithofacies and Reservoir Space in the 3rd and 4th Members of Shahejie Formation, the West of Dongying Sag.Natural Gas Geoscience, 26(2):320-332 (in Chinese with English abstract). https://www.researchgate.net/publication/313359092_Identification_of_sedimentary-diagenetic_facies_and_reservoir_porosity_and_permeability_prediction_An_example_from_the_Eocene_beach-bar_sandstone_in_the_Dongying_Depression_China
      [59] 杜学斌, 刘辉, 刘惠民, 等, 2016.细粒沉积物层序地层划分方法初探:以东营凹陷樊页1井沙三下-沙四上亚段泥页岩为例.地质科技情报, 35(4): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604002.htm
      [60] 李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9): 1480-1496. http://www.earth-science.net/WebPage/Article.aspx?id=3152
      [61] 梁超, 姜在兴, 杨镱婷, 等, 2012.四川盆地五峰组-龙马溪组页岩岩相及储集空间特征.石油勘探与开发, 39(6): 691-698. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm
      [62] 刘树根, 马文辛, Jansa, L. B., 等, 2011.四川盆地东部地区下志留统龙马溪组页岩储层特征.岩石学报, 27(8): 2239-2252. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108003.htm
      [63] 王东东, 李增学, 吕大炜, 等, 2016.陆相断陷盆地煤与油页岩共生组合及其层序地层特征.地球科学, 41(3): 508-522. http://www.earth-science.net/WebPage/Article.aspx?id=3266
      [64] 王冠民, 2012.济阳坳陷古近系页岩的纹层组合及成因分类.吉林大学学报(地球科学版), 42(3): 666-671, 680. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203010.htm
      [65] 王冠民, 任拥军, 钟建华, 等, 2005.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨.地质学报, 79(6): 834-838. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200506023.htm
      [66] 吴靖, 姜在兴, 钱侃, 等, 2014.山东省东营凹陷沙四上亚段咸化机制特征.地球学报, 35(6): 733-740. doi: 10.3975/cagsb.2014.06.09
      [67] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [68] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [69] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [70] 张顺, 陈世悦, 鄢继华, 等, 2015.东营凹陷西部沙三下亚段-沙四上亚段泥页岩岩相及储层特征.天然气地球科学, 26(2): 320-332. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201703016.htm
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  4240
    • HTML全文浏览量:  1881
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-07
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回