• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素

    戴方尧 郝芳 胡海燕 林俊峰 黎祺

    戴方尧, 郝芳, 胡海燕, 林俊峰, 黎祺, 2017. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素. 地球科学, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    引用本文: 戴方尧, 郝芳, 胡海燕, 林俊峰, 黎祺, 2017. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素. 地球科学, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    Dai Fangyao, Hao Fang, Hu Haiyan, Lin Junfeng, Li Qi, 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    Citation: Dai Fangyao, Hao Fang, Hu Haiyan, Lin Junfeng, Li Qi, 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096

    川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素

    doi: 10.3799/dqkx.2017.096
    基金项目: 

    国家重大油气专项 2016ZX05034-002-003

    中国地质调查局项目 12120114046901

    国家自然科学基金项目 41472122

    详细信息
      作者简介:

      戴方尧(1987-), 男, 博士研究生, 主要从事石油天然气地质学研究.ORCID:0000-0003-3878-7016.E-mail:dfy_cug@163.com

      通讯作者:

      胡海燕, ORCID:0000-0002-6682-7444.E-mail:hyhucom@163.com

    • 中图分类号: P618.13

    Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin

    • 摘要: 页岩气是重要的非常规天然气资源,主要以游离气与吸附气状态赋存于页岩中,研究和阐明其含量、主控因素和演化规律对于揭示页岩气成藏机理具有重要意义.采用不同条件下页岩高温高压等温吸附实验、FE-EM、CO2吸附、N2吸附、压汞等实验方法综合研究页岩气藏中的游离气与吸附气的主控因素.结果表明,游离气主要受页岩孔隙类型、孔隙结构、储层温度与压力等条件控制;OC、成熟度和水分影响吸附气含量.基于吸附气体积校正、地质模型和数值计算综合表征,五峰-龙马溪组页岩中以游离气为主,其平均含量约为%,吸附气含量约为4%.在抬升阶段,储层温度和压力发生改变,页岩气赋存形式随之变化,游离气减少,吸附气增加.

       

    • 图  1  焦石坝构造简图(a)和焦页1井地层柱状图(b)

      据项目报告《焦石坝及其邻区页岩气富集机理》,中国石化集团南方勘探分公司,2014

      Fig.  1.  The regional tectonic of Jiaoshiba (a) and stratigraphic histogram of well JY1 (b)

      图  2  焦页1井五峰-龙马溪组页岩孔隙类型

      图a和图b来自样品JY1-2;图c和图d来自样品JY1-5

      Fig.  2.  Pore types in the Wufeng-Longmaxi shales of well JY1

      图  3  数学模型拟合的五峰-龙马溪组页岩中不同类型孔隙的孔隙度(a)及其比例(b)

      Fig.  3.  Porosity (a) and relatively ratio (b) of different pore types in Wufeng-Longmaxi shales using mathematic models

      图  4  焦页1井五峰-龙马溪组页岩孔径分布

      Fig.  4.  Pore size distribution in the Wufeng-Longmaxi shales of well JY1

      图  5  焦页1井五峰-龙马溪组页岩等温吸附曲线

      Fig.  5.  Isotherms of methane adsorbed in the Wufeng-Longmaxi shales of well JY1

      图  6  焦页1井五峰-龙马溪组有机碳含量和Langmuir最大吸附量关系

      Fig.  6.  The relation between TOC and Langmuir maximum adsorbed methane capacity in the Wufeng-Longmaxi shales of well JY1

      图  7  页岩吸附量与热成熟度的关系

      Fig.  7.  The relation between shale methane adsorbed amount and thermal maturity

      图  8  样品JY1-5的不同温度等温吸附实验曲线

      Fig.  8.  Adsorbed isotherm at different temperatures of sample JY1-5

      图  9  焦页1井游离气、吸附气和总含气量计算值与现场解析气含量对比

      Fig.  9.  Comparison of free gas, adsorbed gas and total gas contents obtained from mathematical model and desorbed gas content of well JY1

      图  10  焦页1井页岩吸附气与游离气随埋藏史的演化

      据项目报告《焦石坝及其邻区页岩气富集机理》,中国石化集团南方勘探分公司,2014

      Fig.  10.  Evolution of free gas and adsorbed gas in the Longmaxi shale of well JY1

      表  1  样品参数及矿物成分

      Table  1.   Geochemical parameters and mineral components of shale samples

      样品 深度(m) TOC(%) 粘土矿物(%) 石英(%) 钾长石(%) 斜长石(%) 方解石(%) 白云石(%) 黄铁矿(%)
      JY1-1 2 340.09 1.34 54.0 30.5 1.9 9.3 - - 4.3
      JY1-2 2 361.44 2.09 33.5 33.1 2.1 10.8 5.9 9.9 4.7
      JY1-3 2 375.06 2.08 36.0 32.5 3.5 11.8 3.5 9.9 2.8
      JY1-4 2 384.18 2.98 34.5 38.2 3.3 8.6 5.9 5.8 3.7
      JY1-5 2 404.43 4.09 35.1 42.7 2.0 7.2 6.5 3.7 2.8
      JY1-6 2 414.56 6.45 38.0 36.6 5.7 9.1 1.9 5.6 3.1
      下载: 导出CSV

      表  2  抬升期计算的游离气与吸附气含量

      Table  2.   Free gas content and adsorbed gas content during the uplift

      深度
      (m)
      年代
      (Ma)
      地层温度*
      (K)
      地层压力α
      (MPa)
      游离气
      (m3/t·岩石)
      吸附气
      (m3/t·岩石)
      5 500 100 473 79 3.16 1.35
      4 500 60 403 60 3.06 1.52
      2 414 0 358 36 2.58 1.60
       注:地层温度*和地层压力α来自盆地模拟.
      下载: 导出CSV
    • [1] Bernard, S., Wirth, R., Schreiber, A., et al., 2012.Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin).International Journal of Coal Geology, 103:3-11.doi: 10.1016/j.coal.2012.04.010
      [2] Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018
      [3] Cardott, B.J., Landis, C.R., Curtis, M.E., 2015.Post-Oil Solid Bitumen Network in the Woodford Shale, USA-A Potential Primary Migration Pathway.International Journal of Coal Geology, 139:106-113.doi: 10.1016/j.coal.2014.08.012
      [4] Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012a.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31.doi: 10.1016/j.coal.2012.08.004
      [5] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012b.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677.doi: 10.1306/08151110188
      [6] Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014.Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin.Organic Geochemistry, 74:3-12.doi: 10.1016/j.orggeochem.2014.01.018
      [7] Deng, B., Liu, S.G., Liu, S., et al., 2009.Restoration of Exhumation Thickness and Its Significance in Sichuan Basin, China.Journal of Chengdu University of Technology (Science & Technology Edition), 36(6):675-686(in Chinese with English abstract). https://www.researchgate.net/publication/279895760_Restoration_of_exhumation_thickness_and_its_significance_in_Sichuan_Basin_China
      [8] Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010
      [9] Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012.High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8):4995-5004.doi: 10.1021/ef300405g
      [10] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201401003.htm
      [11] Guo, X.S., Hu, D.F., Li, Y.P., et al., 2016.Analyses and Thoughts on Accumulation Mechanisms of Marine and Lacustrine Shale Gas:A Case Study in Shales of Longmaxi Formation and Da'anzhai Section of Ziliujing Formation in Sichuan Basin.Earth Science Frontiers, 23(2):18-28(in Chinese with English abstract).
      [12] Hao, F., Guo, T.L., Zhu, Y.M., et al., 2008.Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China.AAPG Bulletin, 92(5):611-637.doi: 10.1306/01210807090
      [13] Hao, F., Zou, H.Y., 2013.Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales.Marine and Petroleum Geology, 44:1-12.doi: 10.1016/j.marpetgeo.2013.03.005
      [14] Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091
      [15] Hu, H.Y., 2013.Porosity Evolution of the Organic-Rich Shale with Thermal Maturity Increasing.Acta Petrolei Sinica, 34(5):820-825(in Chinese with English abstract). https://www.researchgate.net/publication/282738523_Porosity_evolution_of_the_organic-rich_shale_with_thermal_maturity_increasing
      [16] Hu, H.Y., Zhang, T.W., Wiggins-Camacho, J.D., et al., 2015.Experimental Investigation of Changes in Methane Adsorption of Bitumen-Free Woodford Shale with Thermal Maturation Induced by Hydrous Pyrolysis.Marine and Petroleum Geology, 59:114-128.doi: 10.1016/j.marpetgeo.2014.07.029
      [17] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [18] Ji, L.M., Zhang, T.W., Milliken, K.L., et al., 2012.Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks.Applied Geochemistry, 27(12):2533-2545.doi: 10.1016/j.apgeochem.2012.08.027
      [19] Löhr, S.C., Baruch, E.T., Hall, P.A., et al., 2015.Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?Organic Geochemistry, 87:119-132.doi: 10.1016/j.orggeochem.2015.07.010
      [20] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092
      [21] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      [22] Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2007.The Puguang Gas Field:New Giant Discovery in the Mature Sichuan Basin, Southwest China.AAPG Bulletin, 91(5):627-643.doi: 10.1306/11030606062
      [23] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013.Porosity of Devonian and Mississippian New Albany Shale Across a Maturation Gradient:Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion.AAPG Bulletin, 97(10):1621-1643.doi: 10.1306/04011312194
      [24] Milliken, K.L., Rudnicki, M., Awwiller, D.N., et al., 2013.Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania.AAPG Bulletin, 97(2):177-200.doi: 10.1306/07231212048
      [25] Modica, C.J., Lapierre, S.G., 2012.Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation:Example from the Mowry Shale in the Powder River Basin of Wyoming.AAPG Bulletin, 96(1):87-108.doi: 10.1306/04111110201
      [26] Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005.Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas:Gas-Shale Play with Multi-trillion Cubic Foot Potential.AAPG Bulletin, 89(2):155-175.doi: 10.1306/09170404042
      [27] Ross, D.J.K., Bustin, R.M., 2007.Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada.Bulletin of Canadian Petroleum Geology, 55(1):51-75.doi: 10.2113/gscpgbull.55.1.51
      [28] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      [29] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004
      [30] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      [31] Su, X.B., Zhang, L.P., 2004.Prediction of Reservoir Pressure for Coal-Bed Gas.Natural Gas Industry, 24(5):88-90(in Chinese with English abstract). https://www.researchgate.net/profile/Shimin_Liu4/publication/257003249_Permeability_prediction_of_coalbed_methane_reservoirs_during_primary_depletion/links/0a85e52d7e1fdd5bac000000.pdf?disableCoverPage=true
      [32] Tian, H., Li, T.F., Zhang, T.W., et al., 2016.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications.International Journal of Coal Geology, 156:36-49.doi: 10.1016/j.coal.2016.01.013
      [33] Wang, Y.M., Dong, D.Z., Yang, H., et al., 2014.Quantitative Characterization of Reservoir Space in the Lower Silurian Longmaxi Shale, Southern Sichuan, China.Science in China (Series D), 57:313-322(in Chinese with English abstract). doi: 10.1007/s11430-013-4645-y
      [34] Wu, S.T., Zhou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823(in Chinese with English abstract). https://www.researchgate.net/publication/288230011_Reservoir_quality_characterization_of_upper_triassic_Chang_7_Shale_in_Ordos_Basin
      [35] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833(in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [36] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012
      [37] Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016.Geological Difference and Its Significance of Marine Shale Gases in South China.Petroleum Exploration and Development, 43(4):547-559(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30065-9
      [38] Zhu, G.Y., Zhang, S.C, Liang, Y.B., et al., 2006.The Characteristics of Natural Gas in Sichuan Basin and Its Sources.Earth Science Frontiers, 13(2):234-248(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602027.htm
      [39] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅰ).Petroleum Exploration and Development, 42(6):689-701(in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_syktykf201506001.aspx
      [40] 邓宾, 刘树根, 刘顺, 等, 2009.四川盆地地表剥蚀量恢复及其意义.成都理工大学学报(自然科学版), 36(6):675-686. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906016.htm
      [41] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1):28-36. doi: 10.11698/PED.2014.01.03
      [42] 郭旭升, 胡东风, 李宇平, 等, 2016.海相和湖相页岩气富集机理分析与思考:以四川盆地龙马溪组和自流井组大安寨段为例.地学前缘, 23(2):18-28. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm
      [43] 胡海燕, 2013.富有机质Woodford页岩孔隙演化的热模拟实验.石油学报, 34(5):820-825. doi: 10.7623/syxb201305002
      [44] 苏现波, 张丽萍, 2004.煤层气储层压力预测方法.天然气工业, 24(5):88-90. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200405031.htm
      [45] 王玉满, 董大忠, 杨桦, 等, 2014.川南下志留统龙马溪组页岩储集空间定量表征.中国科学(D辑), 44(6):1348-1356. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406025.htm
      [46] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11):1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [47] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11):1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [48] 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
      [49] 朱光有, 张水昌, 梁英波, 等, 2006.四川盆地天然气特征及气源.地学前缘, 13(2):234-248. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602027.htm
      [50] 邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6):689-701. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  4059
    • HTML全文浏览量:  1758
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-16
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回