• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    涪陵地区页岩含气量计算模型及应用

    张晓明 石万忠 舒志国 徐壮 王超 袁琪 徐清海 王任

    张晓明, 石万忠, 舒志国, 徐壮, 王超, 袁琪, 徐清海, 王任, 2017. 涪陵地区页岩含气量计算模型及应用. 地球科学, 42(7): 1157-1168. doi: 10.3799/dqkx.2017.094
    引用本文: 张晓明, 石万忠, 舒志国, 徐壮, 王超, 袁琪, 徐清海, 王任, 2017. 涪陵地区页岩含气量计算模型及应用. 地球科学, 42(7): 1157-1168. doi: 10.3799/dqkx.2017.094
    Zhang Xiaoming, Shi Wanzhong, Shu Zhiguo, Xu Zhuang, Wang Chao, Yuan Qi, Xu Qinghai, Wang Ren, 2017. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7): 1157-1168. doi: 10.3799/dqkx.2017.094
    Citation: Zhang Xiaoming, Shi Wanzhong, Shu Zhiguo, Xu Zhuang, Wang Chao, Yuan Qi, Xu Qinghai, Wang Ren, 2017. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7): 1157-1168. doi: 10.3799/dqkx.2017.094

    涪陵地区页岩含气量计算模型及应用

    doi: 10.3799/dqkx.2017.094
    基金项目: 

    国家自然科学基金项目 41672134

    高等学校创新引智计划 B14031

    国家基础地质调查项目 12120114055801

    中国地质调查局油气基础性公益性地质调查项目 DD20160185

    国家重大油气专项 2016ZX05034-002-003

    详细信息
      作者简介:

      张晓明(1989-), 男, 博士研究生, 主要从事页岩气研究.ORCID:0000-0002-5388-0924.E-mail:313477907@qq.com

      通讯作者:

      石万忠, ORCID:0000-0003-0207-708X.E-mail:shiwz@cug.edu.cn

    • 中图分类号: P618.13

    Calculation Model of Shale Gas Content and Its Application in Fuling Area

    • 摘要: 目前页岩含气量的预测获取方法主要包括现场解吸法、测井解释法、等温吸附法、线性拟合法以及地震反演法等,但每种方法都存在不足,因此研制了涪陵地区页岩含气量计算模型,为页岩资源量评价奠定基础.以岩心实验为基础,筛选并分析了研究区页岩游离气含量和吸附气含量的主控参数,分别建立了游离气含量和吸附气含量的计算模型,最终利用该模型得到了研究区页岩含气量与孔隙度、OC和深度的演化图版以及单井页岩含气量分布特征.当孔隙度和OC一定时,页岩含气量随深度的增加而增加,但是增加幅度逐渐降低;当深度一定时,页岩含气量随孔隙度和OC的增大而增加.A井五峰组-龙马溪组页岩气储层含气量呈现上低下高且随深度的增加而明显增加的特征;其中下部Ⅰ段储层段,总含气量高达7.76m3/t,游离气含量占60.7%,为优质层段.

       

    • 图  1  涪陵地区构造位置

      引自梅廉夫等(2010)

      Fig.  1.  Tectonic location of Fuling area

      图  2  页岩有机碳含量与饱和吸附量关系

      Fig.  2.  Relationship of Langmuir volume and TOC of different organic-rich shales

      图  3  涪陵地区页岩黏土矿物对饱和吸附量的影响

      数据来自江汉油田

      Fig.  3.  Effect of clay minerals on the Langmuir volume of shales in Fuling area

      图  4  涪陵地区页岩平衡水样和干样等温吸附对比

      修改自郭旭升(2014)

      Fig.  4.  Comparison of methane sorption capacities under moisture-equilibrated conditions with those under dry conditions for Fuling shale samples

      图  5  不同温度条件下页岩样品lnPL与1/T关系

      T=t+273.15,单位为K;t为地层温度,单位为℃

      Fig.  5.  Linear relationships of the logarithm of Langmuir pressure versus the inverse of the temperature of different organic-rich shales

      图  6  涪陵地区页岩样品30 ℃和85 ℃条件下等温吸附对比

      数据来自江汉油田

      Fig.  6.  Methane adsorption isotherms of shale samples from Fuling area measured at 30 ℃ and 85 ℃

      图  7  涪陵地区页岩密闭取心样含水饱和度与孔隙度关系

      引自郭旭升(2014)

      Fig.  7.  Relationship between water saturation and porosity of sealed shale samples from Fuling area

      图  8  涪陵地区页岩含气量演化图版

      a.孔隙度为3%;b.孔隙度为4%;c.孔隙度为5%;d.孔隙度为6%

      Fig.  8.  Evolution charts of shale gas content of Fuling area

      图  9  涪陵地区A井页岩气储层段含气量分布

      Fig.  9.  Shale gas content distribution of well A in Fuling area

    • [1] Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2012.Shale Gas-In-Place Calculations Part Ⅰ:New Pore-Scale Considerations.SPE Journal, 17(1):219-229.doi: 10.2118/131772-pa
      [2] Chalmers, G.R.L., Bustin, R.M., 2008.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ:Geological Controls on Methane Sorption Capacity.Bulletin of Canadian Petroleum Geology, 56(1):1-21.doi: 10.2113/gscpgbull.56.1.1
      [3] Chen, C., Liu, Y., Wang, M.F., et al., 2016.Research on Shale TOC Content Prediction Techniques and Contrast in Jiaoshiba Area, Sichuan Basin, China.Journal of Chengdu University of Technology:Science and Technology Edition, 43(1):50-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG201601005.htm
      [4] Chen, Z.Q., 2014.Quantitative Seismic Prediction Technique of Marine Shale TOC and Its Application:A Case from the Longmaxi Shale Play in the Jiaoshiba Area, Sichuan Basin.Natural Gas Industry, 34(6):24-29 (in Chinese with English abstract).
      [5] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d
      [6] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677.doi: 10.1306/08151110188
      [7] Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010
      [8] Guan, H.X., Duan, G.X., Qi, T., et al., 2011.A New Computing Method of Gas Compressibility Factor.Special Oil and Gas Reservoirs, 18(2):85-88 (in Chinese with English abstract).
      [9] Guo, T.L., 2013.Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin.Journal of Earth Science, 24(6):863-873.doi: 10.1007/s12583-013-0384-4
      [10] Guo, T.L., 2016.Discovery and Characteristics of the Fuling Shale Gas Field and Its Enlightenment and Thinking.Earth Science Frontiers, 23(1):29-43 (in Chinese with English abstract).
      [11] Guo, T.L., Liu, R.B., 2013.Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage:Taking Longmaxi Formation in Well JY1 as an Example.Natural Gas Geoscience, 24(4):643-651 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201304000.htm
      [12] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380414600033
      [13] Guo, X.S., 2014.Enrichment Mode and Exploration Technology in Jiaoshiba Area of Fuling Shale Gas Field.Science Press, Beijing (in Chinese).
      [14] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm
      [15] Guo, X.S., Yin, Z.W., Li, J.L., 2015.Quantitative Seismic Prediction of Marine Shale Gas Content, a Case Study in Jiaoshiba Area, Sichuan Basin.Oil Geophysical Prospecting, 50(1):144-149 (in Chinese with English abstract).
      [16] Hildenbrand, A., Krooss, B.M., Busch, A., et al., 2006.Evolution of Methane Sorption Capacity of Coal Seams as a Function of Burial History—A Case Study from the Campine Basin, NE Belgium.International Journal of Coal Geology, 66(3):179-203.doi: 10.1016/j.coal.2005.07.006
      [17] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [18] Ji, L.M., Zhang, T.W., Milliken, K.L., et al., 2012.Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks.Applied Geochemistry, 27(12):2533-2545.doi: 10.1016/j.apgeochem.2012.08.027
      [19] Ji, W.M., Song, Y., Jiang, Z.X., et al., 2014.Geological Controls and Estimation Algorithms of Lacustrine Shale Gas Adsorption Capacity:A Case Study of the Triassic Strata in the Southeastern Ordos Basin, China.International Journal of Coal Geology, 134-135:61-73.doi: 10.1016/j.coal.2014.09.005
      [20] Ji, W.M., Song, Y., Jiang, Z.X., et al., 2015.Estimation of Marine Shale Methane Adsorption Capacity Based on Experimental Investigations of Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, South China.Marine and Petroleum Geology, 68:94-106.doi: 10.1016/j.marpetgeo.2015.08.012
      [21] Langmuir, I., 1918.The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum.Journal of the American Chemical Society, 40(9):1361-1403.doi: 10.1021/ja02242a004
      [22] Lewis, R., Ingraham, D., Pearcy, M., et al., 2004.New Evaluation Techniques for Gas Shale Reservoirs.Reservoir Symposium, Schlumberger.
      [23] Li, J.L., Yin, Z.W., 2015.Seismic Quantitative Prediction Method of Shale Gas Reservoirs in the Jiaoshiba Area, Sichuan Basin.Geophysical Prospecting for Petroleum, 54(3):324-330 (in Chinese with English abstract).
      [24] Li, Y.X., Qiao, D.W., Jiang, W.L., et al., 2011.Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary.Geological Bulletin of China, 30(2/3):308-317 (in Chinese with English abstract).
      [25] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      [26] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010.Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Fission Track and Balanced Cross-Section.Earth Science, 35(2):161-174 (in Chinese with English abstract).
      [27] Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005.Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas:Gas-Shale Play with Multi-Trillion Cubic Foot Potential.AAPG Bulletin, 89(2):155-175.doi: 10.1306/09170404042
      [28] Nie, H.K., Zhang, J.C., 2012.Shale Gas Accumulation Conditions and Gas Content Calculation:A Case Study of Sichuan Basin and Its Periphery in the Lower Paleozoic.Acta Geologica Sinica, 86(2):349-361 (in Chinese with English abstract).
      [29] Pan, L., Xiao, X.M., Tian, H., et al., 2016.Geological Models of Gas in Place of the Longmaxi Shale in Southeast Chongqing, South China.Marine and Petroleum Geology, 73:433-444.doi: 10.1016/j.marpetgeo.2016.03.018
      [30] Ross, D.J.K., Bustin, R.M., 2007.Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada.Bulletin of Canadian Petroleum Geology, 55(1):51-75.doi: 10.2113/gscpgbull.55.1.51
      [31] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      [32] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004
      [33] Schmoker, J.W., 1979.Determination of Organic Content of Appalachian Devonian Shales from Formation-Density Logs:GEOLOGIC NOTES.AAPG Bulletin, 63(9):1504-1537.doi: 10.1306/2f9185d1-16ce-11d7-8645000102c1865d
      [34] Shi, W.R., Zhang, C.M., Zhang, Z.S., et al., 2015.Log Evaluation of Gas Content from Jiaoshiba Shale Gas Reservoir in Fuling Gas Field.Well Logging Technology, 39(3):357-362 (in Chinese with English abstract).
      [35] Shtepani, E., Noll, L.A., Elrod, L.W., et al., 2010.A New Regression-Based Method for Accurate Measurement of Coal and Shale Gas Content.SPE Reservoir Evaluation and Engineering, 13(2):359-364.doi: 10.2118/115405-pa
      [36] Shuai, Q., Huang, R.C., Gao, Q., et al., 2012.Research Development of Analytical Techniques for Shale Gas.Rock and Mineral Analysis, 31(6):931-938 (in Chinese with English abstract).
      [37] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      [38] Song, T.T., Mao, X.P., 2013.Discussion on Gas Content Calculation Method of Shale Gas Resource Evaluation.China Mining Magazine, 22(1):34-36, 52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201301011.htm
      [39] Standing, M.B., Katz, D.L., 1942.Density of Natural Gases.Transactions of the AIME, 146(1):140-149.doi: 10.2118/942140-g
      [40] Tan, J.Q., Weniger, P., Krooss, B., et al., 2014.Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part Ⅱ:Methane Sorption Capacity.Fuel, 129:204-218.doi: 10.1016/j.fuel.2014.03.064
      [41] Tang, Y., Li, L.Z., Jiang, S.X., 2014.A Logging Interpretation Methodology of Gas Content in Shale Reservoirs and Its Application.Natural Gas Industry, 34(12):46-54 (in Chinese with English abstract).
      [42] Tang, Y., Zhang, J.C., Liu, Z.J., et al., 2011.Use and Improvement of the Desorption Method in Shale Gas Content Tests.Natural Gas Industry, 31(10):108-112, 128 (in Chinese with English abstract).
      [43] Venaruzzo, J.L., Volzone, C., Rueda, M.L., et al., 2002.Modified Bentonitic Clay Minerals as Adsorbents of CO, CO2 and SO2 Gases.Microporous and Mesoporous Materials, 56(1):73-80.doi: 10.1016/S1387-1811(02)00443-2
      [44] Volzone, C., Rinaldi, J.O., Ortiga, J., 2002.N2 and CO2 Adsorption by TMA-and HDP-Montmorillonites.Material Research, 5(4):475-479.doi: 10.1590/S1516-14392002000400013
      [45] Waechter, N.B., Hampton, G.L., Shipps, J.C., 2004.Overview of Coal and Shale Gas Measurement:Field and Laboratory Procedures.International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, Alabama.
      [46] Wang, J., Shi, W.Z., Shu, Z.G., et al., 2016.TOC Content Quantitative Prediction in Organic-Rich Shale.Oil Geophysical Prospecting, 51(3):596-604 (in Chinese with English abstract).
      [47] Wang, S.B., Song, Z.G., Cao, T.T., et al., 2013.The Methane Sorption Capacity of Paleozoic Shales from the Sichuan Basin, China.Marine and Petroleum Geology, 44:112-119.doi: 10.1016/j.marpetgeo.2013.03.007
      [48] Xue, B., Zhang, J.C., Yang, C., et al., 2015.Theoretical Chart of Shale Gas Content.Oil and Gas Geology, 36(2):339-346 (in Chinese with English abstract).
      [49] Yang, F., Ning, Z.F., Zhang, R., et al., 2015.Investigations on the Methane Sorption Capacity of Marine Shales from Sichuan Basin, China.International Journal of Coal Geology, 146:104-117.doi: 10.1016/j.coal.2015.05.009
      [50] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      [51] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [52] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012
      [53] 陈超, 刘韵, 王明飞, 等, 2016.焦石坝地区泥页岩有机碳含量预测技术及对比.成都理工大学学报(自然科学版), 43(1): 50-58. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601005.htm
      [54] 陈祖庆, 2014.海相页岩TOC地震定量预测技术及其应用——以四川盆地焦石坝地区为例.天然气工业, 34(6): 24-29. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406004.htm
      [55] 管虹翔, 段国喜, 齐桃, 等, 2011.一种新型天然气压缩因子数值计算方法.特种油气藏, 18(2): 85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201102025.htm
      [56] 郭彤楼, 2016.涪陵页岩气田发现的启示与思考.地学前缘, 23(1): 29-43. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm
      [57] 郭彤楼, 刘若冰, 2013.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例.天然气地球科学, 24(4): 643-651. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
      [58] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03
      [59] 郭旭升, 2014.涪陵页岩气田焦石坝区块富集机理与勘探技术.北京:科学出版社.
      [60] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰-龙马溪组为例.中国地质, 41(3): 893-901. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm
      [61] 郭旭升, 尹正武, 李金磊, 2015.海相页岩含气量地震定量预测技术及其应用——以四川盆地焦石坝地区为例.石油地球物理勘探, 50(1): 144-149. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406004.htm
      [62] 李金磊, 尹正武, 2015.四川盆地焦石坝地区页岩气储层地震定量预测方法.石油物探, 54(3): 324-330. http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201503011.htm
      [63] 李玉喜, 乔德武, 蒋文利, 等, 2011.页岩气含气量和页岩气地质评价综述.地质通报, 30(2-3): 308-317. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1017.htm
      [64] 梅廉夫, 刘昭茜, 汤济广, 等, 2010.鄂湘西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2): 161-174. http://www.earth-science.net/WebPage/Article.aspx?id=1941
      [65] 聂海宽, 张金川, 2012.页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例.地质学报, 86(2): 349-361. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202014.htm
      [66] 石文睿, 张超谟, 张占松, 等, 2015.涪陵页岩气田焦石坝页岩气储层含气量测井评价.测井技术, 39(3): 357-362. http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201503023.htm
      [67] 帅琴, 黄瑞成, 高强, 等, 2012.页岩气实验测试技术现状与研究进展.岩矿测试, 31(6): 931-938. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYS201402016.htm
      [68] 宋涛涛, 毛小平, 2013.页岩气资源评价中含气量计算方法初探.中国矿业, 22(1): 34-36, 52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201301011.htm
      [69] 唐颖, 李乐忠, 蒋时馨, 2014.页岩储层含气量测井解释方法及其应用研究.天然气工业, 34(12): 46-54. doi: 10.3787/j.issn.1000-0976.2014.12.006
      [70] 唐颖, 张金川, 刘珠江, 等, 2011.解吸法测量页岩含气量及其方法的改进.天然气工业, 31(10): 108-112, 128. doi: 10.3787/j.issn.1000-0976.2011.10.026
      [71] 王健, 石万忠, 舒志国, 等, 2016.富有机质页岩TOC含量的地球物理定量化预测.石油地球物理勘探, 51(3): 596-604. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201603024.htm
      [72] 薛冰, 张金川, 杨超, 等, 2015.页岩含气量理论图版.石油与天然气地质, 36(2): 339-346. doi: 10.11743/ogg20150220
      [73] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [74] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
    • 加载中
    图(9)
    计量
    • 文章访问数:  4143
    • HTML全文浏览量:  1769
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-10-30
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回