Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shales in U.S., Argentina and China
-
摘要: 页岩气富集不均匀,无论对于不同页岩油气藏还是同一页岩油气藏不同地方,产量都是有高有低.有必要系统分析和对比全球不同页岩油气的地质、石油系统与油气富集的关系,总结页岩油气富集的主控因素,从而采取合理的勘探和开发技术.以美国、阿根廷和中国典型页岩为例,基于野外和岩心观察、样品属性测试分析、储层表征、石油系统分析及油气测试,探究了页岩油气富集的主控因素及存在的认识误区.结果表明,富含有机质和脆性矿物的页岩主要分布于远离造山带物源的非深水的沉积和构造背景,富含石英和高伽马页岩并非判断优质储层的矿物和岩石物理标准,优质碳酸盐页岩应以富含碳酸盐和低伽马值为标准.页岩油气藏实际是细粒富含有机质的自生自储或与富含有机质烃源岩相邻的贫有机质细粒沉积储层.天然裂缝对页岩油气富集具有有利和不利的双重作用.因此,页岩油气富集同时受到沉积和构造环境、岩相及矿物组成、天然裂缝的耦合影响,且对不同沉积盆地、不同属性页岩的影响差异明显.Abstract: Shale gas enrichment is uneven, and production is different whether for different shale reservoirs or in different shale oil and gas reservoirs. It is necessary to systematically analyze compare the relationship between geology, petroleum system and oil and gas enrichment of different shale oil and gas plays in the world, to find out the main enrichment factors of shale oil and gas for the purpose of best choice of exploration and development technology. Based on the observation and description of outcrop and core, property testing of shale samples, reservoir characterization, petroleum system analysis, and production test, the shale reservoirs in the United States, Argentina, and China were studied. Results show that the organic-rich shale with content of high brittle minerals is mainly distributed in the shallow water sedimentary and tectonic background far away from the orogenic provenance. The high quartz content and high gamma value are not the evaluation criterion of high quality shale reservoir. The high quality carbonate-rich shale reservoir should be rich in carbonate and of low gamma value instead of being rich in quartz and high gamma value. The "shale reservoirs" are actually fine grained organic-rich shale reservoirs or the organic-lean fine-grained reservoirs adjacent to the source rocks. The natural fractures have both positive and negative effects on shale oil and gas enrichment. Therefore, the shale oil and gas accumulation is controlled by the coupling of tectonic and sedimentary environment, lithofacies, mineral composition, and natural fracture. These controlling factors vary in different basins and different shales with specific properties.
-
Key words:
- shale oil and gas /
- enrichment /
- sedimentary settings /
- tectonics /
- lithofacies /
- mineral composition /
- natural fracture /
- petroleum geology
-
图 3 盆地构造和沉积背景对页岩油气储层分布的控制
剖面AA′和BB′的位置见图 2
Fig. 3. Controlling of tectonic and sedimentary settings on the distribution of shale oil and gas reservoir
图 5 北美“页岩”油气储层的岩相
a.Barnett硅质页岩;b.Eagle Ford富含碳酸盐岩页岩;c.Green River页岩夹细粒介形虫灰岩;d.Niobreara页岩(白垩,储层);e.Niobrara页岩(泥灰岩,烃源岩);f.Bakken富有机质页岩夹白云岩储层;Barnett页岩照片据Bowker(2007)修改
Fig. 5. Facies of shale oil and gas reservoirs in the North America
表 1 美国、阿根廷和中国主要页岩层位基本特征
Table 1. Basic characteristics of the major shale formations in United States, Argentina and China
国家 页岩 沉积环境 构造背景 主要岩性 吸附气含量(%) 井底温度(℃) TOC(%) 成熟度(%) 粘土含量(%) 脆性 孔隙度(%) 压力系数 美国 Barnett 海相 前陆盆地 硅质页岩 35 82~98 2~7 2.00 10~30 高 4~9 1.2~1.4 Marcellus 海相 前陆盆地 富含硅质到富含粘土页岩 40 65~93 3~14 1.60 20~35 低 3~11 0.7~1.3 Haynesville 海相 被动大陆边缘 硅质和钙质页岩 17 132~177 1~5 2.15 20~35 中 8~15 1.6~2.1 Antrim 海相 克拉通盆地 硅质页岩 >70 26 0~24 / / / 2~10 0.8 Niobrara 海相 前陆盆地 白垩 油为主,25 93~115 2~10 0.98 <10 高 7~12 1.0~1.4 Eagle Ford 海相 前陆盆地 钙质页岩 油为主,20 168 2~6 / 15~25 中 4~15 1.2~1.6 Bakken 海相 克拉通盆地 硅质页岩、白云岩及粉砂岩 油为主,气很少 65~115 10~11 0.75 25 高 5~8 1.3~1.8 阿根廷 Vaca Muerta 海相 前陆盆地 硅质页岩 油气均有,40~55 90 1~7 0.60~2.00 15~20 高 4~14 1.1~1.4 中国 龙马溪组 海相 前陆盆地 硅质页岩 30~45 150 2~10 1.30~3.60 15~45 高 1~8 0.7~1.9 沙河街组 陆相 断陷盆地 页岩、砂岩和碳酸盐 55 80~138 2~8 0.50~1.70 >40 低 1~4 / -
[1] Bohacs, K.M., 2015.RE Sheriff Lecture:Order from Chaos—Mudstones as Hydrocarbon Sources, Reservoirs, and Seals:Their Common Characteristics and Genetics, Essential Differences, and Recognition Criteria.Houston Geological Society Bulletin, 58(3):17-21. http://scholar.lib.vt.edu/theses/browse/by_author/all.html [2] Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018 [3] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052 [4] Chen, G.S., Dong, D.Z., Wang, S.Q., et al., 2009.A Preliminary Study on Accumulation Mechanism and Enrichment Pattern of Shale Gas.Natural Gas Industry, 29(5):17-21 (in Chinese with English abstract). [5] Ding, W.L., Zhu, D.W., Cai, J.J., et al., 2013.Analysis of the Developmental Characteristics and Major Regulating Factors of Fractures in Marine-continental Transitional Shale-Gas Reservoirs:A Case Study of the Carboniferous-Permian Strata in the Southeastern Ordos Basin, Central China.Marine and Petroleum Geology, 45:121-133.doi: 10.1016/j.marpetgeo.2013.04.022 [6] Gale, J.F.W., Reed, R.M., Holder, J., 2007.Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments.AAPG Bulletin, 91(4):603-622.doi: 10.1306/11010606061 [7] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201401003.htm [8] Guo, X., 2014.Rules of Two-Factor Enrichiment for Marine Shale Gas in Southern China-Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract). [9] Jia, C.Z., 2017.Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geology Theory.Petroleum Exploration and Development, 44(1):1-10 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30002-2 [10] Jiang, S., 2011.Geological Theory Innovations and Advances in Drilling and Completion Technology for Shale Gas Development.Drilling Petroleum Techniques, 39(3):17-23 (in Chinese with English abstract). https://www.onepetro.org/download/journal-paper/SPE-170801-PA?id=journal-paper%2FSPE-170801-PA [11] Jiang, S., Tang, X.L., Cai, D.S., et al., 2017.Comparison of Marine, Transitional, and Lacustrine Shales:A Case Study from the Sichuan Basin in China.Journal of Petroleum Science and Engineering, 150:334-347.doi: 10.1016/j.petrol.2016.12.014 [12] Jiang, S., Xu, Z.Y., Feng, Y.L., et al., 2016.Geologic Characteristics of Hydrocarbon-Bearing Marine, Transitional and Lacustrine Shales in China.Journal of Asian Earth Sciences, 115:404-418.doi: 10.1016/j.jseaes.2015.10.016 [13] Jiang, S., Zhang, J.C., Jiang, Z.Q., et al., 2015.Geology, Resource Potentials, and Properties of Emerging and Potential China Shale Gas and Shale Oil Plays.Interpretation, 3(2):SJ1-SJ13.doi: 10.1190/int-2014-0142.1 [14] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin.Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). https://www.researchgate.net/publication/313882782_Breakthrough_and_significance_of_unconventional_oil_and_gas_to_classical_petroleum_geology_theory [15] Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). [16] Kargbo, D.M., Wilhelm, R.G., Campbell, D.J., 2010.Natural Gas Plays in the Marcellus Shale:Challenges and Potential Opportunities.Environmental Science & Technology, 44(15):5679-5684.doi: 10.1021/es903811p [17] Li, X.J., Lu, Z.G., Dong, D.Z., et al., 2009.Geologic Controls on Accumulation of Shale Gas in North America.Natural Gas Industry, 29(5):27-32 (in Chinese with English abstract). https://www.researchgate.net/publication/281392655_Geologic_controls_on_accumulation_of_shale_gas_in_North_America [18] Nie, H.K., Zhang, J.C., Zhang, P.X., et al., 2009.Shale Gas Reservoir Characteristics of Barnett Shale Gas Reservoir in Fort Worth Basin.Geological Science and Technology Information, 28(2):87-93 (in Chinese with English abstract). [19] Soeder, D.J., 2010.The Marcellus Shale:Resources and Reservations.Eos Transactions American Geophysical Union, 91(32):277-278.doi: 10.1029/2010eo320001 [20] Tang, X.L., Jiang, Z.X., Huang, H.X., et al., 2016.Lithofacies Characteristics and its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 28:338-346.doi: 10.1016/j.jngse.2015.12.026 [21] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [22] Zhang, X.S., Wang, H.J., Ma, F., et al., 2016.Classification and Characteristics of Tight Oil Plays.Petroleum Science, 13(1):18-33.doi: 10.1007/s12182-015-0075-0 [23] 陈更生, 董大忠, 王世谦, 等, 2009.页岩气藏形成机理与富集规律初探.天然气工业, 29(5): 17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905004.htm [24] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03 [25] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7): 1209-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [26] 贾承造, 2017.论非常规油气对经典石油天然气地质学理论的突破及意义.石油勘探与开发, 44(1): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm [27] 蒋恕, 2011.页岩气开发地质理论创新与钻完井技术进步.石油钻探技术, 39(3): 17-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201103004.htm [28] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm [29] 康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://www.earth-science.net/WebPage/Article.aspx?id=3344 [30] 李新景, 吕宗刚, 董大忠, 等, 2009.北美页岩气资源形成的地质条件.天然气工业, 29(5): 27-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905006.htm [31] 聂海宽, 张金川, 张培先, 等, 2009.福特沃斯盆地Barnett页岩气藏特征及启示.地质科技情报, 28(2): 87-93. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902015.htm [32] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067