• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用

    许丽丽 金振民 MeiShenghua

    许丽丽, 金振民, MeiShenghua, 2017. D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用. 地球科学, 42(6): 974-989. doi: 10.3799/dqkx.2017.078
    引用本文: 许丽丽, 金振民, MeiShenghua, 2017. D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用. 地球科学, 42(6): 974-989. doi: 10.3799/dqkx.2017.078
    Xu Lili, Jin Zhenmin, Mei Shenghua, 2017. Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure. Earth Science, 42(6): 974-989. doi: 10.3799/dqkx.2017.078
    Citation: Xu Lili, Jin Zhenmin, Mei Shenghua, 2017. Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure. Earth Science, 42(6): 974-989. doi: 10.3799/dqkx.2017.078

    D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用

    doi: 10.3799/dqkx.2017.078
    基金项目: 

    国家自然科学基金项目 41402188

    中央高校基础研究项目 310827151059

    详细信息
      作者简介:

      许丽丽(1985-),女,讲师,构造地质学,主要从事岩石、矿物高温高压流变学实验及其显微构造特征研究.ORCID:0000-0002-9314-1253. E-mail:lily2013@chd.edu.cn

    • 中图分类号: P584

    Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure

    • 摘要: 高温高压变形实验是研究地球深部组成矿物流变学性质的重要技术手段之一.D-DIA(deformation-DIA)装置是最近10年来兴起的一种新的高温高压变形实验设备,通常可实现的最高压力为15 GPa和温度约为2 000 K;而同步辐射X射线衍射已经广泛地应用到物质结构科学的研究中,二者相结合,能够有效原位地研究材料物质在高温高压下的流变学性质.以美国布鲁克海文国家实验室配合有同步辐射源的D-DIA装置为例,介绍该装置的基本结构、工作原理及D-DIA装置与X射线结合技术如何实现矿物高温高压下变形过程的原位观测及相关定量力学数据的获取.这一技术突破了传统流变仪的压力局限,为在更高压力(P>4 GPa)条件下研究地球深部组成物质的高温高压流变学性质提供了有效途径.

       

    • 图  1  常见流变仪实验温压范围

      地温线据Katsura et al.(2010);D-DIA.deformation-DIA装置;RDA.rotational Drickamer apparatus(旋转型Drickamer压砧);据Karato and Weidner(2008)Kawazoe et al.(2010)修改

      Fig.  1.  Pressure-temperature conditions available in the high-pressure deformation apparatuses

      图  2  DIA模具工作原理示意

      Wang et al.(2003)修改

      Fig.  2.  Conceptual diagram illustrating the principle of the DIA cubic anvil apparatus

      图  3  通常应用于D-DIA模具的(a)不含水实验条件下和(b)含水实验条件下样品组合示意

      Fig.  3.  Sketch of sample assembly for experiment under (a) anhydrous condition and (b) hydrous condition

      图  4  晶体发生X射线衍射示意

      Fig.  4.  Conceptual diagram showing X-ray diffraction in the crystal

      图  5  NSLS光源中心D-DIA装置-同步辐射源系统结构示意

      Fig.  5.  Configuration of the D-DIA apparatus coupled with synchrotron X-ray diffraction at NSLS

      图  6  样品应力状态与X射线衍射几何状态

      据Chen et al.(2004)

      Fig.  6.  Diffraction geometry for the stress analysis

      图  7  水平方向探测器和竖直方向探测器同时记录的石榴子石样品X射线衍射图谱

      Fig.  7.  Diffraction pattern from garnet sample collected simultaneously on the detectors aligned perpendicular to the compression axis (horizontal detector) and parallel to the compression axis (vertical detector)

      图  8  变形过程中时间间隔约26 min拍摄的样品X光照片

      Fig.  8.  Two X-ray radiographs of a sample column taken ~26 min apart during deformation

      图  9  变形过程中不同实验阶段石榴子石样品应变量-变形时间关系

      Fig.  9.  Plot of strain vs. elapsed time for different P-T-σ conditions from a deformation experiment on one garnet sample

      表  1  D-DIA装置与同步辐射源结合技术在矿物(高温)高压变形实验中的应用实例

      Table  1.   Some applications in high-pressure deformation experiments of minerals by D-DIA apparatus coupled with synchrotron X-ray diffraction

      衍射实验模式 实验矿物名称 实验温压条件 文献来源
      角散衍射模式(ADD) 方镁石(periclase) 0.1<P<8.0 GPa,T=298 K Uchida et al., 2004
      叶蛇纹石(antigorite) 1≤P≤ 4 GPa,473≤T≤923 K Hilairet et al., 2007Auzende et al., 2015
      利蛇纹石(lizardite) 1<P<8 GPa,423 ≤T≤ 673 K Amiguet et al., 2012
      橄榄石(olivine) 2.8<P<7.8 GPa,1 153≤T≤1 670 K Hilairet et al., 2012
      林伍德石(ringwoodite) 3.5<P<10.0 GPa,T=298 K Nishiyama et al., 2005Wenk et al., 2005
      ε相(hcp相)铁 7.0≤P≤7.5 GPa及P=17 GPa,300≤T≤600 K Nishiyama et al., 2007Merkel et al., 2012
      后钙钛矿相CaIrO3 2≤P≤6 GPa,300≤T≤1 300 K Miyagi et al., 2008
      方镁石(periclase) 1.5≤P≤10.0 GPa,T=773 K及1 373≤T≤1 573 K Mei et al., 2008;Li et al., 2014a
      能散衍射模式(EDD) 橄榄石(olivine) 2.7≤P≤9.6 GPa,298<T≤1 780 K Li et al., 2003Li et al., 2006bDurham et al., 2009Raterron et al., 2009Long et al., 2011;Li et al., 2014b;Nishihara et al., 2014Bollinger et al., 2016
      瓦兹利石(wadsleyite) P=14.5 GPa及P=17.6 GPa,1 700≤T≤1 900 K Kawazoe et al., 2011Kawazoe et al., 2013
      石榴子石(garnet) 1.6≤P≤6.8 GPa,1 073≤T≤1 573 K Li et al., 2006aMei et al., 2010Xu et al., 2013
      下载: 导出CSV
    • [1] Amiguet, E., Reynard, B., Caracas, R., et al., 2012.Creep of Phyllosilicates at the Onset of Plate Tectonics.Earth and Planetary Science Letters, 345-348:142-150.doi: 10.1016/j.epsl.2012.06.033
      [2] Auzende, A.L., Escartin, J., Walte, N.P., et al., 2015.Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks.Earth and Planetary Science Letters, 411:229-240.doi: 10.1016/j.epsl.2014.11.053
      [3] Bollinger, C., Raterron, P., Castelnau, O., et al., 2016.Textures in Deforming Forsterite Aggregates up to 8 GPa and 1 673 K.Physics and Chemistry of Minerals, 43(6):409-417.doi: 10.1007/s00269-016-0805-x
      [4] Borch, R.S., Green, H.W., 1987.Dependence of Creep in Olivine on Homologous Temperature and Its Implications for Flow in the Mantle.Nature, 330(6146):345-348.doi: 10.1038/330345a0
      [5] Bragg, L., 1942.A Theory of the Strength of Metals.Nature, 149(3784):511-513.doi: 10.1038/149511a0
      [6] Durham, W.B., Mei, S., Kohlstedt, D.L., et al., 2009.New Measurements of Activation Volume in Olivine under Anhydrous Conditions.Physics of the Earth and Planetary Interiors, 172(1-2):67-73.doi: 10.1016/j.pepi.2008.07.045
      [7] Durham, W.B., Weidner, D.J., Karato, S.I., et al., 2002.New Developments in Deformation Experiments at High Pressure.Reviews in Mineralogy and Geochemistry, 51(1): 21-49. doi: 10.2138/gsrmg.51.1.21
      [8] Hearmon, R.F.S., 1956.The Elastic Constants of Anisotropic Materials—Ⅱ.Advances in Physics, 5(19):323-382.doi: 10.1080/00018732.1956.tadp0323
      [9] Hilairet, N., Reynard, B., Wang, Y., et al., 2007.High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction.Science, 318(5858):1910-1913.doi: 10.1126/science.1148494
      [10] Hilairet, N., Wang, Y.B., Sanehira, T., et al., 2012.Deformation of Olivine under Mantle Conditions:An In Situ High-Pressure, High-Temperature Study Using Monochromatic Synchrotron Radiation.Journal of Geophysical Research(Solid Earth), 117(B1):251-258.doi: 10.1029/2011jb008498
      [11] Hirth, G., Kohlstedt, D.L., 1996.Water in the Oceanic Upper Mantle:Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere.Earth and Planetary Science Letters, 144(1-2):93-108.doi: 10.1016/0012-821x(96)00154-9
      [12] Jin, Z.M., 1988.Experimental Rock Deformation at High Temperature and Pressure and Its Implications in Geodynamics.Geological Science and Technology Information, 7(3):11-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ198803002.htm
      [13] Jin, Z.M., 1997.The Progresses and Perspectives of High-T and High-P Experimental Study in China.Acta Geophysica Sinica, 40(Suppl.):70-81 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/Y1997/V40/IS1/70
      [14] Karato, S.I., Weidner, D.J., 2008.Laboratory Studies of the Rheological Properties of Minerals under Deep-Mantle Conditions.Elements, 4(3):191-196.doi: 10.2113/GSELEMENTS.4.3.191
      [15] Karato, S.I., Wu, P., 1993.Rheology of the Upper Mantle:A Synthesis.Science, 260(5109):771-778.doi: 10.1126/science.260.5109.771
      [16] Katayama, I., Karato, S.I., 2008.Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine.Physics of the Earth and Planetary Interiors, 166(1-2):57-66.doi: 10.1016/j.pepi.2007.10.004
      [17] Katsura, T., Yoneda, A., Yamazaki, D., et al., 2010.Adiabatic Temperature Profile in the Mantle.Physics of the Earth and Planetary Interiors, 183(1-2):212-218.doi: 10.1016/j.pepi.2010.07.001
      [18] Kawazoe, T., Nishihara, Y., Ohuchi, T., et al., 2011.In Situ Stress-Strain Measurements in a Deformation-DIA Apparatus at P-T Conditions of the Upper Part of the Mantle Transition Zone.American Mineralogist, 96(11-12):1665-1672.doi: 10.2138/am.2011.3818
      [19] Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010.Pressure Generation to 25 GPa Using a Cubic Anvil Apparatus with a Multi-Anvil 6-6 Assembly.High Pressure Research, 30(1):167-174.doi: 10.1080/08957950903503912
      [20] Kawazoe, T., Ohuchi, T., Nishihara, Y., et al., 2013.Seismic Anisotropy in the Mantle Transition Zone Induced by Shear Deformation of Wadsleyite.Physics of the Earth and Planetary Interiors, 216:91-98.doi: 10.1016/j.pepi.2012.12.005
      [21] Li, L., Long, H.B., Raterron, P., et al., 2006a.Plastic Flow of Pyrope at Mantle Pressure and Temperature.American Mineralogist, 91(4):517-525.doi: 10.2138/am.2006.1913
      [22] Li, L., Weidner, D., Raterron, P., et al., 2006b.Deformation of Olivine at Mantle Pressure Using the D-DIA.European Journal of Mineralogy, 18(1):7-19.doi: 10.1127/0935-1221/2006/0018-0007
      [23] Li, L., Raterron, P., Weidner, D., et al., 2003.Olivine Flow Mechanisms at 8 GPa.Physics of the Earth and Planetary Interiors, 138(2):113-129.doi: 10.1016/s0031-9201(03)00065-7
      [24] Li, L., Weidner, D.J., Chen, J.H., et al., 2004a.X-Ray Strain Analysis at High Pressure:Effect of Plastic Deformation in MgO.Journal of Applied Physics, 95(12):8357-8365.doi: 10.1063/1.1738532
      [25] Li, L, Weidner, D., Raterron, P., et al., 2004b.Stress Measurements of Deforming Olivine at High Pressure.Physics of the Earth and Planetary Interiors, 143-144:357-367.doi: 10.1016/j.pepi.2003.09.022
      [26] Long, H.B., Weidner, D.J., Li, L., et al., 2011.Deformation of Olivine at Subduction Zone Conditions Determined from In Situ Measurements with Synchrotron Radiation.Physics of the Earth and Planetary Interiors, 186(1-2):23-35.doi: 10.1016/j.pepi.2011.02.006
      [27] Mao, H.K., Shu, J., Shen, G., et al., 1998.Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth's Inner Core.Nature, 396(6713):741-743.doi: 10.1038/20472
      [28] Meade, C., Jeanloz, R., 1990.The Strength of Mantle Silicates at High Pressures and Room Temperature:Implications for the Viscosity of the Mantle.Andrologia, 38(2):69-75.doi: 10.1038/348533a0
      [29] Mei, S., Kohlstedt, D.L., 2000.Influence of Water on Plastic Deformation of Olivine Aggregates:2.Dislocation Creep Regime.Journal of Geophysical Research:Solid Earth, 105(B9):21471-21481.doi: 10.1029/2000jb900180
      [30] Mei, S.H., Kohlstedt, D.L., Durham, W.B., et al., 2008.Experimental Investigation of the Creep Behavior of MgO at High Pressures.Physics of the Earth and Planetary Interiors, 170(3):170-175.doi: 10.1016/j.pepi.2008.06.030
      [31] Mei, S.H., Suzuki, A.M., Kohlstedt, D.L., et al., 2010.Experimental Investigation of the Creep Behavior of Garnet at High Temperatures and Pressures.Journal of Earth Science, 21(5):532-540.doi: 10.1007/s12583-010-0127-8
      [32] Merkel, S., Gruson, M., Wang, Y.B., et al., 2012.Texture and Elastic Strains in Hcp-Iron Plastically Deformed up to 17.5 GPa and 600 K:Experiment and Model.Modelling and Simulation in Materials Science and Engineering, 20(2):024005.doi: 10.1088/0965-0393/20/2/024005
      [33] Miyagi, L., Nishiyama, N., Wang, Y.B., et al., 2008.Deformation and Texture Development in CaIrO3 Post-Perovskite Phase up to 6 GPa and 1 300 K.Earth and Planetary Science Letters, 268(3-4):515-525.doi: 10.1016/j.epsl.2008.02.005
      [34] Murnaghan, F.D., 1937.Finite Deformations of an Elastic Solid.American Journal of Mathematics, 59(2):235.doi: 10.2307/2371405
      [35] Nishihara, Y., Ohuchi, T., Kawazoe, T., et al., 2014.Rheology of Fine-Grained Forsterite Aggregate at Deep Upper Mantle Conditions.Journal of Geophysical Research:Solid Earth, 119(1):253-273.doi: 10.1002/2013jb010473
      [36] Nishiyama, N., Wang, Y.B., Rivers, M.L., et al., 2007.Rheology of ε-Iron up to 19 GPa and 600 K in the D-DIA.Geophysical Research Letters, 34(23):306-317.doi: 10.1029/2007gl031431
      [37] Nishiyama, N., Wang, Y.B., Sanehira, T., et al., 2008.Development of the Multi-Anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses.High Pressure Research, 28(3):307-314.doi: 10.1080/08957950802250607
      [38] Nishiyama, N., Wang, Y.B., Uchida, T., et al., 2005.Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite.Geophysical Research Letters, 32(4):319-325.doi: 10.1029/2004GL022141
      [39] Osugi, J., Shimizu, K., Inoue, K., et al., 1964.A Compact Cubic Anvil High Pressure Apparatus.Review of Physical Chemistry of Japan, 34(1):1-6. http://ci.nii.ac.jp/naid/120000900379
      [40] Paterson, M.S., 1990.Rock Deformation Experimentation.In:Duba, A.G., Durham, W.B., Handin, J.W., et al., eds., The Brittle-Ductile Transition in Rocks.American Geophysical Union, Washington, D.C., 187-194.doi:10.1029/GM056p0187
      [41] Raterron, P., Amiguet, E., Chen, J.H., et al., 2009.Experimental Deformation of Olivine Single Crystals at Mantle Pressure and Temperature.Physics of the Earth and Planetary Interiors, 172(1-2):74-83.doi: 10.1016/j.pepi.2008.07.026
      [42] Renner, J., Stöckhert, B., Zerbian, A., et al., 2001.An Experimental Study into the Rheology of Synthetic Polycrystalline Coesite Aggregates.Journal of Geophysical Research(Solid Earth), 106(B9):19411-19429.doi: 10.1029/2001jb000431
      [43] Shimomura, O., Utsumi, W., Taniguci, T., et al., 1992.A New High Pressure and High Temperature Apparatus with Sintered Diamond Anvils for Synchrotron Radiation Use.In:Syono, Y., Manghnani, M.H., eds., High-Pressure Research:Application to Earth and Planetary Sciences, Terra Scientific/American Geophysical Union, Washington, D.C., 67:3-11.doi:10.1029/GM067p0003
      [44] Singh, A.K., 1993.The Lattice Strains in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device.Journal of Applied Physics, 73(9):4278-4286.doi: 10.1063/1.352809
      [45] Singh, A.K., Balasingh, C., 1994.The Lattice Strains in a Specimen (Hexagonal System) Compressed Nonhydrostatically in an Opposed Anvil High Pressure Setup.Journal of Applied Physics, 75(10):4956-4962.doi: 10.1063/1.355786
      [46] Singh, A.K., Balasingh, C., 1996.The Effect of Uniaxial Stress Component on the Lattice Strains Measured by a Diffraction Method Using Opposed Anvil Device:Trigonal System.Bulletin of Materials Science, 19(3):601-605.doi: 10.1007/bf02744833
      [47] Singh, A.K., Balasingh, C., Mao, H.K., et al., 1998.Analysis of Lattice Strains Measured Under Nonhydrostatic Pressure.Journal of Applied Physics, 83(12):7567-7575.doi: 10.1063/1.367872
      [48] Stokes, A.R., Pascoe, K.J., Lipson, H., 1943.X-Ray Evidence of the Nature of Cold Work in Metals.Nature, 151(3822):137.doi: 10.1038/151137a0
      [49] Sung, C.M., Goetze, C., Mao, H.K., 1977.Pressure Distribution in the Diamond Anvil Press and the Shear Strenght of Fayalite.Review of Scientific Instruments, 48(11):1386-1391.doi: 10.1063/1.1134902
      [50] Uchida, T., Funamori, N., Yagi, T., 1996.Lattice Strains in Crystals under Uniaxial Stress Field.Journal of Applied Physics, 80(2):739-746.doi: 10.1063/1.362920
      [51] Uchida, T., Wang, Y.B., Rivers, M.L., et al., 2004.Yield Strength and Strain Hardening of MgO up to 8 GPa Measured in the Deformation-DIA with Monochromatic X-Ray Diffraction.Earth and Planetary Science Letters, 226(1-2):117-126.doi: 10.1016/j.epsl.2004.07.023
      [52] Wang, Y.B., 2006.Combining the Large Volume Press with Synchrotron Radiation:Applications to In Situ Studies of Earth Materials under High Pressure and Temperature.Earth Science Frontiers, 13(2):1-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602001.htm
      [53] Wang, Y.B., Durham, W.B., Getting, I.C., et al., 2003.The Deformation-DIA:A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa.Review of Scientific Instruments, 74(6):3002-3011.doi: 10.1063/1.1570948
      [54] Wang, Y.B., Hilairet, N., Dera, P., 2010.Recent Advances in High Pressure and Temperature Rheological Studies.Journal of Earth Science, 21(5):495-516.doi: 10.1007/s12583-010-0124-y
      [55] Weidner, D.J., 1998.Rheological Studies at High Pressure.Reviews in Mineralogy and Geochemistry, 37(1):493-524. http://rimg.geoscienceworld.org/content/37/1/493
      [56] Weidner, D.J., Li, L., Davis, M., et al., 2004.Effect of Plasticity on Elastic Modulus Measurements.Geophysical Research Letters, 31(6):337-357.doi: 10.1029/2003gl019090
      [57] Weidner, D.J., Vaughan, M.T., Wang, L.P., et al., 2010.Precise Stress Measurements with White Synchrotron X-Rays.Review of Scientific Instruments, 81(1):0139030.doi: 10.1063/1.3263760
      [58] Wenk, H.R., Ischia, G., Nishiyama, N., et al., 2005.Texture Development and Deformation Mechanisms in Ringwoodite.Physics of the Earth and Planetary Interiors, 152(3):191-199.doi: 10.1016/j.pepi.2005.06.008
      [59] Xu, H.J., Zhao, S.T., Wu, Y., 2016.Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene.Earth Science, 41(6):948-970 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606004.htm
      [60] Xu, L.L., Mei, S.H., Dixon, N., et al., 2013.Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures.Earth and Planetary Science Letters, 379(5):158-165.doi: 10.1016/j.epsl.2013.08.002
      [61] Yamazaki, D., Karato, S.I., 2001.High-Pressure Rotational Deformation Apparatus to 15 GPa.Review of Scientific Instruments, 72(11):4207-4211.doi: 10.1063/1.1412858
      [62] Zhang, Y.F., Wu, Y., Liu, P.L., et al., 2012.Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences.Earth Science, 37(5):955-965(in Chinese with English abstract). https://www.researchgate.net/publication/287381930_Walker_type_multi-anvil_apparatus_and_its_applications_in_geosciences
      [63] Zhou, C.Y., Jin, Z.M., Wang, Y.B., et al., 2016.Sound Velocity Measurement of Minerals and Rocks at Mantle Transition Zone Conditions Using Ultrasonic and Multianvil Techniques.Earth Science, 41(9):1451-1460 (in Chinese with English abstract). https://www.researchgate.net/publication/309263965_Sound_velocity_measurement_of_minerals_and_rocks_at_mantle_transitionzone_conditions_using_ultrasonic_and_multianvil_techniques
      [64] 金振民, 1988.高温高压岩石变形实验及其地球动力学的意义.地质科技情报, 7(3):11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198803002.htm
      [65] 金振民, 1997.我国高温高压实验研究进展和展望.地球物理学报, 40(增刊1):70-81. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199710001009.htm
      [66] 王雁宾, 2006.地球内部物质物性的原位高温高压研究:大体积压机与同步辐射源的结合.地学前缘, 13(2):1-36. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602001.htm
      [67] 徐海军, 赵素涛, 武云, 2016.单斜辉石中石英出溶体的显微结构和成因机制.地球科学, 41(6):948-970. http://www.earth-science.net/WebPage/Article.aspx?id=3310
      [68] 张艳飞, 吴耀, 刘鹏雷, 等, 2012.Walker型28GPa多面砧压机及其在地球科学中的应用.地球科学, 37(5):955-965. http://www.earth-science.net/WebPage/Article.aspx?id=2301
      [69] 周春银, 金振民, 王雁宾, 等, 2016.地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合.地球科学, 41(9):1451-1460. http://www.earth-science.net/WebPage/Article.aspx?id=3351
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  4487
    • HTML全文浏览量:  1877
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-20
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回