• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南仲巴地体早奥陶世构造-热事件及其地质意义

    刘强 邓玉彪 向树元 李华亮

    刘强, 邓玉彪, 向树元, 李华亮, 2017. 藏南仲巴地体早奥陶世构造-热事件及其地质意义. 地球科学, 42(6): 881-890. doi: 10.3799/dqkx.2017.076
    引用本文: 刘强, 邓玉彪, 向树元, 李华亮, 2017. 藏南仲巴地体早奥陶世构造-热事件及其地质意义. 地球科学, 42(6): 881-890. doi: 10.3799/dqkx.2017.076
    Liu Qiang, Deng Yubiao, Xiang Shuyuan, Li Hualiang, 2017. Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance. Earth Science, 42(6): 881-890. doi: 10.3799/dqkx.2017.076
    Citation: Liu Qiang, Deng Yubiao, Xiang Shuyuan, Li Hualiang, 2017. Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance. Earth Science, 42(6): 881-890. doi: 10.3799/dqkx.2017.076

    藏南仲巴地体早奥陶世构造-热事件及其地质意义

    doi: 10.3799/dqkx.2017.076
    基金项目: 

    国家自然科学基金项目 41272078

    中国地调局青藏高原地质研究中心开放课题 21201010000150014-28

    中国地调局青藏高原地质研究中心开放课题 21201010000150014-29

    西藏1:5万公珠错东地区4幅区域地质矿产调查项目 1212011221066

    国家自然科学基金项目 41603031

    详细信息
      作者简介:

      刘强(1978-),男,副教授,主要从事区域构造与高温高压实验的教学与研究工作.ORCID: 0000-0002-9674-4906.E-mail: liuqiang@cug.edu.cn

    • 中图分类号: P56

    Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance

    • 摘要: 仲巴地体是雅鲁藏布江缝合带西段南北蛇绿岩带之间的重要构造单元,目前对其是否存在早古生代构造-热事件记录及构造属性判别尚不明确.通过野外观测、岩石地球化学研究和年代学分析,在仲巴地体中段的公珠错一带识别出一套侵入到黑云斜长片麻岩中的片麻状二长花岗岩,其锆石U-Pb年龄为~478 Ma,表明岩石形成时代为早奥陶世;该套花岗岩具有高Si、富Al和总碱含量较高的特点,铝饱和指数A/CNK=1.13~1.20,富集大离子亲石元素Rb、K,相对亏损Ba、Sr、Nb、Ti等,属于钙碱性强过铝质花岗岩.这是首次在雅鲁藏布江缝合带西段仲巴地体内部识别出代表早奥陶世构造-热事件的地质记录,该套花岗岩形成过程与原特提斯洋向冈瓦纳大陆北缘俯冲结束后的上地壳熔融相关,证明仲巴地体在早古生代应为东冈瓦纳大陆北缘的组成部分.

       

    • 图  1  藏南仲巴地体区域构造位置(a,b)与研究区地质简图(c)

      图b中:1.湖泊;2.日喀则弧前盆地;3.特提斯喜马拉雅带;4.高喜马拉雅带;5.低喜马拉雅带;雅鲁藏布江缝合带;6.侏罗纪-白垩纪蛇绿岩;7.晚白垩世蛇绿混杂岩;8.仲巴地体:震旦-寒武系绿片岩相浅变质岩和奥陶-白垩系滨浅海相沉积岩;9.冈底斯岩基:白垩纪-新近纪火成岩;10.新生代淡色花岗岩;11.奥陶纪花岗岩;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;STDS.藏南拆离系;YZSZ.雅鲁藏布江缝合带;图c中:1.湖泊;2.第四系;3.古近纪-新近纪砾岩;4.石炭系钙质片岩、石英片岩、大理岩;5.震旦-寒武系(?)黑云斜长片麻岩、长英质片岩;6.奥陶纪片麻状二长花岗岩;7.晚侏罗世-早白垩世蛇绿岩;8.白垩纪-新近纪火成岩;9.新生代淡色花岗岩;10.主边界断裂;11.样品位置.图b据刘飞等(2015)有修改;图c据Pullen et al.(2011)有修改

      Fig.  1.  Regional tectonic map of the Zhongba terrane, southern Tibet (a, b) and simplified geological map of the Gongzhu Co area (c)

      图  2  公珠错片麻状二长花岗岩的野外特征(a)与显微照片(b)

      Qtz.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Ms.白云母

      Fig.  2.  Field photos (a) and micrographs (b) of gneissic monzogranite from the Gongzhu Co area

      图  3  公珠错片麻状二长花岗岩样品稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989)

      Fig.  3.  Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spidergrams (b) of gneissic monzogranite samples from the Gongzhu Co area

      图  4  公珠错片麻状二长花岗岩样品中典型锆石的CL图像

      锆石中红色圆圈为激光剥蚀位置,内部数字为测点号,锆石外侧数字为对应测点的U-Pb年龄

      Fig.  4.  Representative CL images of zircons for gneissic monzogranite samples from the Gongzhu Co area

      图  5  公珠错片麻状二长花岗岩样品(2C-0, 2C-1) LA-ICP-MS U-Pb年龄谐和图(a, c)和稀土元素球粒陨石标准化配分图(b, d)

      球粒陨石标准化值据Sun and McDonough(1989)

      Fig.  5.  U-Pb concordia diagrams (a, c) and chondrite-normalized REE patterns (b, d) for zircon grains from gneissic monzogranite samples (2C-0, 2C-1) in the Gongzhu Co area

      表  1  公主错地区片麻状二长花岗岩主量(%)与微量元素(10-6)分析结果

      Table  1.   The results of major elements (%) and trace elements (10-6) of gneissic monzonitic granite from the Gongzhu Co area

      样品 2C-0 2C-1 2C-2
      主量元素(%)
      SiO271.7074.0274.93
      TiO20.450.230.25
      Al2O313.2512.8812.67
      Fe2O34.142.272.34
      MnO0.060.040.05
      MgO1.080.520.52
      CaO1.450.710.78
      Na2O3.452.802.75
      K2O2.525.094.65
      P2O50.250.160.16
      LOI0.720.500.66
      Total99.0799.2299.76
      Mg#37.8134.8034.12
      微量元素(10-6)
      Sc8.805.295.61
      V42.020.322.7
      Cr30.0168.030.4
      Co6.602.992.39
      Ni24.1011.006.31
      Ga20.916.916.8
      Rb286388414
      Sr49.2032.6030.51
      Y46.937.440.2
      Zr231.098.5104.0
      Nb17.311.312.7
      Cs23.952.337.7
      Ba233281285
      La35.516.918.6
      Ce75.134.537.6
      Pr8.723.844.34
      Nd30.814.816.5
      Sm8.143.844.18
      Eu0.740.450.45
      Gd7.813.994.28
      Tb1.290.810.86
      Dy8.055.826.15
      Ho1.671.211.29
      Er5.143.473.81
      Tm0.720.560.64
      Yb4.423.824.47
      Lu0.650.520.60
      Hf6.603.233.40
      Ta1.641.822.11
      Pb19.326.122.6
      Th21.413.814.9
      U 3.23 2.42 3.97
      注:TFeO(as total iron)=FeO+0.9×Fe2O3;Mg#=100×Mg2+/(Mg2++Fe2+);主量元素为质量百分含量.
      下载: 导出CSV

      表  2  公主错地区片麻状二长花岗岩(2C-0、2C-1) 单颗粒锆石LA-ICP-MS U-Pb同位素结果

      Table  2.   The results of the LA-ICP-MS U-Pb isotopic dating for the single-grain zircon of gneissic monzonitic granite from the Gongzhu Co area

      测点编号 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 同位素年龄(Ma)
      207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ
      2C-0(第1~10行为锆石继承核,第11~26行为锆石边部)
      174.382.96230.130.063 00.002 00.782 20.017 60.089 60.000 770955.058710.05534.0
      2503.0410.09060.450.081 30.002 02.332 00.044 40.206 80.001 91 22936.01 22214.01 21210.0
      375.769.33590.190.067 20.002 01.165 90.028 40.125 50.001 284352.078513.07627.0
      4289.0288.02421.190.080 20.002 02.379 00.057 90.213 90.001 81 26750.01 23617.01 25010.0
      544.358.14130.140.060 60.002 00.724 60.022 60.086 00.001 063360.055313.05326.0
      6178.0152.02400.640.078 10.002 02.283 80.054 20.210 30.002 01 15046.01 20717.01 23010.0
      7404.0225.02800.800.119 60.002 05.578 10.107 40.335 40.002 61 95034.01 91317.01 86513.0
      8244.0171.02060.830.105 60.003 03.270 10.090 60.222 10.002 51 72650.01 47422.01 29313.0
      9578.078.81 1120.070.178 20.004 010.020 00.220 30.403 40.003 52 63636.02 43720.02 18516.0
      10165.0225.03540.630.070 60.002 01.338 10.036 20.136 40.001 994652.086216.082411.0
      1176.184.58970.090.057 00.001 00.608 60.015 20.076 90.000 650056.048310.04774.0
      1282.781.81 0380.080.056 20.001 00.604 20.014 40.077 30.000 745750.04809.04804.0
      1354.782.95140.160.056 90.002 00.605 90.016 60.076 80.000 848759.048111.04775.0
      1479.7114.07300.160.057 40.001 00.617 40.014 40.077 50.000 650657.04889.04814.0
      15215.0507.07220.700.054 60.001 00.585 60.015 20.077 40.000 739455.046810.04814.0
      1688.792.01 0850.080.055 50.001 00.582 40.013 70.075 70.000 643247.04669.04704.0
      17163.0103.02 3930.040.055 80.001 00.609 40.011 30.078 60.000 64438.04837.04884.0
      1867.2118.05550.210.054 70.002 00.575 10.015 30.076 00.000 746761.046110.04724.0
      1951.575.94670.160.055 60.002 00.586 80.015 80.076 10.000 743559.046910.04734.0
      2055.278.04870.160.056 20.002 00.602 40.017 70.077 20.000 846167.047911.04805.0
      2194.8104.01 0840.100.055 90.001 00.596 10.013 50.076 60.000 545050.04759.04753.0
      2274.178.18410.090.058 60.002 00.632 60.015 80.077 40.000 655457.049810.04814.0
      2352.460.25710.110.056 90.002 00.608 70.016 50.077 00.000 748757.048310.04784.0
      2463.455.38390.070.057 30.002 00.613 00.015 70.077 30.000 750653.048510.04804.0
      2577.382.98940.090.058 50.001 00.620 80.014 70.076 70.000 654652.04909.04773.0
      2670.091.66760.140.055 90.001 60.598 20.016 90.077 30.000 745663.047610.74803.9
      2C-1(第1行为锆石继承核,第2~18行为锆石边部,第19~21行为暗灰色锆石边缘部位)
      1191.0203.01 0290.200.069 60.001 21.225 20.022 30.126 90.001 291734.181210.27706.9
      2129.0219.01 2490.180.056 80.001 20.607 00.013 80.076 90.000 748746.04829.04774.0
      3151.0258.01 4780.170.055 60.001 00.595 30.011 40.077 10.000 643943.04747.04794.0
      499.0162.01 0480.160.053 50.001 40.569 40.016 60.076 90.000 935061.045811.04785.0
      5165.0197.02 0670.100.053 90.001 00.575 00.010 80.077 00.000 736941.04617.04784.0
      6178.0239.02 0310.120.060 60.003 00.623 20.016 60.077 10.001 0633103.049210.04796.0
      7104.0177.01 0230.170.056 40.001 40.602 40.017 40.077 00.001 247854.047911.04787.0
      8112.0190.01 1230.170.055 00.001 60.581 00.016 80.077 10.001 141367.046511.04797.0
      9133.0195.01 3840.140.055 60.001 20.590 20.013 00.076 80.000 743548.04718.04774.0
      10108.0186.01 0590.180.054 70.001 50.579 10.015 40.076 90.000 946761.046410.04785.0
      1185.0179.01 6620.110.054 10.000 90.578 40.011 30.077 20.000 937234.04637.04795.0
      1280.0122.08550.140.055 40.001 50.588 20.015 50.076 90.000 642859.047010.04784.0
      1399.0121.01 2120.100.052 70.000 90.565 80.011 00.077 30.000 731744.04557.04804.0
      14128.0206.01 3090.160.053 90.001 10.578 20.012 20.077 40.000 636548.04638.04814.0
      15182.0341.01 5630.220.054 30.001 10.576 70.011 00.076 80.000 538344.04627.04773.0
      16111.0204.09920.210.056 40.001 40.601 90.015 50.076 80.000 747852.047810.04774.0
      17143.0217.01 6390.130.053 40.000 70.571 20.010 10.077 00.001 034627.04597.04786.0
      18157.0273.01 5410.180.055 00.001 10.585 90.011 20.076 90.000 741344.44687.24784.4
      19672.0297.011 9720.020.053 80.000 70.521 60.007 80.069 80.000 636525.04265.04354.0
      20490.0266.07 9800.030.054 20.000 50.526 60.006 70.069 90.000 638953.04305.04354.0
      21541.0315.08 6490.040.054 20.001 00.552 80.011 10.073 30.000 638941.04477.04563.0
      下载: 导出CSV
    • [1] Cawood, P.A., Johnson, M.R.W., Nemchin, A.A., 2007.Early Palaeozoic Orogenesis along the Indian Margin of Gondwana:Tectonic Response to Gondwana Assembly.Earth and Planetary Science Letters, 255(1-2):70-84.doi: 10.1016/j.epsl.2006.12.006
      [2] Chen, J.J., Fu L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882(in Chinese with English abstract).
      [3] Dong, X., Zhang, Z.M., 2015.Cambrian Granitoids from the Southeastern Tibetan Plateau:Research on Petrology and Zircon Hf Isotope.Acta Petrologica Sinica, 31(5):1183-1199 (in Chinese with English abstract). https://www.researchgate.net/publication/281786735_Cambrian_granitoids_from_the_southeastern_Tibetan_Plateau_Research_on_petrology_and_zircon_Hf_isotope
      [4] Gou, Z.B., Zhang, Z.M., Dong, X., et al., 2015.Petrogenesis and Tectonic Significance of the Early Paleozoic Granitic Gneisses from the Yadong Area, Southern Tibet.Acta Petrologica Sinica, 31(12):3674-3686(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201512012.htm
      [5] Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768(in Chinese with English abstract). https://www.researchgate.net/publication/286106345_Geochemical_features_and_tectonic_significance_of_granitic_gneiss_of_Laguigangri_metamorphic_core_complexes_in_southern_Tibet
      [6] Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397.doi: 10.1016/j.gr.2011.10.013
      [7] Hu, P.Y., Zhai, Q.G., Jahn, B.M., et al., 2015.Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet:Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin.Lithos, 220-223:318-338.doi: 10.1016/j.lithos.2014.12.020
      [8] Jiang, Z.Q., Wang, Q., Wyman, D.A., et al., 2014.Transition from Oceanic to Continental Lithosphere Subduction in Southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) Intrusive Rocks in the Chanang-Zedong Area, Southern Gangdese.Lithos, 196-197:213-231.doi: 10.1016/j.lithos.2014.03.001
      [9] Kusky, T.M., Abdelsalam, M., Tucker, R.D., et al., 2003.Evolution of the East African and Related Orogens, and the Assembly of Gondwana.Precambrian Research, 123(2-4):81-85.doi: 10.1016/s0301-9268(03)00062-7
      [10] Li, C., Wu, Y.W., Wang, M., et al., 2010.Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau—Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China.Geological Bulletin of China, 29(12):1733-1736 (in Chinese with English abstract). https://www.researchgate.net/publication/288859695_Significant_progress_on_Pan-African_and_Early_Paleozoic_orogenic_events_in_Qinghai-Tibet_Plateau_discovery_of_Pan-African_orogenic_unconformity_and_Cambrian_System_in_the_Gangdese_area_Tibet_China
      [11] Li, C., Zhai, Q.G., Dong, Y.S., et al., 2008.Oceanic Crust on the Northern Margin of Gondwana—Evidence from Early Paleozoic Ophiolite in Central Qiangtang, Qinghai-Tibet Plateau.Geological Bulletin of China, 27(10):1605-1612(in Chinese with English abstract). https://www.researchgate.net/publication/286959328_Oceanic_crust_on_the_northern_margin_of_Gond-wana-evidence_from_Early_Paleozoic_ophiolite_in_central_Qiangtang_Qinghai-Tibet_Plateau
      [12] Li, X.H., Wang, C.S., Li, Y.L., et al., 2014.Definition and Composition of the Zhongba Microterrane in Southwest Tibet.Acta Geologica Sinica, 88(8):1372-1381(in Chinese with English abstract).
      [13] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015.Genesis and Characteristics of the Western Part of the Yarlung Zangbo Ophiolites, Tibet.Acta Petrologica Sinica, 31(12):3609-3628(in Chinese with English abstract). https://www.researchgate.net/publication/292630230_Genesis_and_characteristics_of_the_western_part_of_the_Yarlung_Zangbo_ophiolites_Tibet
      [14] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [15] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4
      [16] Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354.doi: 10.1016/j.lithos.2015.11.026
      [17] Pullen, A., Kapp, P., DeCelles, P.G., et al., 2011.Cenozoic Anatexis and Exhumation of Tethyan Sequence Rocks in the Xiao Gurla Range, Southwest Tibet.Tectonophysics, 501(1-4):28-40.doi: 10.1016/j.tecto.2011.01.008
      [18] Quigley, M.C., Liangjun, Y., Gregory, C., et al., 2008.U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet.Tectonophysics, 446(1-4):97-113.doi: 10.1016/j.tecto.2007.11.004
      [19] Spencer, C.J., Harris, R.A., Dorais, M.J., 2012.Depositional Provenance of the Himalayan Metamorphic Core of Garhwal Region, India:Constrained by U-Pb and Hf Isotopes in Zircons.Gondwana Research, 22(1):26-35.doi: 10.1016/j.gr.2011.10.004
      [20] Sun, G.Y., Hu, X.M., 2012.Tectonic Affinity of Zhongba Terrane:Evidences from the Detrital Zircon Geochronology and Hf Isotopes.Acta Petrologica Sinica, 28(5):1635-1646(in Chinese with English abstract).
      [21] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalt:Implication for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins.Geological Society, Special Publications, London, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [22] Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262.doi: 10.1016/j.lithos.2012.07.011
      [23] Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract). https://www.researchgate.net/publication/305417406_Geochronology_and_formation_mechanism_of_the_Paiku_granite_in_the_northern_himalaya_and_its_tectonic_implications
      [24] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf
      [25] Xie, C.M., Li, C., Su, L., et al., 2010.LA-ICP-MS U-Pb Dating of Zircon from Granite-Gneiss in the Amdo Area, Northern Tibet, China.Geological Bulletin of China, 29(12):1737-1744(in Chinese with English abstract). https://www.researchgate.net/publication/283929193_LA-ICP-MS_U-Pb_dating_of_zircon_from_granite-gneiss_in_the_Amdo_area_northern_Tibet_China
      [26] Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12(in Chinese with English abstract). http://www.oalib.com/paper/1472238
      [27] Zhang, S.Z., Li, F.Q., Li, Y., et al., 2014.Early Ordovician Strongly Peraluminous Granite in the Middle Section of the Yarlung Zangbo Junction Zone and Its Geological Significance.Science China:Earth Sciences, 57(4):630-643.doi: 10.1007/s11430-013-4721-3
      [28] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137.doi: 10.1016/j.gr.2011.02.002
      [29] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308.doi: 10.1016/j.chemgeo.2011.12.024
      [30] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384
      [31] 董昕, 张泽明, 2015.青藏高原东南部寒武纪花岗岩类:岩石学和锆石Hf同位素研究.岩石学报, 31(5):1183-1199. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505001.htm
      [32] 苟正彬, 张泽明, 董昕, 等, 2015.藏南亚东地区早古生代花岗质片麻岩的成因与构造意义.岩石学报, 31(12):3674-3686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512012.htm
      [33] 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303003.htm
      [34] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展:冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001
      [35] 李才, 翟庆国, 董永胜, 等, 2008.冈瓦纳大陆北缘早期的洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩的依据.地质通报, 27(10):1605-1612. doi: 10.3969/j.issn.1671-2552.2008.10.003
      [36] 李祥辉, 王成善, 李亚林, 等, 2014.仲巴微地体之定义及构成.地质学报, 88(8):1372-1381. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm
      [37] 刘飞, 杨经绥, 连东洋, 等, 2015.西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨.岩石学报, 31(12):3609-3628. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htm
      [38] 孙高远, 胡修棉, 2012.仲巴地体的板块亲缘性:来自碎屑锆石U-Pb年代学和Hf同位素的证据.岩石学报, 28(5):1635-1646. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm
      [39] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. doi: 10.11764/j.issn.1672-1926.2016.06.0982
      [40] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [41] 解超明, 李才, 苏黎, 等, 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年.地质通报, 29(12):1737-1744. doi: 10.3969/j.issn.1671-2552.2010.12.002
      [42] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501001.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  4342
    • HTML全文浏览量:  1752
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-30
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回