Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China
-
摘要: 为确定中国三江成矿带北段尕龙格玛VMS(volcanogenic massive sulfide)型矿床的成矿物理化学条件、成矿物质来源、成矿流体来源,探讨成矿机制,对矿体特征、流体包裹体显微测温和激光拉曼光谱分析以及S、Pb、H、O同位素进行了系统研究.矿体赋存于晚三叠世巴塘群英安质火山岩中,具有VMS型矿床的双层结构,由下部热液流体补给通道相的脉状-网脉状矿化系统和上部海底盆地卤水池喷气-化学沉积系统组成.通道相中流体包裹体可分为富气相包裹体和水溶液包裹体,均一温度为175.6~263.3 ℃,盐度为1.05%~6.29% NaCl eqv.,密度为0.820~0.935 g/cm3,激光拉曼光谱分析包裹体气相成分为H2O、CO2和少量N2;沉积相重晶石中仅发育水溶液包裹体,均一温度为105.2~157.1 ℃,盐度为0.18%~5.55% NaCl eqv.,密度为0.735~1.173 g/cm3,显示了流体由通道相向沉积相温度显著降低,盐度保持不变,密度变大的趋势,与典型VMS型矿床流体特征相似.氢氧同位素(δ18OH2O:0.25‰~1.75‰,δD:-103.2‰~-65.3‰)研究表明,成矿流体主要来源于岩浆水和海水的混合.综合分析前人硫同位素研究结果(δ34S:1.13‰~2.45‰,12.36‰~12.37‰)及本次获得硫同位素结果(δ34S:-22.9‰~-14.7‰)表明硫来源于岩浆和细菌还原的海水硫酸盐或基底岩石.硫化物方铅矿的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.449~18.519、15.699~15.777和38.875~39.141,具有高放射性铅的特征,μ值为9.65~9.80,结果显示Pb等成矿物质主要来自于上地壳,并有岩浆物质参与成矿.成矿流体与海水的混合作用是尕龙格玛矿床形成的主要机制.Abstract: In order to determine the metallogenic physicochemical condition, ore-forming materials, ore-forming fluid and metallogenic mechanism of Galonggema VMS (volcanogenic massive sulfide) deposit in the northern Sanjiang metallogenic belt, China, orebody features, fluid inclusion microthermometry, laser Raman spectroscopy, and S, Pb, H, O isotopes are studied in this paper. It is found that deposit is hosted in the Late Triassic Batang Group dacite-volcanic tuff and consists of two parts, namely, lower ore belt of vein-stockwork mineralization system belonging to hydrothermal fluid supply channel, and upper ore belt of exhalative-chemical deposit system of submarine basin brine pond. Fluid inclusions (FIs) in vein-stockwork mineralization are both aqueous and gas-rich, homogenization temperature from 175.6 to 263.3 ℃, and salinities of 1.05%-6.29% NaCl equivalent (eqv.) and densities of 0.820-0.935 g/cm3. Laser Raman spectroscopic analyses of the gas phase components of FIs show they are dominated by H2O, CO2 and minor amounts of N2. Fluid inclusions in barite in exhalative-chemical deposit system are only aqueous FIs, homogenization temperature from 105.2 to 157.1 ℃, and salinities of 0.18%-5.55% NaCl eqv. and densities of 0.735-1.173 g/cm3 suggesting from lower ore belt to upper ore belt metallogenic temperature drops, salinities does not change, and the density of fluid increases. Hydrogen and oxygen isotopic study (δ18OH2O: 0.25‰-1.75‰, δD: -103.2‰ to -65.3‰) shows that metallogenic fluid is a mixture of seawater and magmatic water. The predecessors research results of sulfur isotope previous research indicates that the sulfur were provided by magma and bacteria reduction seawater sulfate or basement rock. Lead isotopic compositions of galena show 206Pb/204Pb ratios ranging from 18.449 to 18.519, 207Pb/204Pb ratios from 15.677 to 15.777, and 208Pb/204Pb ratios from 38.875 to 39.145, respectively. Lead isotopes has high radioactive lead isotope compositions with μ values of 9.65~9.80. It suggests that the lead mainly was sourced from crustal components and little from magma. The mixing of ore-forming fluid and seawater is the main metallogenic mechanism of Galonggema deposit.
-
Key words:
- Sanjiang metallogenic belt /
- Galonggema /
- ore-forming fluid /
- deposit /
- S isotope /
- Pb isotope /
- H, O isotopes /
- petrology
-
图 1 中国三江成矿带北段大地构造位置略图
据Yin and Harrison(2000);Spurlin et al.(2005)修改
Fig. 1. Simplified geological map of the northern Sanjiang metallogenic belt in China showing major structures
图 5 尕龙格玛铜多金属矿床主要矿石矿物特征及显微照片
a, b.重晶石中条带状硫化物矿石;c, d.2号矿体中沉积相中块状硫化物矿石;e, f.通道相石英硫化物脉穿切如沉积相块状矿石中;g.重晶石层中条带状矿石中黄铜矿和方铅矿,正交偏光;h.沉积相中块状硫化物矿石草莓状黄铁矿,正交偏光;i.沉积相中,黄铜矿沿黄铁矿裂隙分布,正交偏光;j.沉积相块状矿石中,黄铜矿、方铅矿、闪锌矿交代草莓状黄铁矿,正交偏光;k.沉积相块状矿石中方铅矿、闪锌矿、黄铜矿共生,固溶体分离结构,正交偏光;l.沉积相浸染状矿石中方铅矿交代闪锌矿;m.通道相矿石中的黄铜矿脉;n.沉积相中黝铜矿包裹闪锌矿,正交偏光;o.通道相中黝铜矿与黄铜矿共同产出,正交偏光;Py.黄铁矿;Ccp.黄铜矿;Gn.方铅矿;Sp.闪锌矿;Thr.黝铜矿;Brt.重晶石;Qtz.石英
Fig. 5. Representative photograph of ores from the Galonggema deposit
图 9 尕龙格玛铜多金属及邻区热液矿床δD-δ18OH2O图解
底图据Taylor(1974);西藏地区雨水、地表水和湖水数据郑淑蕙等(1982);大屏掌数据钟宏等(2000);鲁春数据杨喜安(2012);呷村数据党院等(2014);SMOW.标准平均大洋水
Fig. 9. δD-δ18OH2O diagram of the Galonggema deposit
图 10 青海三江成矿带典型热液矿床硫化物中δ34S分布
大屏掌钟宏等(2000);伊比利亚黄铁矿带引自Tornos et al.(2008);阿尔泰成矿带引自Wan et al.(2010);尕龙格玛部分数据引自郑宗学,2010.《治多多彩地区铜多金属矿普查阶段性总结》报告.青海;东莫扎抓田世洪等(2011a);莫海拉亨田世洪等(2011b);鲁村杨喜安等(2012);呷村党院等(2014);多日茸、查涌、撒纳龙哇引自于作者未发表数据
Fig. 10. Distribution range of sulfur isotope data in the Galonggema deposit
图 11 尕龙格玛矿床硫化物铅同位素组成
底图据Zartman and Doe(1981);呷村数据朱维光等(2001);鲁春数据杨喜安等(2012);UC.上地壳;O.造山带;M.地幔;LC.下地壳
Fig. 11. Lead isotopic compositions of sulfides in the Galonggema deposit
表 1 矿床流体包裹体显微测温结果及参数
Table 1. Microther mometric data and relative parameters of fluid inclusions of the Galonggema deposit
矿石类型 包体类型 大小(μm) 气液比(%) 冰点温度Ti(℃) 均一温度Th(℃) S(%NaCl) ρ(g/cm3) 通道相 V型 6~12 60~90 -1.6~-0.6 241.7~263.3(9) 1.05~2.73 0.820~0.882 通道相 L-V型 4~20 5~30 -3.9~-1.2 175.6~259.8(67) 2.06~6.29 0.838~0.935 沉积相 L-V型 4~10 5~20 -3.4~-0.1 105.2~157.1(34) 0.18~5.55 0.735~1.173 注:括号内数字为流体包裹体个数. 表 2 尕龙格玛铜多金属矿床主成矿阶段石英中氢、氧同位素组成
Table 2. Hydrogen and oxygen isotope compositions of the Galonggema deposit
样品号 δDV-SMOW(‰) δ18OV-SMOW(‰) 计算温度(℃) δ18OH2O(‰) GLGM-CK-B1 -65.9 10.7 250 1.75 GLGM-CK-B2 -65.3 9.2 250 0.25 GLGM-KSD-W6 -103.2 9.4 250 0.45 GLGM-KSD-B10 -93.3 9.9 250 0.95 表 3 尕龙格玛铜多金属矿床硫同位素结果
Table 3. Sulphur isotopic compositions of the Galonggema deposit
样品编号 测试矿物 δ34SV-CDT(‰) GLGM-CK-B2 黄铜矿 -16.6 GLGM-CK-B3 黄铜矿 -17.2 GLGM-CK-B4 黄铁矿 -14.7 GLGM-KSD-B1 黄铁矿 -15.4 GLGM-KSD-B1 方铅矿 -19.7 GLGM-KSD-B2 方铅矿 -22.9 GLGM-KSD-B5 黄铁矿 -16.4 表 4 尕龙格玛铜多金属矿床铅同位素结果
Table 4. Lead isotopic compositions of the Galonggema deposit
样品号 样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ GLGM-CK-B2 方铅矿 18.519 15.777 39.141 9.80 GLGM-CK-B3 方铅矿 18.500 15.755 39.065 9.76 GLGM-KSD-B1 方铅矿 18.449 15.699 38.875 9.65 GLGM-KSD-B2 方铅矿 18.464 15.720 38.949 9.69 GLGM-KSD-B5 方铅矿 18.497 15.763 39.091 9.78 注:μ=238U/204Pb. -
[1] Bai, Y.S., Zhu, Z.J., Duan, Q.F., et al., 2014.Geochemical Characteristics and Its Tectonic Significance of Upper Triassic Batang Group Volcano Rocks in Zhahe Area, Zhiduo County, Southern Qinghai Province.Geology and Mineral Resources of South China, 30(4):319-327 (in Chinese with English abstract). [2] Barrie, T.C., Amelin, Y., Pascual, E., 2002.U-Pb Geochronology of VMS Mineralization in the Iberian Pyrite Belt.Mineralium Deposita, 37(8):684-703.doi: 10.1007/s00126-002-0302-7 [3] Bodnar, R.J., 1983.A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids.Economic Geology, 78(3):535-542.doi: 10.2113/gsecongeo.78.3.535 [4] Bozkaya, G., 2011.Sulphur-and Lead-Isotope Geochemistry of the Arapuçandere Lead-Zinc-Copper Deposit, Biga Peninsula, Northwest Turkey.International Geology Review, 53(1):116-129.doi: 10.1080/00206810902945090 [5] Calagari, A.A., 2003.Stable Isotope (S, O, H and C) Studies of the Phyllic and Potassic-Phyllic Alteration Zones of the Porphyry Copper Deposit at Sungun, East Azarbaidjan, Iran.Journal of Asian Earth Sciences, 21(7):767-780.doi: 10.1016/s1367-9120(02)00083-4 [6] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water.Journal of Geophysical Research, 77(17):3057-3067.doi: 10.1029/jb077i017p03057 [7] Dang, Y., Chen, M.H., Mao, J.W., et al., 2014.Geochemistry of Ore-Forming Fluid of Gacun-Youre Ore District in Baiyu County, Sichuan Province.Acta Petrologica Sinica, 30(1):221-236(in Chinese with English abstract). https://www.researchgate.net/publication/299238361_Composition_characteristics_of_rare_earth_elements_in_metallogenetic_fluid_of_the_Gacun_superlarge_Kuroko-type_deposit [8] Giesemann, A., Jaeger, H.J., Norman, A.L., et al., 1994.Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer.Analytical Chemistry, 66(18):2816-2819.doi: 10.1021/ac00090a005 [9] Goldfarb, R.J., 2004.The Late Cretaceous Donlin Creek Gold Deposit, Southwestern Alaska:Controls on Epizonal Ore Formation.Economic Geology, 99(4):643-671.doi: 10.2113/99.4.643 [10] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.doi: 10.2113/gsecongeo.83.1.197 [11] Haymon, R.M., Kastner, M., 1981.Hot Spring Deposits on the East Pacific Rise at 21°N:Preliminary Description of Mineralogy and Genesis.Earth and Planetary Science Letters, 53(3):363-381.doi: 10.1016/0012-821x(81)90041-8 [12] He, L.Q., Song, Y.C., Chen, K.X., et al., 2009.Thrust-Controlled, Sediment-Hosted, Himalayan Zn-Pb-Cu-Ag Deposits in the Lanping Foreland Fold Belt, Eastern Margin of Tibetan Plateau.Ore Geology Reviews, 36(1-3):106-132.doi: 10.1016/j.oregeorev.2008.11.001 [13] Herzig, P.M., Hannington, M.D., Fouquet, Y., et al., 1993.Gold-Rich Polymetallic Sulfides from the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific.Economic Geology, 88(8):2182-2209.doi: 10.2113/gsecongeo.88.8.2182 [14] Hou, Z.Q., 1991.Ore Fluid Chemistry, Thermal Evolution History and Ore-Forming Process of the Gacun Kuroko Type Polymetallic Deposit in Western Sichuan.Mineral Deposits, 10(4):313-324 (in Chinese with English abstract). [15] Hou, Z.Q., Song, Y.C., Li, Z., et al., 2008.Thrust-Controlled, Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt:Geological Features and Tectonic Model.Mineral Deposits, 27(2):123-144 (in Chinese with English abstract). https://www.researchgate.net/publication/284823304_Thrust-controlled_sediments-hosted_Pb-Zn-Ag-Cu_deposits_in_eastern_and_northern_margins_of_Tibetan_orogenic_belt_geological_features_and_tectonic_model [16] Hou, Z.Q., Yang, Z.S, Xu, W.Y., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract). [17] Huston, D.L., Brauhart, C.W., Drieberg, S.L., et al., 2001.Metal Leaching and Inorganic Sulfate Reduction in Volcanic-Hosted Massive Sulfide Mineral Systems:Evidence from the Paleo-Archean Panorama District, Western Australia.Geology, 29(8):687-690.doi:10.1130/0091-7613(2001)029 <0687:mlaisr>2.0.co;2 [18] Ishihara, S., 1974.Geology of Kuroko Deposits.Mining Geology Special Issue, 6:1-435. [19] Ishikawa, H., Kuroda, R., Sudo, T., 1962.Minor Elements in Some Altered Zones of "Kuroko" (Black Ore) Deposits in Japan.Economic Geology, 57(5):785-798.doi: 10.2113/gsecongeo.57.5.785 [20] Jia, Q.Z., 1996.Geological Characteristics and Metallogenic Environment of the Ashele Volcanogenic Massive Sulfide Deposit, Xinjiang.Mineral Deposits, 15(3):267-277(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ603.008.htm [21] Kelley, K.D., 2004.Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska:Implications for Ore Formation.Economic Geology, 99(7):1509-1532.doi: 10.2113/99.7.1509 [22] Large, R.R., McPhie, J., Gemmell, J.B., et al., 2001.The Spectrum of Ore Deposit Types, Volcanic Environments, Alteration Halos, and Related Exploration Vectors in Submarine Volcanic Successions:Some Examples from Australia.Economic Geology, 96(5):913-938.doi: 10.2113/gsecongeo.96.5.913 [23] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing, 168-169 (in Chinese). [24] McNaughton, N.J., Groves, D.I., 1996.A Review of Pb-Isotope Constraints on the Genesis of Lode-Gold Deposits in the Yilgarn Craton, Western Australia.J.R.Soc.West. Aust., 79(1):123-129. https://www.researchgate.net/publication/289258251_A_review_of_Pb-isotope_constraints_on_the_genesis_of_lode-gold_deposits_in_the_Yilgarn_Craton_Western_Australia [25] Mortensen, J.K., Craw, D., MacKenzie, D.J., et al., 2010.Age and Origin of Orogenic Gold Mineralization in the Otago Schist Belt, South Island, New Zealand:Constraints from Lead Isotope and 40Ar/39Ar Dating Studies.Economic Geology, 105(4):777-793.doi: 10.2113/gsecongeo.105.4.777 [26] Mortensen, J.K., Hall, B.V., Bissig, T., et al., 2008.Age and Paleotectonic Setting of Volcanogenic Massive Sulfide Deposits in the Guerrero Terrane of Central Mexico:Constraints from U-Pb Age and Pb Isotope Studies.Economic Geology, 103(1):117-140.doi: 10.2113/gsecongeo.103.1.117 [27] Ohmoto, H., 1986.Stable Isotope Geochemistry of Ore Deposits.Reviews in Mineralogy and Geochemistry, 16(1):491-559. [28] Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Netherlands, Germany.doi: 10.1007/978-1-4020-8613-7 [29] Rye, R.O., 1993.The Evolution of Magmatic Fluids in the Epithermal Environment:The Stable Isotope Perspective.Economic Geology, 88(3):733-752.doi: 10.2113/gsecongeo.88.3.733 [30] Rye, R.O., Roberts, R.J., Snyder, W.S., et al., 1984.Textural and Stable Isotope Studies of the Big Mike Cupriferous Volcanogenic Massive Sulfide Deposit, Pershing County, Nevada.Economic Geology, 79(1):124-140.doi: 10.2113/gsecongeo.79.1.124 [31] Spurlin, M.S., Yin, A., Horton, B.K., et al., 2005.Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity, East-Central Tibet.Geological Society of America Bulletin, 117(9):1293-1317.doi: 10.1130/b25572.1 [32] Sun, H.S., Wu, G.B., Liu, L., et al., 2011.Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits.Earth Science, 36(2):299-306(in Chinese with English abstract). https://www.researchgate.net/publication/282174415_Research_advances_in_metallogenic_tectonic_environment_of_massive_sulfide_deposits [33] Tang, J.X., Wang, C.H., Qu, W.J., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Yulong Porphyry Copper-Molybdenum Deposit in Tibet and Its Metallogenic Significance.Rock and Mineral Analysis, 28(3):215-218(in Chinese with English abstract). https://www.researchgate.net/publication/284603626_Re-Os_isotopic_dating_of_molybdenite_from_the_Yulong_porphyry_copper-molybdenum_deposit_in_Tibet_and_its_metallogenic_significance [34] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843 [35] Thomas, H.V., Large, R.R., Bull, S.W., et al., 2011.Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia:Insights for Ore Genesis.Economic Geology, 106(1):1-31.doi: 10.2113/econgeo.106.1.1 [36] Tian, S.H., Yang, Z.S., Hou, Z.Q., et al., 2009.Rb-Sr and Sm-Nd Isochron Ages of Dongmozhazhua and Mohailaheng Pb-Zn Ore Deposits in Yushu Area, Southern Qinghai and Their Geological Implications.Mineral Deposits, 28(6):747-758(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200906003.htm [37] Tian, S.H., Yang, Z.S., Hou, Z.Q., et al., 2011a.Sulfnr, Lead, Strontium and Neodymium Isotope Compositions of the Dongmozhazhua Lead-Zinc Ore Deposit in the Yushu Area, Southern Qinghai:Implications for the Sources of Ore-Forming Material in the Deposit.Acta Petrologica Sinica, 27(7):2173-2183(in Chinese with English abstract). [38] Tian, S.H., Hou, Z.Q., Yang, Z.S., et al., 2011b.Sulfur, Lead, Strontium and Neodymium Isotope Compositions of the Mohailaheng Lead-Zinc Ore Deposit in the Yushu Area, Southern Qinghai:Implications for the Sources of Ore-Forming Material in the Deposit and Comparison with Those of Dongmozhazhua Lead-Zinc Ore Deposit.Acta Petrologica Sinica, 27(9):2709-2720 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110919&journal_id=ysxb [39] Tornos, F., Solomon, M., Conde, C., et al., 2008.Formation of the Tharsis Massive Sulfide Deposit, Iberian Pyrite Belt:Geological, Lithogeochemical, and Stable Isotope Evidence for Deposition in a Brine Pool.Economic Geology, 103(1):185-214.doi: 10.2113/gsecongeo.103.1.185 [40] Ulrich, T., Golding, S.D., Kamber, B.S., et al., 2003.Different Mineralization Styles in a Volcanic-Hosted Ore Deposit:The Fluid and Isotopic Signatures of the Mt Morgan Au-Cu Deposit, Australia.Ore Geology Reviews, 22(1-2):61-90.doi: 10.1016/s0169-1368(02)00109-9 [41] Urabe, T., Sato, T., 1978.Kuroko Deposits of the Kosaka Mine, Northeast Honshu, Japan:Products of Submarine Hot Springs on Miocene Sea Floor.Economic Geology, 73(2):161-179.doi: 10.2113/gsecongeo.73.2.161 [42] Uyeda, S., Kanamori, H., 1979.Back-Arc Opening and the Mode of Subduction.Journal of Geophysical Research, 84(B3):1049-1061.doi: 10.1029/jb084ib03p01049 [43] Visut, P.A., Hiroshi, O., 1983.Thermal History, and Chemical and Isotopic Compositions of the Ore-Forming Fluids Responsible for the Kuriko Massive Sulfide Deposits in the Hokuroku District of Japan.Economic Geology(Monograph), (5):523-558. [44] Wan, B., Zhang, L.C., Xiao, W.J., 2010.Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb-Zn Deposit, Southern Altai Metallogenic Belt, NW China.Ore Geology Reviews, 37(2):114-126.doi: 10.1016/j.oregeorev.2010.01.002 [45] Wu, B.J., 2013.Metallogenic Conditions and Genesis of the Galonggema Cu-Polymetal Deposit, Qinghai Province(Disstertation).Central South University, Changsha (in Chinese with English abstract). [46] Wu, B.J., Lai, J.Q., Zheng, Z.X., et al., 2013.Characteristics of Volcanic Rocks from Galonggema Cu-Zn Polymetallic Mining Area.Mineral Resources and Geology, 27(4):283-291 (in Chinese with English abstract). [47] Xin, T.G., Zhao, S.Q., Yang, W.L., et al., 2014.Geology and Assessment of Prospecting Potential of Galonggema Copper-Polymetallic Deposit in the South of Qinghai Province.Geological Science and Technology Information, 33(3):145-153(in Chinese with English abstract). [48] Yang, X.A., Liu, J.J., Han, S.Y., et al., 2012.S, Pb, H, O Isotopic Characteristics of the Luchun Cu-Pb-Zn Deposit, Deqin County, Yunnan and Geological Implications.Geochimica, 41(3):240-249(in Chinese with English abstract). [49] Yao, F.L., Sun, F.Y., 2006.Deposits Tutorial.Geological Publishing House, Beijing (in Chinese). [50] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211 [51] Yoshida, T., 1979.Fluid Inclusion Study and Ore Forming Process of the Iwami Deposit, Shimane Prefecture, Japan.Mining Geol., 29(153):21-31.doi: 10.11456/shigenchishitsu1951.29.21 [52] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics—The Model.Tectonophysics, 75(1-2):135-162. doi: 10.1016/0040-1951(81)90213-4 [53] Zaw, K., Hunns, S.R., Large, R.R., et al., 2003.Microthermometry and Chemical Composition of Fluid Inclusions from the Mt Chalmers Volcanic-Hosted Massive Sulfide Deposits, Central Queensland, Australia:Implications for Ore Genesis.Chemical Geology, 194(1-3):225-244.doi: 10.1016/s0009-2541(02)00279-6 [54] Zhang, L.G., 1992.Present Status and Aspects of Lead Isotope Geology.Geol.Prospect., 28:21-29. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199204004.htm [55] Zhang, Y.J., Sun, F.Y., Li, B.L., et al., 2014.Ore Textures and Remobilization Mechanisms of the Hongtoushan Copper-Zinc Deposit, Liaoning, China.Ore Geology Reviews, 57:78-86.doi: 10.1016/j.oregeorev.2013.09.006 [56] Zhao, K.D., Jiang, S.Y., Ni, P., et al., 2006.Sulfur, Lead and Helium Isotopic Compositions of Sulfide Minerals from the Dachang Sn-Polymetallic Ore District in South China:Implication for Ore Genesis.Mineralogy and Petrology, 89(3-4):251-273.doi: 10.1007/s00710-006-0148-2 [57] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Scince, 40(1):61-76(in Chinese with English abstract). https://www.researchgate.net/publication/281940790_Petrogenesis_and_geodynamic_setting_of_late_Triassic_quartz_diorites_in_Zhiduo_area_Qinghai_Province [58] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang.Acta Scicentiarum Naturalum Universitis Pekinesis, 18(1):99-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198201010.htm [59] Zheng, Y.F., Chen, J.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese). [60] Zheng, Z.X., Wang, X.C., Qin, Z.L., 2012.Study of the Geological Characteristics and Melallogenetic Model of Galonggema Copper Polymetallic Deposit, Qinghai Province.Gold Science and Technology, 20(1):66-70(in Chinese with English abstract). [61] Zhong, H., Hu, R.Z., Ye, Z.J., 2000.Sulfur, Lead, Hydrogen and Oxygen Isotopic Geochemistry of the Dapingzhang Copper-Polymetallic Deposit, Yunnan Province.Geochimica, 29(2):136-142 (in Chinese with English abstract). [62] Zhu, W.G., Li, C.Y., Deng, H.L., 2001.Sulfur and Lead Isotope Geochemistry of the Xiacun Silver-Polymetallic Ore Deposit in Sichuan Province.Acta Mineralogica Sinica, 21(2):219-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200102019.htm [63] 白云山, 牛志军, 段其发, 等, 2014.青海南部治多县扎河一带上三叠统巴塘群火山岩特征及其构造环境.华南地质与矿床, 30(4):319-327. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201404003.htm [64] 党院, 陈懋弘, 毛景文, 等, 2014.四川省白玉县呷村-有热矿区成矿流体地球化学.岩石学报, 30(1):221-236. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401017.htm [65] 侯增谦, 1991.川西哩村黑矿型多金属矿床成矿流体化学和热演化历史与成矿过程.矿床地质, 10(4):313-324. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199104003.htm [66] 侯增谦, 宋玉财, 李政, 等, 2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质, 27(2):421-441. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802002.htm [67] 侯增谦, 杨竹森, 徐文艺, 等, 2006.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [68] 贾群子, 1996.新疆阿舍勒块状硫化物矿床成矿特征及形成环境.矿床地质, 15(3):267-277. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ603.008.htm [69] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社, 168-169. [70] 孙华山, 吴冠斌, 刘浏, 等, 2011.块状硫化物矿床成矿构造环境研究进展.地球科学, 36(2):299-306. http://www.earth-science.net/WebPage/Article.aspx?id=2093 [71] 唐菊兴, 王成辉, 屈文俊, 等, 2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义.岩矿测试, 28(3):215-218. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903008.htm [72] 田世洪, 杨竹森, 侯增谦, 等, 2009.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义.矿床地质, 28(6):747-758. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906003.htm [73] 田世洪, 杨竹森, 侯增谦, 等, 2011a.青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示.岩石学报, 27(7):2173-2183 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107026.htm [74] 田世洪, 侯增谦, 杨竹森, 等, 2011b.青海玉树莫海拉亨铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示——兼与东莫扎抓铅锌矿床的对比.岩石学报, 27(9):2709-2720. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109020.htm [75] 吴碧娟, 2013. 青海尕龙格玛铜多金属矿成矿条件与矿床成因研究(学位论文). 长沙: 中南大学. [76] 吴碧娟, 赖健清, 郑宗学, 等, 2013.尕龙格玛铜锌多金属矿区火山岩特征.矿产与地质, 27(4):283-291. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201304004.htm [77] 辛天贵, 赵少卿, 杨文龙, 等, 2014.青海南部尕龙格玛铜多金属矿床地质特征及找矿潜力评价.地质科技情报, 33(3):145-153. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403021.htm [78] 杨喜安, 刘家军, 韩思宇, 等, 2012.云南德钦鲁春铜铅锌矿床硫铅氢氧同位素特征及地质意义.地球化学, 41(3):240-249. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201203006.htm [79] 姚凤良, 孙丰月, 2006.矿床学教程.北京:地质出版社. [80] 郑淑蕙, 张知非, 倪葆龄, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报(自然科学版), 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm [81] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社. [82] 郑宗学, 王旭春, 覃泽礼, 2012.青海尕龙格玛铜多金属矿床地质特征及成矿模式研究.黄金科学技术, 20(1):66-70. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201201022.htm [83] 钟宏, 胡瑞忠, 叶造军, 2000.云南大平掌铜多金属矿床硫、铅、氢、氧同位素地球化学.地球化学, 29(2):136-142. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200002004.htm [84] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1):61-76. http://www.earth-science.net/WebPage/Article.aspx?id=3025 [85] 朱维光, 李朝阳, 邓海琳, 2001.四川西部呷村银多金属矿床硫铅同位素地球化学.矿物学报, 21(2):219-224. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200102019.htm