• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景

    赵菲菲 孙丰月 刘金龙

    赵菲菲, 孙丰月, 刘金龙, 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927-940. doi: 10.3799/dqkx.2017.073
    引用本文: 赵菲菲, 孙丰月, 刘金龙, 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927-940. doi: 10.3799/dqkx.2017.073
    Zhao Feifei, Sun Fengyue, Liu Jinlong, 2017. Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting. Earth Science, 42(6): 927-940. doi: 10.3799/dqkx.2017.073
    Citation: Zhao Feifei, Sun Fengyue, Liu Jinlong, 2017. Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting. Earth Science, 42(6): 927-940. doi: 10.3799/dqkx.2017.073

    东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景

    doi: 10.3799/dqkx.2017.073
    基金项目: 

    中国地质调查局地质大调查项目 12120111086020

    详细信息
      作者简介:

      赵菲菲(1982-),男,博士研究生,主要从事矿床学研究.ORCID:0000-0003-4133-6718.E-mail:terry__xp@163.com

      通讯作者:

      孙丰月,E-mail:sfy@jlu.edu.cn

    • 中图分类号: P581

    Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting

    • 摘要: 为确定东昆仑马尼特地区片麻状花岗闪长岩的形成时代、源区性质和构造背景,对其进行了锆石U-Pb年代学、地球化学和锆石Hf同位素研究.本次测试的片麻状花岗闪长岩锆石LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry) U-Pb加权平均年龄为495.6±1.1 Ma(MSWD=0.13),属于晚寒武世.马尼特片麻状花岗闪长岩SiO2含量为61.47%~63.99%,Na2O、K2O和CaO含量分别为2.91%~3.64%、0.93%~2.31%和4.29%~6.52%,全碱ALK=3.92%~5.69%,铝饱和指数A/CNK=0.83~0.97,属准铝质钙碱性系列岩石.岩石具有富集大离子亲石元素(Rb、K)和不相容元素(Th、U),相对亏损Nb、Ta、Zr、Ti高场强元素的特征,Nb/Ta、La/Nb、Th/Nb、Th/La等比值显示出岩石具有壳源特征.岩石具有高的εHf(t)值(12.2~15.0),Hf两阶段模式年龄在506~662 Ma范围内,其岩浆源区初始物质主要来源于新生地壳.岩石在微量元素Rb-(Y+Nb)构造判别图落入火山弧花岗岩区域,在R1-R2构造判别图落入板块碰撞前消减区花岗岩区域.结合岩石成岩年龄、地球化学特征以及区域构造演化,推测其应形成于原特提斯洋俯冲的构造环境,属于大洋洋壳向南俯冲的产物,即柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.

       

    • 图  1  马尼特地区地质简图

      1.第四系;2.中二叠世马尔争组板岩、千枚岩;3.中二叠世马尔争组砂岩、砾岩;4.华力西期花岗闪长岩;5.华力西期闪长玢岩脉;6.片麻状花岗闪长岩;7.正断层/逆断层;8.构造蚀变破碎带;9.研究区位置;10.岩体位置及取样位置;据青海省第三地质矿产勘查院,2013.青海省都兰县马尼特地区金矿普查2012年工作总结及2013年工作安排.青海

      Fig.  1.  The sketch geological map of the Manite area

      图  2  马尼特片麻状花岗闪长岩显微照片

      a.片麻状花岗闪长岩中定向的角闪石(单偏光);b.片麻状花岗闪长岩中角闪石的简单双晶及闪石式解理、石英、斜长石的聚片双晶(正交偏光).矿物代号缩写:Qtz.石英,Pl.斜长石,Hbl.角闪石,Al.碱性长石

      Fig.  2.  The micrographs of the Manite gneissic granodiorite

      图  3  马尼特片麻状花岗闪长岩锆石阴极发光图像

      Fig.  3.  Cathodoluminescence images of analyzed zircons of the Manite gneissic granodiorite

      图  4  马尼特片麻状花岗闪长岩锆石U-Pb年龄谐和图

      Fig.  4.  U-Pb concordia ages of the Manite gneissic granodiorite

      图  5  马尼特片麻状花岗闪长岩TAS、SiO2-K2O和A/CNK-A/NK

      a.据Irvine and Baragar(1971);b.据Peccerillo and Taylor(1976);c.据Maniar and Piccoli(1989)

      Fig.  5.  Total alkali versus SiO2, SiO2 versus K2O and A/CNK versus A/NK diagrams for the Manite gneissic granodiorite

      图  6  马尼特片麻状花岗闪长岩稀土元素配分模式和微量元素蛛网图

      a.球粒陨石值据Boynton(1984);b.原始地幔值据Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns for the Manite gneissic granodiorite

      图  7  马尼特片麻状花岗闪长岩锆石的εHf(t)-t图解

      Yang et al.(2006)

      Fig.  7.  εHf(t) versus t diagram of the Manite gneissic granodiorite

      图  8  马尼特片麻状闪长岩构造环境判别图解

      a.据Harris et al.(1986);b.据Pearce(1996)

      Fig.  8.  Tectonic setting discrimination diagrams of the Manite gneissic granodiorite

      图  9  柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减

      Sun et al.(2003)

      Fig.  9.  The crust between the Qaidam massif and Wanbaogou oceanic plateau occurred bidirectional subduction to the south and the north

      表  1  马尼特片麻状花岗闪长岩锆石LA-MC-ICP-MS U-Pb同位素定年数据

      Table  1.   LA-MC-ICP-MS zircon U-Pb isotope dating results of the Manite gneissic granodiorite

      测点号 质量百分含量(10-6) Th/U 同位素比率 同位素年龄(Ma)
      PbThU 207Pb/206Pb1σ207Pb/235U1σ206Pb/238U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      MNT-N4-143.992.12750.330.056 80.002 00.626 60.021 30.079 50.000 848381494134935
      MNT-N4-288.1196.05150.380.056 70.003 20.633 20.032 50.080 30.001 0480131498204986
      MNT-N4-339.879.92760.290.057 10.001 80.622 90.019 20.079 00.000 849470492124905
      MNT-N4-441.079.53000.270.055 80.001 80.615 60.018 80.080 10.000 744377487124964
      MNT-N4-527.957.41830.310.054 30.002 40.621 00.028 50.082 10.001 038398490185096
      MNT-N4-639.078.32960.260.057 00.001 90.622 70.019 50.079 40.000 950072492124935
      MNT-N4-758.4122.03780.320.056 70.001 50.627 80.019 90.080 00.001 248061495124967
      MNT-N4-870.3151.04240.360.057 00.001 60.630 20.018 40.080 00.000 750060496114964
      MNT-N4-939.073.22720.270.056 90.001 90.626 60.021 00.079 80.000 848774494134955
      MNT-N4-1097.0230.05290.430.056 40.001 60.623 80.018 00.080 10.000 647832492114974
      MNT-N4-1143.798.13150.310.056 90.001 90.631 30.022 40.080 10.001 148777497144977
      MNT-N4-12111.0246.07510.330.056 90.001 40.630 10.016 00.080 00.000 948752496104965
      MNT-N4-1390.0210.05770.360.057 30.001 40.631 20.015 10.079 50.000 65025249794934
      MNT-N4-1465.6156.03360.470.057 10.001 70.631 00.018 90.079 80.000 749467497124954
      MNT-N4-15113.0279.05600.500.056 20.001 60.622 30.016 90.080 10.000 745763491114964
      MNT-N4-1653.7121.03140.390.056 50.002 00.624 40.021 50.080 00.000 947878493134965
      MNT-N4-1742.093.82330.400.057 10.002 30.630 20.024 70.079 70.000 849461496154945
      MNT-N4-1845.5113.02280.490.056 90.002 00.631 20.021 50.080 20.000 848778497134975
      MNT-N4-1959.2121.04350.280.057 30.001 60.630 80.017 50.079 30.000 950261497114925
      MNT-N4-2067.2142.04760.300.056 80.001 60.628 90.018 00.079 60.000 848361495114935
      注:测试单位和测试时间:中国地质大学(武汉)地质过程与矿产资源国家重点实验室,2014.
      下载: 导出CSV

      表  2  马尼特片麻状花岗闪长岩锆石Lu-Hf同位素组成

      Table  2.   Zircon Lu-Hf isotopic compositions of the Manite gneissic granodiorite

      测点号 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 2σ εHf(0) εHf(t) 2σ tDM1(Ma) tDM2(Ma) fLu/Hf
      MNT-N4-1 0.282 821 0.000 021 0.001 279 0.000 035 0.034 368 0.000 971 1.7 12.2 0.9 615 662 -0.96
      MNT-N4-20.282 8700.000 0260.001 3710.000 0160.035 8800.000 6753.513.91.0547567-0.96
      MNT-N4-30.282 8620.000 0200.001 0150.000 0470.025 6040.001 0543.213.80.9553576-0.97
      MNT-N4-40.282 8890.000 0330.001 1360.000 0210.029 4920.000 5544.214.71.3516524-0.97
      MNT-N4-50.282 8460.000 0340.000 9160.000 0370.024 8770.001 1242.613.21.3574605-0.97
      MNT-N4-60.282 8310.000 0230.000 9170.000 0190.023 1600.000 3162.112.71.0596636-0.97
      MNT-N4-70.282 8850.000 0250.001 1160.000 0260.028 9860.000 7374.014.51.0522533-0.97
      MNT-N4-80.282 8830.000 0250.001 1030.000 0260.028 3730.000 5583.914.51.0524536-0.97
      MNT-N4-90.282 8570.000 0240.001 1260.000 0090.028 8750.000 1583.013.61.0562587-0.97
      MNT-N4-100.282 8440.000 0170.001 7380.000 0390.043 3940.001 1242.512.90.8590625-0.95
      MNT-N4-110.282 8300.000 0250.001 0030.000 0050.025 5020.000 0802.012.61.0598639-0.97
      MNT-N4-120.282 8630.000 0280.001 0460.000 0240.026 5220.000 6983.213.81.1553575-0.97
      MNT-N4-130.282 8980.000 0340.001 0270.000 0500.025 4910.001 3834.415.01.3503506-0.97
      MNT-N4-140.282 8910.000 0280.001 3720.000 0410.038 0840.001 1234.214.71.1517525-0.96
      MNT-N4-15 0.282 898 0.000 037 0.002 090 0.000 049 0.057 525 0.000 655 4.4 14.7 1.4 517 525 -0.94
      下载: 导出CSV

      表  3  马尼特片麻状花岗闪长岩主量元素(%)、稀土元素及微量元素(10-6)分析结果

      Table  3.   Major(%), REE and trace (10-6) element compositions of the Manite gneissic granodiorite

      样号MNT-1MNT-2MNT-3MNT-4MNT-5MNT-6MNT-7
      SiO262.6461.6761.8063.2863.1961.4763.99
      TiO20.380.390.380.360.360.390.39
      Al2O315.5214.8414.9914.6414.7914.8115.37
      Fe2O36.397.367.226.566.427.285.96
      MnO0.160.160.150.140.140.150.14
      MgO2.713.603.553.123.403.642.04
      CaO4.676.286.045.875.386.524.29
      Na2O3.642.932.913.353.292.993.38
      K2O1.941.081.161.021.310.932.31
      P2O50.110.090.090.100.100.090.11
      LOI1.741.521.621.491.551.651.94
      Total99.999.9299.9199.9399.9399.9299.92
      K2O/Na2O0.530.370.400.300.400.310.68
      A/CNK0.930.850.880.850.890.830.97
      A/NK1.922.482.482.212.162.501.91
      K2O+Na2O5.584.014.074.374.603.925.69
      V140162161148143172123
      Cr31.062.157.450.965.062.613.5
      Cs1.0800.7960.8390.7571.0800.7261.20
      Ga11.509.9410.009.4910.509.869.97
      Hf1.271.221.241.261.391.091.15
      Rb73.924.529.227.842.420.477.6
      Sr268269282269292259234
      Zr32.525.732.328.635.624.030.3
      Nb3.372.632.853.133.632.732.93
      Ba598426464299385292626
      Ta0.320.270.250.290.300.260.27
      Th7.843.263.544.265.393.265.64
      U1.431.511.481.51.441.481.22
      Y13.611.911.711.112.11210.3
      La21.711.810.914.015.011.414.2
      Ce36.921.121.124.427.520.624.9
      Pr4.032.452.402.783.112.382.77
      Nd14.709.649.5110.5011.909.6910.10
      Sm2.832.022.132.062.512.061.96
      Eu0.770.580.530.530.640.590.61
      Gd2.912.092.192.282.782.101.85
      Tb0.470.400.350.420.410.340.32
      Dy2.472.092.091.952.262.161.75
      Ho0.520.440.440.400.460.430.36
      Er1.621.401.431.311.441.391.12
      Tm0.260.220.230.230.230.220.20
      Yb1.811.531.451.511.641.501.29
      Lu0.290.240.230.230.250.230.22
      δEu0.820.850.740.750.730.850.97
      ΣREE91.2755.9954.9862.6070.1355.0961.64
      LREE80.9347.5946.5754.2760.6546.7254.54
      HREE10.348.408.428.339.478.377.10
      LREE/HREE7.835.675.536.526.405.587.68
      (La/Yb)N8.085.205.076.256.175.127.42
      Rb/Sr0.280.090.100.100.150.080.33
      Rb/Nb21.939.3210.258.8811.687.4726.48
      Nb/Ta10.609.8511.2610.9812.1410.7110.89
      La/Nb6.444.493.824.474.134.184.85
      Th/Nb2.331.241.241.361.481.191.92
      Th/La0.360.280.320.300.360.290.40
      注:LOI.烧失量;A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;δEu=2×(Eu/0.0735)/(Gd/0.259+Sm/0.195);LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)N=(La/0.310)/(Yb/0.209).
      下载: 导出CSV
    • [1] A, C.Y., Wang Y.Z., Ren J.Q., et al.2003.Disintegration of the Wanbaogou Group and Discovery of Early Cambrian Strata in the East Kunlun Area.Geology in China, 30(2):199-206(in Chinese with English abstract). https://www.researchgate.net/publication/289805174_Geological_characteristics_and_evolution_of_the_Kunlun_Mountains_region_during_the_early_Paleozoic
      [2] Ameilin Y., Lee D.C., Halliday A.N.2000.Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircons Grains.Geochimica et Cosmochimica Acta, 64:4205-4225. doi: 10.1016/S0016-7037(00)00493-2
      [3] Andersen T.2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X
      [4] Bai Y.S., Chang G.H., Tan S.X., et al.2001.Study on the Features of Caledonian Intrusive Rocks in the Eastern Sector of East Kunlun.Qinghai Geology, 9(Suppl.):28-35(in Chinese with English abstract).
      [5] Belousova E.A., Griffin W.L., O'Reilly S.Y., et al.2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7
      [6] Bian Q.T., Luo X.Q., Chen H.H., et al.1999.Discovery of Early Paleozoic and Early Carboniferous-Early Permian Cophiolites in the A'nyemaqen Qinghai Province China.Scientia Geologica Sinica, 34(4):420-426(in Chinese with English abstract). https://www.researchgate.net/publication/293092779_Discovery_of_early_Paleozoic_and_early_Carboniferous-early_Permian_ophiolites_in_the_A%27nyemaqen_Qinghai_province_China
      [7] Boynton W.V.1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson P., ed., Rare Earth Element Geochemistry.Elsevier Amsterdam, 63-114. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1849732
      [8] Cao S.T., Liu X.K., Ma Y.S., et al.2011.Qimantage Area Silurian Intrusive Rocks and Its Geological Significance.Qinghai Science and Technology, 17(5):26-30(in Chinese).
      [9] Chen N.S., He L., Sun M., et al.2002.Early Paleozoic Metamorphic Peak Precisely Defined and Thrusting Tectonic Deformation Era in East Kunlun Orgen Belt.Chinese Science Bulletin, 47(8):628-631(in Chinese).
      [10] Chen Y.X., Pei X.Z., Li R.B., et al.2013.Zircon U-Pb Age Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group East Section of East Kunlun.Earth Science Frontiers, 20(6):240-254(in Chinese with English abstract). https://www.researchgate.net/publication/286176966_Zircon_U-Pb_age_geochemical_characteristics_and_tectonic_significance_of_meta-volcanic_rocks_from_Naij_Tal_Group_east_section_of_East_Kunlun
      [11] Cui M.H., Meng F.C., Wu X.K.2011.Early Ordovician Island Arc of Qimantag Mountain Eastern Kunlun:Evidences from Geochemistry Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Pertrologica Sinica, 27(11):3365-3379(in Chinese with English abstract).
      [12] Elhlou S., Belousova E., Griffin W.L.2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://www.researchgate.net/publication/248431967_Trace_element_and_isotopic_composition_of_GJ_red_zircon_standard_by_Laser_Ablation
      [13] Foley S.1992.Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas.Lithos, 28(3-6):435-453. doi: 10.1016/0024-4937(92)90018-T
      [14] Green T.H.1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. doi: 10.1016/0009-2541(94)00145-X
      [15] Griffin W.L., Belousova E.A., Shee S.R.2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. doi: 10.1016/j.precamres.2003.12.011
      [16] Gu F.B.1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaeozoic-Mesozoic Era.Qinghai Geology, 2(1):4-14(in Chinese with English abstract).
      [17] Harris N.B.W., Pearce J.A., Tindle A.G.1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society London Special Publication, 19(5):67-81. https://www.researchgate.net/publication/42796892_Geochemical_characteristics_of_collision_zone_magmatism
      [18] Hoskin P.W.O., Schaltegger U.2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. doi: 10.2113/0530027
      [19] Hou K.J., Li Y.H., Zou T.R., et al.2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.oalib.com/paper/1472292
      [20] Irvine T.N., Baragar W.R.A.1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055
      [21] Jiang C.F., Wang Z.Q., Li J.Y., et al.2000.Tectonics of the Central Orogenic Belt.Geological Publishing House Beijing, 154(in Chinese).
      [22] Jiang C.F., Yang J.S., Feng B.G., et al.1992.Opening-Closing Patterns in Kunlun.Geological Publishing House Beijing, 224(in Chinese).
      [23] Li H.K., Lu S.N., Xiang Z.Q., et al.2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321(in Chinese with English abstract).
      [24] Li R.B., Pei X.Z., Li Z.C., et al.2015.Geological and Geochenmical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt Southern Margin of East Kunlun Orogen.Earth Science, 40(7):1148-1162(in Chinese with English abstract). https://www.researchgate.net/publication/287573739_Geochemical_characteristics_and_geological_implications_of_haerguole_basalt_in_Buqingshan_area_on_the_southern_margin_of_East_Kunlun_Mountains
      [25] Li W.Y., Li S.G., Guo.A.L., et al.2007.East Kunlun Tectonic Belt Oliver Gabbro and Diorite Dur'ngoi Zircon SHRIMP U-Pb Age and Trace Element Geochemistry—On "Qi-Cai-Kun" Late Neoproterozoic-Early Ordovician More Ocean Island's Southern Boundary Constraints Qinghai.Science in China:Earth Sciences, 11(S1):288-294(in Chinese).
      [26] Liu B., Ma C.Q., Guo P., et al.2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962(in Chinese with English abstract). https://www.researchgate.net/publication/287527260_Discovery_of_the_Middle_Devonian_A-type_granite_from_the_Eastern_Kunlun_Orogen_and_its_tectonic_implications
      [27] Liu C.D.2008.The Granite Magma Mixing in East Kunlun Orgen Belt.Geological Publishing House Beijing, 142(in Chinese).
      [28] Liu J.L., Sun F.Y., Li L., et al.2015.Geochronology Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201506003.htm
      [29] Liu Y.S., Gao S., Hu Z.C., et al.2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082
      [30] Liu Y.S., Hu Z.C., Gao S., et al.2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf
      [31] Liu Z.Q., Pei X.Z., Li R.B., et al.2011a.Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun:Constraints from Zircon U-Pb Dating and Geochemistry.Geology in China, 38(5):1150-1167(in Chinese with English abstract).
      [32] Liu Z.Q., Pei X.Z., Li R.B., et al.2011b.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract).
      [33] Lu S.N., Yu H.F., Zhao F.Q., et al.2002.Geological Exploration of the Cambrian in the Northern Part of the Qinghai Tibet Plateau.Geological Publishing House Beijing, 125(in Chinese).
      [34] Ludwig K.R.2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Geochronology Center Berkeley. http://www.oalib.com/references/17344292
      [35] Luo Z.H., Deng J.F., Cao Y.Q., et al.1999.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun Qinghai Province.Geoscience, 13(1):51-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.007.htm
      [36] Maniar P.D., Piccoli P.M.1989.Tectonic Discrimination of Granitoids.Geological Society of American Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [37] Mckenzie D.P.1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1):53-72. https://www.researchgate.net/publication/222197669_Some_remarks_on_the_movement_of_small_melt_fractions_in_the_mantle
      [38] Mo X.X., Luo Z.H., Deng J.F., et al.2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). https://www.researchgate.net/publication/258466449_Granitoids_and_Crustal_Growth_in_the_East-Kunlun_Orogenic_BeltJ
      [39] Pan Y.S.1990.Tectonic Features and Evolution of the Western Kunlun Mountain Region.Scientia Geologica Sinica, 25(3):224-232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199003002.htm
      [40] Pan Y.S., Wang Y., Matte P.H., et al.1994.Tectonic Evolution along the Geotraverse from Yecheng to Shiquanhe.Acta Geologica Sinica, 68(4):295-307(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199404000.htm
      [41] Pearce J.A.1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://www.docin.com/p-1933801410.html
      [42] Peccerillo A., Taylor A.R.1976.Geochemistry of Eocene Calc-Alkaline Volcanin Rocks from the Kastamonu Area Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745
      [43] Pei X.Z.2001.Geological Evolution and Dynamics of the Mianlue-A'nyemaqen Tectonic Zone Central China.(Dissertation).Northwest University Xi'an, 155(in Chinese with English abstract).
      [44] Ren J.H., Liu Y.Q., Feng Q., et al.2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract).
      [45] Rundick R.I., Gao S.2003.Composition of the Continental Crust.Treatise Geochem., (3):1-64. http://www.doc88.com/p-997974791387.html
      [46] Salters V.J.M., Hart S.R.1991.The Mantle Sources of Ocean Ridges Island Arcs:The Hf-Isotope Connection.Earth and Planetary Science Letters, 104(2):364-380. https://www.researchgate.net/publication/223410657_The_mantle_sources_of_ocean_ridges_islands_and_arcs_The_Hf-isotope_connection
      [47] Sengor A.M.C., Okurogullari A.H.1991.The Role of Accretionary Wedges in the Growth of Conitinents:Asiatic Examples from Argand to Plate Tectonics.Eclogae Geological Helvetiae, 84(3):539-597. https://www.researchgate.net/publication/267305979_The_role_of_accretionary_wedges_in_the_growth_of_continents_Asiatic_examples_from_ARDAND_to_plate_tectonics
      [48] Sun F.Y., Chen G.H., Chi X.G., et al.2003.Study of Metallogenic Regularity and Prospecting Direction in the East Kunlun Metallogenic Belt in Xinjiang-Qinghai Geological Survey Project.Research Report of China Geological Survey Changchun (in Chinese).
      [49] Sun S.S., McDonough W.F.1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Sauders A.D., Norry M.J., eds., Magmatism in the Ocean Basins.Geological Society Special Publications, (42):313-345.
      [50] Sun Y.2010.The Geological Characteristics Age and Tectonic Environment Studies about Delishitan Ophiolites in Buqingshan South of East Kunlun Mountains(Dissertation).Changan University Xi'an, 60(in Chinese with English abstract).
      [51] Vervoot J.D., Pachelt P.J., Albarède F., et al.2000.Hf-Nd Isotopic Evolution of the Lower Crust.Earth and Planetary Science Letters, 181(1):115-129. https://www.researchgate.net/publication/221952508_Hf-Nd_isotopic_evolution_of_the_lower_crust
      [52] Wang B.Z.2011.The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage during Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain(Dissertation).China University of Geosciences Beijing (in Chinese with English abstract).
      [53] Wang G.C., Wei Q.R., Jia C.X., et al.2007.Some Ideas of Precambrian Geology in the East Kunlun China.Geological Bulletin of China, 26(8):929-937(in Chinese with English abstract).
      [54] Wang X.X., Hu N.G., Wang T., et al.2012.Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin:Zircon SHRIMP U-Pb Age Hf Isotope and Geochemistry.Acta Petrologica Sinica, 28(9):2950-2962 (in Chinese with English abstract). https://www.researchgate.net/publication/296762460_Late_Ordovician_Wanbaogou_granitoid_pluton_from_the_southern_margin_of_the_Qaidam_basin_Zircon_SHRIMP_U-Pb_age_Hf_isotope_and_geochemistry
      [55] Wu F.Y., Li.X.H., Zheng Y.F., et al.2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Pertrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
      [56] Xu Q.L.2014.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt Qinghai Province(Dissertation).Jilin University Changchun, 195 (in Chinese with English abstract).
      [57] Xu Z.Q., Yang J.S., Chen F.Y.1996.The A'nyemaqen Suture Belt and the Dynamics in Subduction and Collision.In:Zhang Q., ed., Ophiolite and Earth Dynamics Research.Geological Publishing House Beijing, 185-189(in Chinese).
      [58] Yang J.H., Wu F.Y., Shao J.A., et al.2006.Constrains on the Timing of Uplift of the Yanshan Fold and Thrust Belt North China.Earth and Planetary Science Letters, 246(3-4):336-352. doi: 10.1016/j.epsl.2006.04.029
      [59] Yang J.S..Robinson P.T., Jiang C.F., et al.1996.Ophiolites of the Kunlun Mountains China and Their Tectonic Implications.Tectonophysics, 258(1):215-231. https://www.researchgate.net/profile/Jingsui_Yang2/publication/223231336_Ophiolites_of_the_Kunlun_Mountains_China_and_their_tectonic_implications/links/57fd748208ae406ad1f3d1e2.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
      [60] Yin H.F., Zhang K.X.1997.Characteristics of the East Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract).
      [61] Yuan H.L., Wu.F.Y., Gao.S., et al.2003.Determination of U-Pb Age and Trace Element of Zircon of Cenozoic Intrusion in NE China by Laser-Ablation Inductively Couple Plasma Mass Spectronmetry.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). https://www.researchgate.net/publication/272263177_The_zircon_%27matrix_effect%27_Evidence_for_an_ablation_rate_control_on_the_accuracy_of_U-Pb_age_determinations_by_LA-ICP-MS
      [62] Zhang Y.F., Pei X.Z., Ding S.P., et al.2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County Eastern Section of the East Kunlun Orogenic Belt China and Its Significance.Geological Bulltin of China, 29(1):79-85(in Chinese with English abstract).
      [63] 阿成业, 王毅智, 任晋祁, 等. 2003.东昆仑地区万宝沟群的解体及早寒武世地层的新发现.中国地质, 30(2):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200302013.htm
      [64] 拜永山, 常革红, 谈生祥, 等. 2001.东昆仑东段加里东造山旋回侵入岩特征研究.青海地质, 9(增刊1):28-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL2001S1005.htm
      [65] 边千韬, 罗小全, 陈海泓, 等. 1999.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义.地质科学, 34(4):420-426. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm
      [66] 曹世泰, 刘晓康, 马永胜, 等. 2011.祁漫塔格地区早志留世侵入岩的发现及其地质意义.青海科技, 17(5):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-QKKJ201105008.htm
      [67] 陈能松, 何蕾, 孙敏, 等. 2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报, 47(8):628-631. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200208016.htm
      [68] 陈有炘, 裴先治, 李瑞保, 等. 2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义.地学前缘, 20(6):240-254. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm
      [69] 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11):3365-3379. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm
      [70] 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, 2(1):4-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199401001.htm
      [71] 侯可军, 李延河, 邹天人, 等. 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [72] 姜春发, 王宗起, 李锦轶, 等. 2000.中央造山带开合构造.北京:地质出版社, 154.
      [73] 姜春发, 杨经绥, 冯秉贵, 等. 1992.昆仑开合构造.北京:地质出版社, 224.
      [74] 李怀坤, 陆松年, 相振群, 等. 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6):311-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606039.htm
      [75] 李瑞保, 裴先治, 李佐臣, 等. 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40(7):1148-1162. http://www.earth-science.net/WebPage/Article.aspx?id=3118
      [76] 李王晔, 李曙光, 郭安林, 等. 2007.青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约.中国科学:地球科学, 11(增刊1):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm
      [77] 刘彬, 马昌前, 郭盼, 等. 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://www.earth-science.net/WebPage/Article.aspx?id=2780
      [78] 刘成东, 2008.东昆仑造山带东段花岗岩岩浆混合作用, 北京:地质出版社, 142.
      [79] 刘金龙, 孙丰月, 李良, 等. 2015.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.earth-science.net/WebPage/Article.aspx?id=3101
      [80] 刘战庆, 裴先治, 李瑞保, 等. 2011a.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据.中国地质, 38(5):1150-1167. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm
      [81] 刘战庆, 裴先治, 李瑞保, 等. 2011b.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      [82] 陆松年, 于海峰, 赵凤清, 等. 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社, 125.
      [83] 罗照华, 邓晋福, 曹永清, 等. 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm
      [84] 莫宣学, 罗照华, 邓晋福, 等. 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      [85] 潘裕生, 1990.西昆仑山构造特征与演化.地质科学, 25(3):224-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003002.htm
      [86] 潘裕生, 王毅, Matte P.H., 等. 1994.青藏高原叶城-狮泉河路线地质特征及区域构造演化.地质学报, 68(4):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404000.htm
      [87] 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学, 155.
      [88] 任军虎, 柳益群, 冯乔, 等. 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm
      [89] 孙丰月, 陈国华, 迟效国, 等. 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究. 长春: 中国地质调查局地质调查项目科研报告.
      [90] 孙雨, 2010. 东昆仑南缘布青山得力斯坦蛇绿岩地质特征、形成时代及构造环境研究(硕士学位论文). 西安: 长安大学, 60.
      [91] 王秉璋, 2011. 祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究(博士学位论文). 北京: 中国地质大学.
      [92] 王国灿, 魏启荣, 贾春兴, 等. 2007.关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8):929-937. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm
      [93] 王晓霞, 胡能高, 王涛, 等. 2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报, 28(9):2950-2962. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209023.htm
      [94] 吴福元, 李献华, 郑永飞, 等. 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [95] 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用(博士学位论文). 长春: 吉林大学, 195.
      [96] 许志琴, 杨经绥, 陈方远, 1996.阿尼玛卿缝合带及"俯冲-碰撞"动力学.见:张旗主编, 蛇绿岩与地球动力研究.北京:地质出版社, 185-189.
      [97] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. http://www.earth-science.net/WebPage/Article.aspx?id=532
      [98] 袁洪林, 吴福元, 高山, 等. 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [99] 张亚峰, 裴先治, 丁仨平, 等. 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001010.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  3827
    • HTML全文浏览量:  1803
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-02
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回