Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting
-
摘要: 为确定东昆仑马尼特地区片麻状花岗闪长岩的形成时代、源区性质和构造背景,对其进行了锆石U-Pb年代学、地球化学和锆石Hf同位素研究.本次测试的片麻状花岗闪长岩锆石LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry) U-Pb加权平均年龄为495.6±1.1 Ma(MSWD=0.13),属于晚寒武世.马尼特片麻状花岗闪长岩SiO2含量为61.47%~63.99%,Na2O、K2O和CaO含量分别为2.91%~3.64%、0.93%~2.31%和4.29%~6.52%,全碱ALK=3.92%~5.69%,铝饱和指数A/CNK=0.83~0.97,属准铝质钙碱性系列岩石.岩石具有富集大离子亲石元素(Rb、K)和不相容元素(Th、U),相对亏损Nb、Ta、Zr、Ti高场强元素的特征,Nb/Ta、La/Nb、Th/Nb、Th/La等比值显示出岩石具有壳源特征.岩石具有高的εHf(t)值(12.2~15.0),Hf两阶段模式年龄在506~662 Ma范围内,其岩浆源区初始物质主要来源于新生地壳.岩石在微量元素Rb-(Y+Nb)构造判别图落入火山弧花岗岩区域,在R1-R2构造判别图落入板块碰撞前消减区花岗岩区域.结合岩石成岩年龄、地球化学特征以及区域构造演化,推测其应形成于原特提斯洋俯冲的构造环境,属于大洋洋壳向南俯冲的产物,即柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.Abstract: In order to determine the formation time, magma source, and tectonic setting of the gneissic granodiorite in Manite area, East Kunlun, zircon U-Pb dating, Hf isotope data and geochemistry of the gneissic granodiorite are studied in this paper. The chronology indicates that the magmatic zircon LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) U-Pb weighted mean age of the Manite gneissic granodiorite in the East Kunlun is 495.6±1.1 Ma (MSWD=0.13), belonging to the Late Cambrian. The gneissic granodiorites have SiO2 of 61.47%-63.99%, Na2O of 2.91%~3.64%, K2O of 0.93%-2.31%, CaO of 4.29%-6.52%, ALK of 3.92%-5.69% and A/CNK=0.83~0.97. Chemically, they are metaluminous and belong to calc-alkaline rock series. The gneissic granodiorite is characterized by the enrichment of LILEs (Rb and K) and incompatible elements(Th and U), and depletion of HFSEs(Nb, Ta, Zr and Ti). The ratios of Nb/Ta, La/Nb, Th/Nb and Th/La show crustal characteristics. The εHf(t) values of zircons from the gneissic granodiorite range from 12.2-15.0, their Hf two-stage model ages vary from 506 to 662 Ma. The initial materials are mainly derived from the juvenile crust. The gneissic granodiorite falls into the volcano arc granite area with the determination of trace elements in Rb-(Y+Nb) tectonic discrimination diagram and falls into the zone of pre-plate collision with the characteristics of active continental margin before the collision. Combined with the geochronological data, geochemical characteristics and the regional tectonic evolution, it is concluded that the gneissic granodiorite in the Manite area was formed in the environment of Proto-Tethys Ocean crust subduction, presumably it belongs to the southward subduction of oceanic crust. The crust between the Qaidam massif and Wanbaogou oceanic plateau occurred bidirectional subduction to the south and the north.
-
Key words:
- gneissic granodiorite /
- geochemistry /
- zircon U-Pb dating /
- geochronology /
- Manite area /
- East Kunlun
-
图 5 马尼特片麻状花岗闪长岩TAS、SiO2-K2O和A/CNK-A/NK
a.据Irvine and Baragar(1971);b.据Peccerillo and Taylor(1976);c.据Maniar and Piccoli(1989)
Fig. 5. Total alkali versus SiO2, SiO2 versus K2O and A/CNK versus A/NK diagrams for the Manite gneissic granodiorite
图 6 马尼特片麻状花岗闪长岩稀土元素配分模式和微量元素蛛网图
a.球粒陨石值据Boynton(1984);b.原始地幔值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns for the Manite gneissic granodiorite
图 7 马尼特片麻状花岗闪长岩锆石的εHf(t)-t图解
Fig. 7. εHf(t) versus t diagram of the Manite gneissic granodiorite
图 8 马尼特片麻状闪长岩构造环境判别图解
a.据Harris et al.(1986);b.据Pearce(1996)
Fig. 8. Tectonic setting discrimination diagrams of the Manite gneissic granodiorite
图 9 柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减
Fig. 9. The crust between the Qaidam massif and Wanbaogou oceanic plateau occurred bidirectional subduction to the south and the north
表 1 马尼特片麻状花岗闪长岩锆石LA-MC-ICP-MS U-Pb同位素定年数据
Table 1. LA-MC-ICP-MS zircon U-Pb isotope dating results of the Manite gneissic granodiorite
测点号 质量百分含量(10-6) Th/U 同位素比率 同位素年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ MNT-N4-1 43.9 92.1 275 0.33 0.056 8 0.002 0 0.626 6 0.021 3 0.079 5 0.000 8 483 81 494 13 493 5 MNT-N4-2 88.1 196.0 515 0.38 0.056 7 0.003 2 0.633 2 0.032 5 0.080 3 0.001 0 480 131 498 20 498 6 MNT-N4-3 39.8 79.9 276 0.29 0.057 1 0.001 8 0.622 9 0.019 2 0.079 0 0.000 8 494 70 492 12 490 5 MNT-N4-4 41.0 79.5 300 0.27 0.055 8 0.001 8 0.615 6 0.018 8 0.080 1 0.000 7 443 77 487 12 496 4 MNT-N4-5 27.9 57.4 183 0.31 0.054 3 0.002 4 0.621 0 0.028 5 0.082 1 0.001 0 383 98 490 18 509 6 MNT-N4-6 39.0 78.3 296 0.26 0.057 0 0.001 9 0.622 7 0.019 5 0.079 4 0.000 9 500 72 492 12 493 5 MNT-N4-7 58.4 122.0 378 0.32 0.056 7 0.001 5 0.627 8 0.019 9 0.080 0 0.001 2 480 61 495 12 496 7 MNT-N4-8 70.3 151.0 424 0.36 0.057 0 0.001 6 0.630 2 0.018 4 0.080 0 0.000 7 500 60 496 11 496 4 MNT-N4-9 39.0 73.2 272 0.27 0.056 9 0.001 9 0.626 6 0.021 0 0.079 8 0.000 8 487 74 494 13 495 5 MNT-N4-10 97.0 230.0 529 0.43 0.056 4 0.001 6 0.623 8 0.018 0 0.080 1 0.000 6 478 32 492 11 497 4 MNT-N4-11 43.7 98.1 315 0.31 0.056 9 0.001 9 0.631 3 0.022 4 0.080 1 0.001 1 487 77 497 14 497 7 MNT-N4-12 111.0 246.0 751 0.33 0.056 9 0.001 4 0.630 1 0.016 0 0.080 0 0.000 9 487 52 496 10 496 5 MNT-N4-13 90.0 210.0 577 0.36 0.057 3 0.001 4 0.631 2 0.015 1 0.079 5 0.000 6 502 52 497 9 493 4 MNT-N4-14 65.6 156.0 336 0.47 0.057 1 0.001 7 0.631 0 0.018 9 0.079 8 0.000 7 494 67 497 12 495 4 MNT-N4-15 113.0 279.0 560 0.50 0.056 2 0.001 6 0.622 3 0.016 9 0.080 1 0.000 7 457 63 491 11 496 4 MNT-N4-16 53.7 121.0 314 0.39 0.056 5 0.002 0 0.624 4 0.021 5 0.080 0 0.000 9 478 78 493 13 496 5 MNT-N4-17 42.0 93.8 233 0.40 0.057 1 0.002 3 0.630 2 0.024 7 0.079 7 0.000 8 494 61 496 15 494 5 MNT-N4-18 45.5 113.0 228 0.49 0.056 9 0.002 0 0.631 2 0.021 5 0.080 2 0.000 8 487 78 497 13 497 5 MNT-N4-19 59.2 121.0 435 0.28 0.057 3 0.001 6 0.630 8 0.017 5 0.079 3 0.000 9 502 61 497 11 492 5 MNT-N4-20 67.2 142.0 476 0.30 0.056 8 0.001 6 0.628 9 0.018 0 0.079 6 0.000 8 483 61 495 11 493 5 注:测试单位和测试时间:中国地质大学(武汉)地质过程与矿产资源国家重点实验室,2014. 表 2 马尼特片麻状花岗闪长岩锆石Lu-Hf同位素组成
Table 2. Zircon Lu-Hf isotopic compositions of the Manite gneissic granodiorite
测点号 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 2σ εHf(0) εHf(t) 2σ tDM1(Ma) tDM2(Ma) fLu/Hf MNT-N4-1 0.282 821 0.000 021 0.001 279 0.000 035 0.034 368 0.000 971 1.7 12.2 0.9 615 662 -0.96 MNT-N4-2 0.282 870 0.000 026 0.001 371 0.000 016 0.035 880 0.000 675 3.5 13.9 1.0 547 567 -0.96 MNT-N4-3 0.282 862 0.000 020 0.001 015 0.000 047 0.025 604 0.001 054 3.2 13.8 0.9 553 576 -0.97 MNT-N4-4 0.282 889 0.000 033 0.001 136 0.000 021 0.029 492 0.000 554 4.2 14.7 1.3 516 524 -0.97 MNT-N4-5 0.282 846 0.000 034 0.000 916 0.000 037 0.024 877 0.001 124 2.6 13.2 1.3 574 605 -0.97 MNT-N4-6 0.282 831 0.000 023 0.000 917 0.000 019 0.023 160 0.000 316 2.1 12.7 1.0 596 636 -0.97 MNT-N4-7 0.282 885 0.000 025 0.001 116 0.000 026 0.028 986 0.000 737 4.0 14.5 1.0 522 533 -0.97 MNT-N4-8 0.282 883 0.000 025 0.001 103 0.000 026 0.028 373 0.000 558 3.9 14.5 1.0 524 536 -0.97 MNT-N4-9 0.282 857 0.000 024 0.001 126 0.000 009 0.028 875 0.000 158 3.0 13.6 1.0 562 587 -0.97 MNT-N4-10 0.282 844 0.000 017 0.001 738 0.000 039 0.043 394 0.001 124 2.5 12.9 0.8 590 625 -0.95 MNT-N4-11 0.282 830 0.000 025 0.001 003 0.000 005 0.025 502 0.000 080 2.0 12.6 1.0 598 639 -0.97 MNT-N4-12 0.282 863 0.000 028 0.001 046 0.000 024 0.026 522 0.000 698 3.2 13.8 1.1 553 575 -0.97 MNT-N4-13 0.282 898 0.000 034 0.001 027 0.000 050 0.025 491 0.001 383 4.4 15.0 1.3 503 506 -0.97 MNT-N4-14 0.282 891 0.000 028 0.001 372 0.000 041 0.038 084 0.001 123 4.2 14.7 1.1 517 525 -0.96 MNT-N4-15 0.282 898 0.000 037 0.002 090 0.000 049 0.057 525 0.000 655 4.4 14.7 1.4 517 525 -0.94 表 3 马尼特片麻状花岗闪长岩主量元素(%)、稀土元素及微量元素(10-6)分析结果
Table 3. Major(%), REE and trace (10-6) element compositions of the Manite gneissic granodiorite
样号 MNT-1 MNT-2 MNT-3 MNT-4 MNT-5 MNT-6 MNT-7 SiO2 62.64 61.67 61.80 63.28 63.19 61.47 63.99 TiO2 0.38 0.39 0.38 0.36 0.36 0.39 0.39 Al2O3 15.52 14.84 14.99 14.64 14.79 14.81 15.37 Fe2O3 6.39 7.36 7.22 6.56 6.42 7.28 5.96 MnO 0.16 0.16 0.15 0.14 0.14 0.15 0.14 MgO 2.71 3.60 3.55 3.12 3.40 3.64 2.04 CaO 4.67 6.28 6.04 5.87 5.38 6.52 4.29 Na2O 3.64 2.93 2.91 3.35 3.29 2.99 3.38 K2O 1.94 1.08 1.16 1.02 1.31 0.93 2.31 P2O5 0.11 0.09 0.09 0.10 0.10 0.09 0.11 LOI 1.74 1.52 1.62 1.49 1.55 1.65 1.94 Total 99.9 99.92 99.91 99.93 99.93 99.92 99.92 K2O/Na2O 0.53 0.37 0.40 0.30 0.40 0.31 0.68 A/CNK 0.93 0.85 0.88 0.85 0.89 0.83 0.97 A/NK 1.92 2.48 2.48 2.21 2.16 2.50 1.91 K2O+Na2O 5.58 4.01 4.07 4.37 4.60 3.92 5.69 V 140 162 161 148 143 172 123 Cr 31.0 62.1 57.4 50.9 65.0 62.6 13.5 Cs 1.080 0.796 0.839 0.757 1.080 0.726 1.20 Ga 11.50 9.94 10.00 9.49 10.50 9.86 9.97 Hf 1.27 1.22 1.24 1.26 1.39 1.09 1.15 Rb 73.9 24.5 29.2 27.8 42.4 20.4 77.6 Sr 268 269 282 269 292 259 234 Zr 32.5 25.7 32.3 28.6 35.6 24.0 30.3 Nb 3.37 2.63 2.85 3.13 3.63 2.73 2.93 Ba 598 426 464 299 385 292 626 Ta 0.32 0.27 0.25 0.29 0.30 0.26 0.27 Th 7.84 3.26 3.54 4.26 5.39 3.26 5.64 U 1.43 1.51 1.48 1.5 1.44 1.48 1.22 Y 13.6 11.9 11.7 11.1 12.1 12 10.3 La 21.7 11.8 10.9 14.0 15.0 11.4 14.2 Ce 36.9 21.1 21.1 24.4 27.5 20.6 24.9 Pr 4.03 2.45 2.40 2.78 3.11 2.38 2.77 Nd 14.70 9.64 9.51 10.50 11.90 9.69 10.10 Sm 2.83 2.02 2.13 2.06 2.51 2.06 1.96 Eu 0.77 0.58 0.53 0.53 0.64 0.59 0.61 Gd 2.91 2.09 2.19 2.28 2.78 2.10 1.85 Tb 0.47 0.40 0.35 0.42 0.41 0.34 0.32 Dy 2.47 2.09 2.09 1.95 2.26 2.16 1.75 Ho 0.52 0.44 0.44 0.40 0.46 0.43 0.36 Er 1.62 1.40 1.43 1.31 1.44 1.39 1.12 Tm 0.26 0.22 0.23 0.23 0.23 0.22 0.20 Yb 1.81 1.53 1.45 1.51 1.64 1.50 1.29 Lu 0.29 0.24 0.23 0.23 0.25 0.23 0.22 δEu 0.82 0.85 0.74 0.75 0.73 0.85 0.97 ΣREE 91.27 55.99 54.98 62.60 70.13 55.09 61.64 LREE 80.93 47.59 46.57 54.27 60.65 46.72 54.54 HREE 10.34 8.40 8.42 8.33 9.47 8.37 7.10 LREE/HREE 7.83 5.67 5.53 6.52 6.40 5.58 7.68 (La/Yb)N 8.08 5.20 5.07 6.25 6.17 5.12 7.42 Rb/Sr 0.28 0.09 0.10 0.10 0.15 0.08 0.33 Rb/Nb 21.93 9.32 10.25 8.88 11.68 7.47 26.48 Nb/Ta 10.60 9.85 11.26 10.98 12.14 10.71 10.89 La/Nb 6.44 4.49 3.82 4.47 4.13 4.18 4.85 Th/Nb 2.33 1.24 1.24 1.36 1.48 1.19 1.92 Th/La 0.36 0.28 0.32 0.30 0.36 0.29 0.40 注:LOI.烧失量;A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;δEu=2×(Eu/0.0735)/(Gd/0.259+Sm/0.195);LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)N=(La/0.310)/(Yb/0.209). -
[1] A, C.Y., Wang Y.Z., Ren J.Q., et al.2003.Disintegration of the Wanbaogou Group and Discovery of Early Cambrian Strata in the East Kunlun Area.Geology in China, 30(2):199-206(in Chinese with English abstract). https://www.researchgate.net/publication/289805174_Geological_characteristics_and_evolution_of_the_Kunlun_Mountains_region_during_the_early_Paleozoic [2] Ameilin Y., Lee D.C., Halliday A.N.2000.Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircons Grains.Geochimica et Cosmochimica Acta, 64:4205-4225. doi: 10.1016/S0016-7037(00)00493-2 [3] Andersen T.2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X [4] Bai Y.S., Chang G.H., Tan S.X., et al.2001.Study on the Features of Caledonian Intrusive Rocks in the Eastern Sector of East Kunlun.Qinghai Geology, 9(Suppl.):28-35(in Chinese with English abstract). [5] Belousova E.A., Griffin W.L., O'Reilly S.Y., et al.2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 [6] Bian Q.T., Luo X.Q., Chen H.H., et al.1999.Discovery of Early Paleozoic and Early Carboniferous-Early Permian Cophiolites in the A'nyemaqen Qinghai Province China.Scientia Geologica Sinica, 34(4):420-426(in Chinese with English abstract). https://www.researchgate.net/publication/293092779_Discovery_of_early_Paleozoic_and_early_Carboniferous-early_Permian_ophiolites_in_the_A%27nyemaqen_Qinghai_province_China [7] Boynton W.V.1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson P., ed., Rare Earth Element Geochemistry.Elsevier Amsterdam, 63-114. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1849732 [8] Cao S.T., Liu X.K., Ma Y.S., et al.2011.Qimantage Area Silurian Intrusive Rocks and Its Geological Significance.Qinghai Science and Technology, 17(5):26-30(in Chinese). [9] Chen N.S., He L., Sun M., et al.2002.Early Paleozoic Metamorphic Peak Precisely Defined and Thrusting Tectonic Deformation Era in East Kunlun Orgen Belt.Chinese Science Bulletin, 47(8):628-631(in Chinese). [10] Chen Y.X., Pei X.Z., Li R.B., et al.2013.Zircon U-Pb Age Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group East Section of East Kunlun.Earth Science Frontiers, 20(6):240-254(in Chinese with English abstract). https://www.researchgate.net/publication/286176966_Zircon_U-Pb_age_geochemical_characteristics_and_tectonic_significance_of_meta-volcanic_rocks_from_Naij_Tal_Group_east_section_of_East_Kunlun [11] Cui M.H., Meng F.C., Wu X.K.2011.Early Ordovician Island Arc of Qimantag Mountain Eastern Kunlun:Evidences from Geochemistry Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Pertrologica Sinica, 27(11):3365-3379(in Chinese with English abstract). [12] Elhlou S., Belousova E., Griffin W.L.2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://www.researchgate.net/publication/248431967_Trace_element_and_isotopic_composition_of_GJ_red_zircon_standard_by_Laser_Ablation [13] Foley S.1992.Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas.Lithos, 28(3-6):435-453. doi: 10.1016/0024-4937(92)90018-T [14] Green T.H.1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. doi: 10.1016/0009-2541(94)00145-X [15] Griffin W.L., Belousova E.A., Shee S.R.2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. doi: 10.1016/j.precamres.2003.12.011 [16] Gu F.B.1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaeozoic-Mesozoic Era.Qinghai Geology, 2(1):4-14(in Chinese with English abstract). [17] Harris N.B.W., Pearce J.A., Tindle A.G.1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society London Special Publication, 19(5):67-81. https://www.researchgate.net/publication/42796892_Geochemical_characteristics_of_collision_zone_magmatism [18] Hoskin P.W.O., Schaltegger U.2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. doi: 10.2113/0530027 [19] Hou K.J., Li Y.H., Zou T.R., et al.2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.oalib.com/paper/1472292 [20] Irvine T.N., Baragar W.R.A.1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055 [21] Jiang C.F., Wang Z.Q., Li J.Y., et al.2000.Tectonics of the Central Orogenic Belt.Geological Publishing House Beijing, 154(in Chinese). [22] Jiang C.F., Yang J.S., Feng B.G., et al.1992.Opening-Closing Patterns in Kunlun.Geological Publishing House Beijing, 224(in Chinese). [23] Li H.K., Lu S.N., Xiang Z.Q., et al.2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321(in Chinese with English abstract). [24] Li R.B., Pei X.Z., Li Z.C., et al.2015.Geological and Geochenmical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt Southern Margin of East Kunlun Orogen.Earth Science, 40(7):1148-1162(in Chinese with English abstract). https://www.researchgate.net/publication/287573739_Geochemical_characteristics_and_geological_implications_of_haerguole_basalt_in_Buqingshan_area_on_the_southern_margin_of_East_Kunlun_Mountains [25] Li W.Y., Li S.G., Guo.A.L., et al.2007.East Kunlun Tectonic Belt Oliver Gabbro and Diorite Dur'ngoi Zircon SHRIMP U-Pb Age and Trace Element Geochemistry—On "Qi-Cai-Kun" Late Neoproterozoic-Early Ordovician More Ocean Island's Southern Boundary Constraints Qinghai.Science in China:Earth Sciences, 11(S1):288-294(in Chinese). [26] Liu B., Ma C.Q., Guo P., et al.2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962(in Chinese with English abstract). https://www.researchgate.net/publication/287527260_Discovery_of_the_Middle_Devonian_A-type_granite_from_the_Eastern_Kunlun_Orogen_and_its_tectonic_implications [27] Liu C.D.2008.The Granite Magma Mixing in East Kunlun Orgen Belt.Geological Publishing House Beijing, 142(in Chinese). [28] Liu J.L., Sun F.Y., Li L., et al.2015.Geochronology Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201506003.htm [29] Liu Y.S., Gao S., Hu Z.C., et al.2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 [30] Liu Y.S., Hu Z.C., Gao S., et al.2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf [31] Liu Z.Q., Pei X.Z., Li R.B., et al.2011a.Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun:Constraints from Zircon U-Pb Dating and Geochemistry.Geology in China, 38(5):1150-1167(in Chinese with English abstract). [32] Liu Z.Q., Pei X.Z., Li R.B., et al.2011b.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract). [33] Lu S.N., Yu H.F., Zhao F.Q., et al.2002.Geological Exploration of the Cambrian in the Northern Part of the Qinghai Tibet Plateau.Geological Publishing House Beijing, 125(in Chinese). [34] Ludwig K.R.2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Geochronology Center Berkeley. http://www.oalib.com/references/17344292 [35] Luo Z.H., Deng J.F., Cao Y.Q., et al.1999.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun Qinghai Province.Geoscience, 13(1):51-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.007.htm [36] Maniar P.D., Piccoli P.M.1989.Tectonic Discrimination of Granitoids.Geological Society of American Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [37] Mckenzie D.P.1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1):53-72. https://www.researchgate.net/publication/222197669_Some_remarks_on_the_movement_of_small_melt_fractions_in_the_mantle [38] Mo X.X., Luo Z.H., Deng J.F., et al.2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). https://www.researchgate.net/publication/258466449_Granitoids_and_Crustal_Growth_in_the_East-Kunlun_Orogenic_BeltJ [39] Pan Y.S.1990.Tectonic Features and Evolution of the Western Kunlun Mountain Region.Scientia Geologica Sinica, 25(3):224-232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199003002.htm [40] Pan Y.S., Wang Y., Matte P.H., et al.1994.Tectonic Evolution along the Geotraverse from Yecheng to Shiquanhe.Acta Geologica Sinica, 68(4):295-307(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199404000.htm [41] Pearce J.A.1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://www.docin.com/p-1933801410.html [42] Peccerillo A., Taylor A.R.1976.Geochemistry of Eocene Calc-Alkaline Volcanin Rocks from the Kastamonu Area Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745 [43] Pei X.Z.2001.Geological Evolution and Dynamics of the Mianlue-A'nyemaqen Tectonic Zone Central China.(Dissertation).Northwest University Xi'an, 155(in Chinese with English abstract). [44] Ren J.H., Liu Y.Q., Feng Q., et al.2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract). [45] Rundick R.I., Gao S.2003.Composition of the Continental Crust.Treatise Geochem., (3):1-64. http://www.doc88.com/p-997974791387.html [46] Salters V.J.M., Hart S.R.1991.The Mantle Sources of Ocean Ridges Island Arcs:The Hf-Isotope Connection.Earth and Planetary Science Letters, 104(2):364-380. https://www.researchgate.net/publication/223410657_The_mantle_sources_of_ocean_ridges_islands_and_arcs_The_Hf-isotope_connection [47] Sengor A.M.C., Okurogullari A.H.1991.The Role of Accretionary Wedges in the Growth of Conitinents:Asiatic Examples from Argand to Plate Tectonics.Eclogae Geological Helvetiae, 84(3):539-597. https://www.researchgate.net/publication/267305979_The_role_of_accretionary_wedges_in_the_growth_of_continents_Asiatic_examples_from_ARDAND_to_plate_tectonics [48] Sun F.Y., Chen G.H., Chi X.G., et al.2003.Study of Metallogenic Regularity and Prospecting Direction in the East Kunlun Metallogenic Belt in Xinjiang-Qinghai Geological Survey Project.Research Report of China Geological Survey Changchun (in Chinese). [49] Sun S.S., McDonough W.F.1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Sauders A.D., Norry M.J., eds., Magmatism in the Ocean Basins.Geological Society Special Publications, (42):313-345. [50] Sun Y.2010.The Geological Characteristics Age and Tectonic Environment Studies about Delishitan Ophiolites in Buqingshan South of East Kunlun Mountains(Dissertation).Changan University Xi'an, 60(in Chinese with English abstract). [51] Vervoot J.D., Pachelt P.J., Albarède F., et al.2000.Hf-Nd Isotopic Evolution of the Lower Crust.Earth and Planetary Science Letters, 181(1):115-129. https://www.researchgate.net/publication/221952508_Hf-Nd_isotopic_evolution_of_the_lower_crust [52] Wang B.Z.2011.The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage during Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain(Dissertation).China University of Geosciences Beijing (in Chinese with English abstract). [53] Wang G.C., Wei Q.R., Jia C.X., et al.2007.Some Ideas of Precambrian Geology in the East Kunlun China.Geological Bulletin of China, 26(8):929-937(in Chinese with English abstract). [54] Wang X.X., Hu N.G., Wang T., et al.2012.Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin:Zircon SHRIMP U-Pb Age Hf Isotope and Geochemistry.Acta Petrologica Sinica, 28(9):2950-2962 (in Chinese with English abstract). https://www.researchgate.net/publication/296762460_Late_Ordovician_Wanbaogou_granitoid_pluton_from_the_southern_margin_of_the_Qaidam_basin_Zircon_SHRIMP_U-Pb_age_Hf_isotope_and_geochemistry [55] Wu F.Y., Li.X.H., Zheng Y.F., et al.2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Pertrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 [56] Xu Q.L.2014.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt Qinghai Province(Dissertation).Jilin University Changchun, 195 (in Chinese with English abstract). [57] Xu Z.Q., Yang J.S., Chen F.Y.1996.The A'nyemaqen Suture Belt and the Dynamics in Subduction and Collision.In:Zhang Q., ed., Ophiolite and Earth Dynamics Research.Geological Publishing House Beijing, 185-189(in Chinese). [58] Yang J.H., Wu F.Y., Shao J.A., et al.2006.Constrains on the Timing of Uplift of the Yanshan Fold and Thrust Belt North China.Earth and Planetary Science Letters, 246(3-4):336-352. doi: 10.1016/j.epsl.2006.04.029 [59] Yang J.S..Robinson P.T., Jiang C.F., et al.1996.Ophiolites of the Kunlun Mountains China and Their Tectonic Implications.Tectonophysics, 258(1):215-231. https://www.researchgate.net/profile/Jingsui_Yang2/publication/223231336_Ophiolites_of_the_Kunlun_Mountains_China_and_their_tectonic_implications/links/57fd748208ae406ad1f3d1e2.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [60] Yin H.F., Zhang K.X.1997.Characteristics of the East Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract). [61] Yuan H.L., Wu.F.Y., Gao.S., et al.2003.Determination of U-Pb Age and Trace Element of Zircon of Cenozoic Intrusion in NE China by Laser-Ablation Inductively Couple Plasma Mass Spectronmetry.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). https://www.researchgate.net/publication/272263177_The_zircon_%27matrix_effect%27_Evidence_for_an_ablation_rate_control_on_the_accuracy_of_U-Pb_age_determinations_by_LA-ICP-MS [62] Zhang Y.F., Pei X.Z., Ding S.P., et al.2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County Eastern Section of the East Kunlun Orogenic Belt China and Its Significance.Geological Bulltin of China, 29(1):79-85(in Chinese with English abstract). [63] 阿成业, 王毅智, 任晋祁, 等. 2003.东昆仑地区万宝沟群的解体及早寒武世地层的新发现.中国地质, 30(2):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200302013.htm [64] 拜永山, 常革红, 谈生祥, 等. 2001.东昆仑东段加里东造山旋回侵入岩特征研究.青海地质, 9(增刊1):28-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL2001S1005.htm [65] 边千韬, 罗小全, 陈海泓, 等. 1999.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义.地质科学, 34(4):420-426. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm [66] 曹世泰, 刘晓康, 马永胜, 等. 2011.祁漫塔格地区早志留世侵入岩的发现及其地质意义.青海科技, 17(5):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-QKKJ201105008.htm [67] 陈能松, 何蕾, 孙敏, 等. 2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报, 47(8):628-631. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200208016.htm [68] 陈有炘, 裴先治, 李瑞保, 等. 2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义.地学前缘, 20(6):240-254. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm [69] 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11):3365-3379. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm [70] 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, 2(1):4-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199401001.htm [71] 侯可军, 李延河, 邹天人, 等. 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [72] 姜春发, 王宗起, 李锦轶, 等. 2000.中央造山带开合构造.北京:地质出版社, 154. [73] 姜春发, 杨经绥, 冯秉贵, 等. 1992.昆仑开合构造.北京:地质出版社, 224. [74] 李怀坤, 陆松年, 相振群, 等. 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6):311-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606039.htm [75] 李瑞保, 裴先治, 李佐臣, 等. 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40(7):1148-1162. http://www.earth-science.net/WebPage/Article.aspx?id=3118 [76] 李王晔, 李曙光, 郭安林, 等. 2007.青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约.中国科学:地球科学, 11(增刊1):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm [77] 刘彬, 马昌前, 郭盼, 等. 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://www.earth-science.net/WebPage/Article.aspx?id=2780 [78] 刘成东, 2008.东昆仑造山带东段花岗岩岩浆混合作用, 北京:地质出版社, 142. [79] 刘金龙, 孙丰月, 李良, 等. 2015.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.earth-science.net/WebPage/Article.aspx?id=3101 [80] 刘战庆, 裴先治, 李瑞保, 等. 2011a.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据.中国地质, 38(5):1150-1167. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm [81] 刘战庆, 裴先治, 李瑞保, 等. 2011b.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm [82] 陆松年, 于海峰, 赵凤清, 等. 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社, 125. [83] 罗照华, 邓晋福, 曹永清, 等. 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm [84] 莫宣学, 罗照华, 邓晋福, 等. 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm [85] 潘裕生, 1990.西昆仑山构造特征与演化.地质科学, 25(3):224-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003002.htm [86] 潘裕生, 王毅, Matte P.H., 等. 1994.青藏高原叶城-狮泉河路线地质特征及区域构造演化.地质学报, 68(4):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404000.htm [87] 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学, 155. [88] 任军虎, 柳益群, 冯乔, 等. 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm [89] 孙丰月, 陈国华, 迟效国, 等. 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究. 长春: 中国地质调查局地质调查项目科研报告. [90] 孙雨, 2010. 东昆仑南缘布青山得力斯坦蛇绿岩地质特征、形成时代及构造环境研究(硕士学位论文). 西安: 长安大学, 60. [91] 王秉璋, 2011. 祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究(博士学位论文). 北京: 中国地质大学. [92] 王国灿, 魏启荣, 贾春兴, 等. 2007.关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8):929-937. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm [93] 王晓霞, 胡能高, 王涛, 等. 2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报, 28(9):2950-2962. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209023.htm [94] 吴福元, 李献华, 郑永飞, 等. 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [95] 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用(博士学位论文). 长春: 吉林大学, 195. [96] 许志琴, 杨经绥, 陈方远, 1996.阿尼玛卿缝合带及"俯冲-碰撞"动力学.见:张旗主编, 蛇绿岩与地球动力研究.北京:地质出版社, 185-189. [97] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. http://www.earth-science.net/WebPage/Article.aspx?id=532 [98] 袁洪林, 吴福元, 高山, 等. 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [99] 张亚峰, 裴先治, 丁仨平, 等. 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001010.htm