Evolution of Eco-Environment and Carbon Burial of Critical Zones in Xiantao Area, Hubei Province
-
摘要: 仙桃地区湖群不断萎缩,水体富营养化水平和湿地沉积物重金属含量持续升高,江汉湖群生态系统日益脆弱,加强对该地区生态环境演化研究、分析人类活动和富营养化对湖泊生态系统的影响、探究该地区不同沉积环境的碳埋藏规律等显得尤为重要.在对江汉平原重点地区(仙桃彭场镇幅和脉旺咀幅)第四纪地质调查的基础上,选取研究区大型渔场、小型鱼塘、沟滩、湖泊、水稻田、泄洪道、旱地、汉水阶地8种不同沉积环境的16个关键带点位,分别测定了其表层及浅层钻孔沉积物的色素、TOC(total organic carbon,总有机碳)与TN(total nitrogen,总氮).表层沉积物TOC含量反映了研究区南部多湖泊区域有机碳埋藏量较高,而北部冲、洪积成因环境相对较低,与色素、TN所指示的人类活动强度和富营养化水平相吻合.湿地浅层钻孔沉积物碳埋藏速率变化整体表现为升高趋势,与色素所指示的湖泊富营养化的趋势相吻合;不同沉积环境碳埋藏速率差异较大,最高为大型渔场77.71 g·m-2·a-1、最低为汉水阶地3.61 g·m-2·a-1.研究结果表明,受到人类活动影响,湖相沉积物中碳埋藏量相对较高,湖泊碳汇功能不断增强,这对江汉平原关键带碳循环研究具有重要意义.Abstract: Lakes in Xiantao area are continuously shrinking, while the eutrophication level and the heavy metal contents of wetland sediments rising, relatively, the ecosystem of the lakes in Jianghan plain weakening increasingly. Enhancing the studies on the eco-environment evolution, analyzing the effects of human activities and eutrophication on lake ecosystem, and discussing the rules of carbon burials in different sedimentary environments are particularly important. Based on the Quaternary geological survey of the key regions in Jianghan plain, we collected and determined sediment samples from 16 key sites in 8 different sedimentary environments (including large fisheries, small fish ponds, vadum, lakes, paddy fields, spillway, dry fields and terrace of Hanjiang River). The total organic carbon(TOC) contents of the surface soils show that the level of organic carbon in the southern area (lake sedimentary environment) is higher than that in the northern region (fluvial and pluvial environment causes), which is consitent with human activity intensity and eutrophication level indicated by pigment, total nitrogen(TN). Carbon burials of shallow core sediments are consistent with the eutrophication level indicated by pigment showing a rising tendency. The rates of carbon burials are various in different sedimentary environments. The highest is in large fisheries (77.71 g·m-2·a-1) while the lowest is in the terrace of Hanjiang River (3.61 g·m-2·a-1). Our study indicates that the carbon aggregation function of lakes is constantly enhancing, and it has important significance to study the carbon cycle of the critical zones in Jianghan plain.
-
Key words:
- Xiantao area /
- evolution of eco-environment /
- critical zone /
- eutrophication /
- carbon burial /
- sediment /
- ecosystem
-
图 3 调查区关键带表层沉积物色素、TN与TOC分布
CD.叶绿素,TC.总胡萝卜素,CD/TC.叶绿素/总胡萝卜素,Myx.蓝藻叶黄素,Osc.颤藻蓝素,Osc/ Myx.颤藻蓝素/蓝藻叶黄素,TN.总氮,TOC.总有机碳,C/N.碳氮比;图 3各图的比例尺1:50 000
Fig. 3. Distribution of pigments, TN and TOC in the surface sediments of critical zones in Xiantao
表 1 研究区沉积物AMS14C定年数据
Table 1. AMS14C dating in survey region
序号 室内编号 深度(m) 14C年龄(a BP) 2 Sigma校正(Cal a BP) 1 JH001-003 3 2 550±30 2 750~2 710 2 JH001-012 12 9 640±30 10 930~1 080 3 JH002-007 7 6 460±30 7 555~7 545 4 JH002-012 12 10 020±30 11 370~1 365 5 CZ-MW-I-70 7 1 800±30 1 820~1 690 表 2 关键带典型沉积环境与碳埋藏
Table 2. Typical depositional environments and carbon burial of the critical zones
采样点 沉积类型 深度(m) 岩心碳埋藏
总量(g)平均埋藏速率
(g·m-2·a-1)CZ-MW-1 阶地 6.0 25.24 3.61 CZ-MW-2 旱地 1.3 47.20 5.55 CZ-MW-7 泄洪道 0.8 21.29 6.51 CZ-PC-3 水稻田 0.9 146.10 24.82 CZ-PC-4 水稻田 0.8 104.46 19.96 CZ-PC-17 滩地 0.4 124.19 37.97 CZ-MW-8 沟渠 0.3 130.27 49.78 CZ-PC-12 沟渠 0.5 149.01 40.07 CZ-MW-9 湖泊 0.5 121.92 31.06 CZ-PC-16 湖泊 0.5 147.29 37.53 CZ-PC-13 鱼塘 0.3 68.08 26.02 CZ-MW-14 鱼塘 0.1 44.26 45.10 CZ-PC-15 鱼塘 0.1 75.65 77.09 CZ-PC-18 鱼塘 0.3 148.88 56.90 CZ-MW-10 渔场 0.3 186.22 71.17 CZ-PC-11 渔场 0.3 203.35 77.71 -
[1] Deng, H.B., Zhang, Y., Li, J.J., 2006.On the Ecological Problems and the Countermeasures of Jianghan Lake Zone in the Middle Reaches of Yangtse River.Journal of China University of Geosciences(Social Sciences Edition), 6(4):56-59(in Chinese with English abstract). [2] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain [3] Dong, X.H., Anderson, N.J., Yang, X.D., et al., 2012.Carbon Burial by Shallow Lakes on the Yangtze Floodplain and Its Relevance to Regional Carbon Sequestration.Global Change Biology, 18(7):2205-2217.doi: 10.1111/j.1365-2486.2012.02697.x [4] Gu, Y.S., Li, K.J., Qin, Y.M., et al., 2013.Impact of Human Activity on the Evolution of the Ecological Environment of Jianghan Lake Group in the Historical Period, Central China.Earth Science, 38(Suppl.1):133-144(in Chinese with English abstract). https://www.researchgate.net/publication/286539526_Impact_of_human_activity_on_the_evolution_of_the_ecological_environment_of_Jianghan_Lake_Group_in_the_historical_period_central_China [5] Gu, Y.S., Li, X.Y., Qiu, H.O., et al., 2008a.Sediments Records of Eutrophication History in the Donghu Lake, Wuhan, over the Past 100 Years.Ecology and Environment, 17(1):35-40 (in Chinese with English abstract). [6] Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008b.Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province.Earth Science, 33(5):679-686(in Chinese with English abstract). [7] Guo, Z.G., Yang, Z.S., Qu, Y.H., et al., 1999.Distribution Pattern of Carbon Storage in the Surficial Sediments in the Middle Continental Shelf Mud Area and Its Adjoining East China Sea Areas.Oceanologia et Limnologia Sinica, 30(4):421-426(in Chinese with English abstract). [8] Kayranli, B., Scholz, M., Mustafa, A., et al., 2010.Carbon Storage and Fluxes within Freshwater Wetlands:A Critical Review.Wetlands, 30(1):111-124.doi: 10.1007/s13157-009-0003-4 [9] Krishnamurthy, R.V., Bhattacharya, S.K., Kusumgar, S., 1986.Palaeoclimatic Changes Deduced from 13C/12C and C/N Ratios of Karewa Lake Sediments, India.Nature, 323(6084):150-152.doi: 10.1038/323150a0 [10] Lal, R., 2004.Soil Carbon Sequestration Impacts on Global Climate Change and Food Security.Science, 304(5677):1623-1627.doi: 10.1126/science.1097396 [11] Leavitt, P.R., 1993.A Review of Factors that Regulate Carotenoid and Chlorophyll Deposition and Fossil Pigment Abundance.Journal of Paleolimnology, 9(2):109-127.doi: 10.1007/bf00677513 [12] Li, C.A., Zhang, Y.F., Yu, S.Y., et al., 2009.Grain Size Characteristics and Environmental Significance of Hanjiang 2005 Flood Sediments.Quaternary Sciences, 29(2):276-281 (in Chinese with English abstract). http://www.oalib.com/paper/1571434 [13] Li, J.C., Ma, H.R., Ding, L.L., et al., 2004, Determination of Pigments in Lake Sediment with UV-VIS Spectrophotometry.Environmental Science and Technology, 27(4):36-37 (in Chinese with English abstract). [14] Mayer, L.M., 1994.Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments.Geochimica et Cosmochimica Acta, 58(4):1271-1284.doi: 10.1016/0016-7037(94)90381-6 [15] Meyers, P.A., 1994.Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter.Chemical Geology, 114(3-4):289-302.doi: 10.1016/0009-2541(94)90059-0 [16] National Research Council (NRC), 2001.Basic Research Opportunities in Earth Sciences.National Academy Press, Washington DC. [17] Pan, G.X., Li, L.Q., Zheng, J.F., et al., 2008.Perspectives on Cycling and Sequestration of Organic Carbon in Paddy Soils of China.Acta Pedologica Sinica, 45(5):901-914(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200805017.htm [18] Qu, W.C., Wu, R.J., Wang, S.M., et al., 2000.Sedimentary Pigment and Its Environmental Signification of East Juyanhai in Inner Mongolia since the Past 2 600 Years.Acta Sedimentologica Sinica, 18(1):13-17 (in Chinese with English abstract). [19] Shen, H.Y., Li, S.J., Shu, W.X., 2007.Pigments in the Lake Sediments:Environmental Indicator.Marine Geology & Quaternary Geology, 27(3):37-42 (in Chinese with English abstract). [20] Swain, E.B., 1985.Measurement and Interpretation of Sedimentary Pigments.Freshwater Biology, 15(1):53-75.doi: 10.1111/j.1365-2427.1985.tb00696.x [21] Tranvik, L.J., Downing, J.A., Cotner, J.B., et al., 2009.Lakes and Reservoirs as Regulators of Carbon Cycling and Climate.Limnology and Oceanography, 54(6, Part 2):2298-2314.doi: 10.4319/lo.2009.54.6_part_2.2298 [22] Wang, X.L., 2001.Evaluation on Vulnerability of Wetland and Ecological Rehabilitation of Jianghan Plain.Journal of Central China Normal University(Nat. Sci.), 35(2):237-240(in Chinese with English abstract). [23] Wu, Y.H., Hou, X.H., Cheng, X.Y., et al., 2007.Combining Geochemical and Statistical Methods to Distinguish Anthropogenic Source of Metals in Lacustrine Sediment:A Case Study in Dongjiu Lake, Taihu Lake Catchment, China.Environmental Geology, 52(8):1467-1474.doi: 10.1007/s00254-006-0587-4 [24] Xi, X.H., Yang, Z.F., Xia, X.Q., et al., 2009.Calculation Techniques for Soil Carbon Storage of China Based on Multi-Purpose Geochemical Survey.Earth Science Frontiers, 16(1):194-205 (in Chinese with English abstract). [25] Yang, D.Y., Li, X.S., Zhang, Z.K., 2000.Lake Evolution along Middle-Lower Reaches of the Yangtze River.Journal of Lake Sciences, 12(3):226-232(in Chinese with English abstract). doi: 10.18307/2000.0306 [26] Yang, J.F., Zhang, C.G., 2014.Earth's Critical Zone:A Holistic Framework for Geo-Environmental Researches.Hydrogeology & Engineering Geology, 41(3):98-104 (in Chinese with English abstract). [27] Yu, J.Q., Wang, X.Y., Li, J., et al., 2001.Paleoenvironmental Interpretations on Organic Carbon Isotopic Records from Lake Sediments:A Critique.Journal of Lake Sciences, 13(1):72-78(in Chinese with English abstract). doi: 10.18307/20010111 [28] Zeng, Z.Q., Zhang, C.M., Li, J., et al., 2013.Carbon Stock and Cycling of Wetland Ecosystem.Chinese Agricultural Science Bulletin, 29(26):88-92 (in Chinese with English abstract). [29] Zhang, S.P., Wang, L., Hu, J.J., et al., 2011.Organic Carbon Accumulation Capability of Two Typical Tidal Wetland Soils in Chongming Dongtan, China.Journal of Environmental Sciences, 23(1):87-94.doi: 10.1016/s1001-0742(10)60377-4 [30] Zhang, Y., Kong, X.D., Deng, H.B., et al., 2010.Change Characteristic of Lakes in Hubei Province in the Past 100 Years.Wetland Science, 8(1):15-20(in Chinese with English abstract). [31] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230(in Chinese with English abstract). [32] 邓宏兵, 张毅, 李俊杰, 2006.长江中游江汉平原湖区主要生态环境问题与整治对策.中国地质大学学报(社会科学版), 6(4):56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXS200604010.htm [33] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 [34] 顾延生, 李贶家, 秦养民, 等, 2013.历史时期以来人类活动与江汉湖群生态环境演变.地球科学, 38(增刊1):133-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1016.htm [35] 顾延生, 李雪艳, 邱海鸥, 等, 2008a.100年来东湖富营养化发生的沉积学记录.生态环境, 17(1):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200801009.htm [36] 顾延生, 邱海鸥, 谢树成, 等, 2008b.湖北梁子湖近代沉积记录对人类活动的响应.地球科学, 33(5):679-686. http://www.earth-science.net/WebPage/Article.aspx?id=1688 [37] 郭志刚, 杨作升, 曲艳慧, 等, 1999.东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究.海洋与湖沼, 30(4):421-426. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199904011.htm [38] 李长安, 张玉芬, 袁胜元, 等, 2009.江汉平原洪水沉积物的粒度特征及环境意义——以2005年汉江大洪水为例.第四纪研究, 29(2):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902016.htm [39] 李金城, 马宏瑞, 丁丽丽, 等, 2004.紫外可见分光光度法测定湖泊沉积物中的色素.环境科学与技术, 27(4):36-37. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ504.007.htm [40] 潘根兴, 李恋卿, 郑聚锋, 等, 2008.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题.土壤学报, 45(5):901-914. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200805017.htm [41] 瞿文川, 吴瑞金, 王苏民, 等, 2000.近2 600年来内蒙古居延海湖泊沉积物的色素含量及环境意义.沉积学报, 18(1):13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200001002.htm [42] 申慧彦, 李世杰, 舒卫先, 2007.湖泊沉积物中色素的研究及其环境指示意义.海洋地质与第四纪地质, 27(3):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703006.htm [43] 王学雷, 2001.江汉平原湿地生态脆弱性评估与生态恢复.华中师范大学学报(自然科学版), 35(2):237-240. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ200102031.htm [44] 奚小环, 杨忠芳, 夏学齐, 等, 2009.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究.地学前缘, 16(1):194-205. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901028.htm [45] 杨达源, 李徐生, 张振克, 2000.长江中下游湖泊的成因与演化.湖泊科学, 12(3):226-232. doi: 10.18307/2000.0306 [46] 杨建锋, 张翠光, 2014.地球关键带:地质环境研究的新框架.水文地质工程地质, 41(3):98-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm [47] 余俊清, 王小燕, 李军, 等, 2001.湖泊沉积有机碳同位素与环境变化的研究进展.湖泊科学, 13(1):72-78. doi: 10.18307/20010111 [48] 曾掌权, 张灿明, 李姣, 等, 2013.湿地生态系统碳储量与碳循环研究.中国农学通报, 29(26):88-92. doi: 10.11924/j.issn.1000-6850.2013-0852 [49] 张毅, 孔祥德, 邓宏兵, 等, 2010.近百年湖北省湖泊演变特征研究.湿地科学, 8(1):15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201001004.htm [50] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225