• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    仙桃地区关键带生态演化与碳埋藏

    郭森 顾延生 丁俊傑 田文 伦子健

    郭森, 顾延生, 丁俊傑, 田文, 伦子健, 2017. 仙桃地区关键带生态演化与碳埋藏. 地球科学, 42(5): 707-715. doi: 10.3799/dqkx.2017.058
    引用本文: 郭森, 顾延生, 丁俊傑, 田文, 伦子健, 2017. 仙桃地区关键带生态演化与碳埋藏. 地球科学, 42(5): 707-715. doi: 10.3799/dqkx.2017.058
    Guo Sen, Gu Yansheng, Ding Junjie, Tian Wen, Lun Zijian, 2017. Evolution of Eco-Environment and Carbon Burial of Critical Zones in Xiantao Area, Hubei Province. Earth Science, 42(5): 707-715. doi: 10.3799/dqkx.2017.058
    Citation: Guo Sen, Gu Yansheng, Ding Junjie, Tian Wen, Lun Zijian, 2017. Evolution of Eco-Environment and Carbon Burial of Critical Zones in Xiantao Area, Hubei Province. Earth Science, 42(5): 707-715. doi: 10.3799/dqkx.2017.058

    仙桃地区关键带生态演化与碳埋藏

    doi: 10.3799/dqkx.2017.058
    基金项目: 

    中国地质调查局项目 No.12120114069301

    详细信息
      作者简介:

      郭森(1992-),女,硕士研究生,从事第四纪地质与环境演化学习研究.ORCID:0000-0003-2719-2877.E-mail: ayguosen123@163.com

      通讯作者:

      顾延生,ORCID:0000-0001-6620-1946.E-mail: ysgu@cug.edu.cn

    • 中图分类号: P66

    Evolution of Eco-Environment and Carbon Burial of Critical Zones in Xiantao Area, Hubei Province

    • 摘要: 仙桃地区湖群不断萎缩,水体富营养化水平和湿地沉积物重金属含量持续升高,江汉湖群生态系统日益脆弱,加强对该地区生态环境演化研究、分析人类活动和富营养化对湖泊生态系统的影响、探究该地区不同沉积环境的碳埋藏规律等显得尤为重要.在对江汉平原重点地区(仙桃彭场镇幅和脉旺咀幅)第四纪地质调查的基础上,选取研究区大型渔场、小型鱼塘、沟滩、湖泊、水稻田、泄洪道、旱地、汉水阶地8种不同沉积环境的16个关键带点位,分别测定了其表层及浅层钻孔沉积物的色素、TOC(total organic carbon,总有机碳)与TN(total nitrogen,总氮).表层沉积物TOC含量反映了研究区南部多湖泊区域有机碳埋藏量较高,而北部冲、洪积成因环境相对较低,与色素、TN所指示的人类活动强度和富营养化水平相吻合.湿地浅层钻孔沉积物碳埋藏速率变化整体表现为升高趋势,与色素所指示的湖泊富营养化的趋势相吻合;不同沉积环境碳埋藏速率差异较大,最高为大型渔场77.71 g·m-2·a-1、最低为汉水阶地3.61 g·m-2·a-1.研究结果表明,受到人类活动影响,湖相沉积物中碳埋藏量相对较高,湖泊碳汇功能不断增强,这对江汉平原关键带碳循环研究具有重要意义.

       

    • 图  1  研究区及钻孔位置

      Fig.  1.  The location of the study area and core sites

      图  2  AMS14C测年随深度的变化

      Fig.  2.  AMS 14C dating and depth of the boreholes

      图  3  调查区关键带表层沉积物色素、TN与TOC分布

      CD.叶绿素,TC.总胡萝卜素,CD/TC.叶绿素/总胡萝卜素,Myx.蓝藻叶黄素,Osc.颤藻蓝素,Osc/ Myx.颤藻蓝素/蓝藻叶黄素,TN.总氮,TOC.总有机碳,C/N.碳氮比;图 3各图的比例尺1:50 000

      Fig.  3.  Distribution of pigments, TN and TOC in the surface sediments of critical zones in Xiantao

      图  4  关键带沉积物色素、TN以及TOC含量变化

      a.CZ-MW-9钻孔;b.CZ-PC-16钻孔;c.CZ-PC-17钻孔

      Fig.  4.  Changes of pigments, TN and TOC in the sediment of critical zones in Xiantao

      图  5  不同沉积环境下碳埋藏速率的变化

      Fig.  5.  Changes of carbon burial in different depositional environments

      表  1  研究区沉积物AMS14C定年数据

      Table  1.   AMS14C dating in survey region

      序号 室内编号 深度(m) 14C年龄(a BP) 2 Sigma校正(Cal a BP)
      1 JH001-003 3 2 550±30 2 750~2 710
      2 JH001-012 12 9 640±30 10 930~1 080
      3 JH002-007 7 6 460±30 7 555~7 545
      4 JH002-012 12 10 020±30 11 370~1 365
      5 CZ-MW-I-70 7 1 800±30 1 820~1 690
      下载: 导出CSV

      表  2  关键带典型沉积环境与碳埋藏

      Table  2.   Typical depositional environments and carbon burial of the critical zones

      采样点 沉积类型 深度(m) 岩心碳埋藏
      总量(g)
      平均埋藏速率
      (g·m-2·a-1)
      CZ-MW-1 阶地 6.0 25.24 3.61
      CZ-MW-2 旱地 1.3 47.20 5.55
      CZ-MW-7 泄洪道 0.8 21.29 6.51
      CZ-PC-3 水稻田 0.9 146.10 24.82
      CZ-PC-4 水稻田 0.8 104.46 19.96
      CZ-PC-17 滩地 0.4 124.19 37.97
      CZ-MW-8 沟渠 0.3 130.27 49.78
      CZ-PC-12 沟渠 0.5 149.01 40.07
      CZ-MW-9 湖泊 0.5 121.92 31.06
      CZ-PC-16 湖泊 0.5 147.29 37.53
      CZ-PC-13 鱼塘 0.3 68.08 26.02
      CZ-MW-14 鱼塘 0.1 44.26 45.10
      CZ-PC-15 鱼塘 0.1 75.65 77.09
      CZ-PC-18 鱼塘 0.3 148.88 56.90
      CZ-MW-10 渔场 0.3 186.22 71.17
      CZ-PC-11 渔场 0.3 203.35 77.71
      下载: 导出CSV
    • [1] Deng, H.B., Zhang, Y., Li, J.J., 2006.On the Ecological Problems and the Countermeasures of Jianghan Lake Zone in the Middle Reaches of Yangtse River.Journal of China University of Geosciences(Social Sciences Edition), 6(4):56-59(in Chinese with English abstract).
      [2] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      [3] Dong, X.H., Anderson, N.J., Yang, X.D., et al., 2012.Carbon Burial by Shallow Lakes on the Yangtze Floodplain and Its Relevance to Regional Carbon Sequestration.Global Change Biology, 18(7):2205-2217.doi: 10.1111/j.1365-2486.2012.02697.x
      [4] Gu, Y.S., Li, K.J., Qin, Y.M., et al., 2013.Impact of Human Activity on the Evolution of the Ecological Environment of Jianghan Lake Group in the Historical Period, Central China.Earth Science, 38(Suppl.1):133-144(in Chinese with English abstract). https://www.researchgate.net/publication/286539526_Impact_of_human_activity_on_the_evolution_of_the_ecological_environment_of_Jianghan_Lake_Group_in_the_historical_period_central_China
      [5] Gu, Y.S., Li, X.Y., Qiu, H.O., et al., 2008a.Sediments Records of Eutrophication History in the Donghu Lake, Wuhan, over the Past 100 Years.Ecology and Environment, 17(1):35-40 (in Chinese with English abstract).
      [6] Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008b.Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province.Earth Science, 33(5):679-686(in Chinese with English abstract).
      [7] Guo, Z.G., Yang, Z.S., Qu, Y.H., et al., 1999.Distribution Pattern of Carbon Storage in the Surficial Sediments in the Middle Continental Shelf Mud Area and Its Adjoining East China Sea Areas.Oceanologia et Limnologia Sinica, 30(4):421-426(in Chinese with English abstract).
      [8] Kayranli, B., Scholz, M., Mustafa, A., et al., 2010.Carbon Storage and Fluxes within Freshwater Wetlands:A Critical Review.Wetlands, 30(1):111-124.doi: 10.1007/s13157-009-0003-4
      [9] Krishnamurthy, R.V., Bhattacharya, S.K., Kusumgar, S., 1986.Palaeoclimatic Changes Deduced from 13C/12C and C/N Ratios of Karewa Lake Sediments, India.Nature, 323(6084):150-152.doi: 10.1038/323150a0
      [10] Lal, R., 2004.Soil Carbon Sequestration Impacts on Global Climate Change and Food Security.Science, 304(5677):1623-1627.doi: 10.1126/science.1097396
      [11] Leavitt, P.R., 1993.A Review of Factors that Regulate Carotenoid and Chlorophyll Deposition and Fossil Pigment Abundance.Journal of Paleolimnology, 9(2):109-127.doi: 10.1007/bf00677513
      [12] Li, C.A., Zhang, Y.F., Yu, S.Y., et al., 2009.Grain Size Characteristics and Environmental Significance of Hanjiang 2005 Flood Sediments.Quaternary Sciences, 29(2):276-281 (in Chinese with English abstract). http://www.oalib.com/paper/1571434
      [13] Li, J.C., Ma, H.R., Ding, L.L., et al., 2004, Determination of Pigments in Lake Sediment with UV-VIS Spectrophotometry.Environmental Science and Technology, 27(4):36-37 (in Chinese with English abstract).
      [14] Mayer, L.M., 1994.Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments.Geochimica et Cosmochimica Acta, 58(4):1271-1284.doi: 10.1016/0016-7037(94)90381-6
      [15] Meyers, P.A., 1994.Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter.Chemical Geology, 114(3-4):289-302.doi: 10.1016/0009-2541(94)90059-0
      [16] National Research Council (NRC), 2001.Basic Research Opportunities in Earth Sciences.National Academy Press, Washington DC.
      [17] Pan, G.X., Li, L.Q., Zheng, J.F., et al., 2008.Perspectives on Cycling and Sequestration of Organic Carbon in Paddy Soils of China.Acta Pedologica Sinica, 45(5):901-914(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200805017.htm
      [18] Qu, W.C., Wu, R.J., Wang, S.M., et al., 2000.Sedimentary Pigment and Its Environmental Signification of East Juyanhai in Inner Mongolia since the Past 2 600 Years.Acta Sedimentologica Sinica, 18(1):13-17 (in Chinese with English abstract).
      [19] Shen, H.Y., Li, S.J., Shu, W.X., 2007.Pigments in the Lake Sediments:Environmental Indicator.Marine Geology & Quaternary Geology, 27(3):37-42 (in Chinese with English abstract).
      [20] Swain, E.B., 1985.Measurement and Interpretation of Sedimentary Pigments.Freshwater Biology, 15(1):53-75.doi: 10.1111/j.1365-2427.1985.tb00696.x
      [21] Tranvik, L.J., Downing, J.A., Cotner, J.B., et al., 2009.Lakes and Reservoirs as Regulators of Carbon Cycling and Climate.Limnology and Oceanography, 54(6, Part 2):2298-2314.doi: 10.4319/lo.2009.54.6_part_2.2298
      [22] Wang, X.L., 2001.Evaluation on Vulnerability of Wetland and Ecological Rehabilitation of Jianghan Plain.Journal of Central China Normal University(Nat. Sci.), 35(2):237-240(in Chinese with English abstract).
      [23] Wu, Y.H., Hou, X.H., Cheng, X.Y., et al., 2007.Combining Geochemical and Statistical Methods to Distinguish Anthropogenic Source of Metals in Lacustrine Sediment:A Case Study in Dongjiu Lake, Taihu Lake Catchment, China.Environmental Geology, 52(8):1467-1474.doi: 10.1007/s00254-006-0587-4
      [24] Xi, X.H., Yang, Z.F., Xia, X.Q., et al., 2009.Calculation Techniques for Soil Carbon Storage of China Based on Multi-Purpose Geochemical Survey.Earth Science Frontiers, 16(1):194-205 (in Chinese with English abstract).
      [25] Yang, D.Y., Li, X.S., Zhang, Z.K., 2000.Lake Evolution along Middle-Lower Reaches of the Yangtze River.Journal of Lake Sciences, 12(3):226-232(in Chinese with English abstract). doi: 10.18307/2000.0306
      [26] Yang, J.F., Zhang, C.G., 2014.Earth's Critical Zone:A Holistic Framework for Geo-Environmental Researches.Hydrogeology & Engineering Geology, 41(3):98-104 (in Chinese with English abstract).
      [27] Yu, J.Q., Wang, X.Y., Li, J., et al., 2001.Paleoenvironmental Interpretations on Organic Carbon Isotopic Records from Lake Sediments:A Critique.Journal of Lake Sciences, 13(1):72-78(in Chinese with English abstract). doi: 10.18307/20010111
      [28] Zeng, Z.Q., Zhang, C.M., Li, J., et al., 2013.Carbon Stock and Cycling of Wetland Ecosystem.Chinese Agricultural Science Bulletin, 29(26):88-92 (in Chinese with English abstract).
      [29] Zhang, S.P., Wang, L., Hu, J.J., et al., 2011.Organic Carbon Accumulation Capability of Two Typical Tidal Wetland Soils in Chongming Dongtan, China.Journal of Environmental Sciences, 23(1):87-94.doi: 10.1016/s1001-0742(10)60377-4
      [30] Zhang, Y., Kong, X.D., Deng, H.B., et al., 2010.Change Characteristic of Lakes in Hubei Province in the Past 100 Years.Wetland Science, 8(1):15-20(in Chinese with English abstract).
      [31] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230(in Chinese with English abstract).
      [32] 邓宏兵, 张毅, 李俊杰, 2006.长江中游江汉平原湖区主要生态环境问题与整治对策.中国地质大学学报(社会科学版), 6(4):56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXS200604010.htm
      [33] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      [34] 顾延生, 李贶家, 秦养民, 等, 2013.历史时期以来人类活动与江汉湖群生态环境演变.地球科学, 38(增刊1):133-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1016.htm
      [35] 顾延生, 李雪艳, 邱海鸥, 等, 2008a.100年来东湖富营养化发生的沉积学记录.生态环境, 17(1):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200801009.htm
      [36] 顾延生, 邱海鸥, 谢树成, 等, 2008b.湖北梁子湖近代沉积记录对人类活动的响应.地球科学, 33(5):679-686. http://www.earth-science.net/WebPage/Article.aspx?id=1688
      [37] 郭志刚, 杨作升, 曲艳慧, 等, 1999.东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究.海洋与湖沼, 30(4):421-426. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199904011.htm
      [38] 李长安, 张玉芬, 袁胜元, 等, 2009.江汉平原洪水沉积物的粒度特征及环境意义——以2005年汉江大洪水为例.第四纪研究, 29(2):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902016.htm
      [39] 李金城, 马宏瑞, 丁丽丽, 等, 2004.紫外可见分光光度法测定湖泊沉积物中的色素.环境科学与技术, 27(4):36-37. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ504.007.htm
      [40] 潘根兴, 李恋卿, 郑聚锋, 等, 2008.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题.土壤学报, 45(5):901-914. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200805017.htm
      [41] 瞿文川, 吴瑞金, 王苏民, 等, 2000.近2 600年来内蒙古居延海湖泊沉积物的色素含量及环境意义.沉积学报, 18(1):13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200001002.htm
      [42] 申慧彦, 李世杰, 舒卫先, 2007.湖泊沉积物中色素的研究及其环境指示意义.海洋地质与第四纪地质, 27(3):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703006.htm
      [43] 王学雷, 2001.江汉平原湿地生态脆弱性评估与生态恢复.华中师范大学学报(自然科学版), 35(2):237-240. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ200102031.htm
      [44] 奚小环, 杨忠芳, 夏学齐, 等, 2009.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究.地学前缘, 16(1):194-205. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901028.htm
      [45] 杨达源, 李徐生, 张振克, 2000.长江中下游湖泊的成因与演化.湖泊科学, 12(3):226-232. doi: 10.18307/2000.0306
      [46] 杨建锋, 张翠光, 2014.地球关键带:地质环境研究的新框架.水文地质工程地质, 41(3):98-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm
      [47] 余俊清, 王小燕, 李军, 等, 2001.湖泊沉积有机碳同位素与环境变化的研究进展.湖泊科学, 13(1):72-78. doi: 10.18307/20010111
      [48] 曾掌权, 张灿明, 李姣, 等, 2013.湿地生态系统碳储量与碳循环研究.中国农学通报, 29(26):88-92. doi: 10.11924/j.issn.1000-6850.2013-0852
      [49] 张毅, 孔祥德, 邓宏兵, 等, 2010.近百年湖北省湖泊演变特征研究.湿地科学, 8(1):15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201001004.htm
      [50] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  5417
    • HTML全文浏览量:  1683
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-03
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回