Formation and Evolution of Concealed Fault Zone in Sedimentary Basins and Its Significance in Hydrocarbon Accumulation
-
摘要: 断裂趋势带是指盆地沉积盖层内的弱变形构造带,属于断裂带形成演化早期或中期阶段的产物.沉积盆地断裂趋势带隐蔽性较强,识别标志不明显,往往被忽视,因而在断裂趋势带上未发现油气藏的区域应该是未来油气勘探值得重视的领域.根据断裂趋势带的规模可将其划分为:(1) 圈闭级断裂趋势带,特征是多个雁列式断块、弧形断块或者复合型断块圈闭呈线状排列组成;(2) 洼陷级断裂趋势带,表现为雁列式展布的多条断裂或褶皱,其间由小断层断续相连;(3) 凹陷级断裂趋势带,表现为洼陷、凸起、沉积相带或圈闭等构造单元呈线状断续相间排列;(4) 坳陷级断裂趋势带,属于区域性隐性断裂,一般表现为沿固定方向基底埋深突变、沉积盖层厚度突变、沉积相带突变等特征;(5) 盆地级断裂趋势带,表现为成排成带的低幅度构造定向延伸组合成的大规模鼻状褶皱带或大型低幅度隆起.另外,结合构造物理模拟实验建立了基底断裂走滑型断裂趋势带的5阶段演化模式分析认为,断裂趋势带油气聚集模式可以概括为6种:雁列状断块聚集模式、带状断块聚集模式、雁列状褶皱聚集模式、平行状复合圈闭聚集模式、网格状复合圈闭聚集模式、环状复合圈闭聚集模式.Abstract: Concealed fault zones are a type of weak deformation fault zones that form in sedimentary covers and have expressive forms of faults that show in the early-middle stage of their formation and evolution processes. It can be found by reservoirs, sedimentary facies, sags (depressions) and ridges ranged regularly. Concealed fault zones are supposed to be potential direction for future exploration since reservoirs are usually distributed in concealed fault zones, displaying en-echelon, string or belt patterns. On the vacant area of concealed fault zones should be worthy of oil and gas exploration area in the future According to the scale, concealed fault zones are classified into 5 types in this paper: (1) the trap scale concealed fault zone consists of a series of en echelon fault blocks, curved blocks or compound blocks in line; (2) the sub-sag scale concealed fault zone composed of a lot of faults and folds, with the distribution of echelons and string of many small faults; (3) the sag scale concealed fault zone showing that there is an intermittent string of sub-sags, ridges, sedimentary facies or traps; (4) the depression scale concealed fault zone identified by the mutation of basement depth, the thickness of the sedimentary cover and sedimentary facies, belonging to regional-concealed fault; (5) the basin scale concealed fault zone characterized by large-scale nosing folds or low-amplitude ridges ranged in defined rows. In addition, the evolution model of concealed fault is established under the evolution of transtensional regional stress field and basement fault activities combined with the structural analogue experiments. It is found that concealed fault zones have controlled the accumulation of the oil and gas in the following six patterns: en echelon fault block accumulation pattern, banded fault block accumulation pattern, en echelon fold accumulation pattern, an accumulation pattern of parallel combination traps, an accumulationpattern of grid combination traps, an accumulation pattern of circularity combination traps.
-
图 5 盆地级断裂趋势带特征
a.鄂尔多斯盆地基底断裂、沉积相、油藏叠合图,据王建民等 (2013)改动;b.四川盆地须家河组断裂趋势带,据汪泽成等 (2008)
Fig. 5. Characteristic of basin scale concealed fault zone
图 8 歧口凹陷断裂趋势带控制沉积体系展布
Fig. 8. The control of concealed fault zone on the distribution of depositional system in Qikou depression
图 10 鄂尔多斯盆地断裂趋势带对输导体系的改造
a.鄂尔多斯盆地上古生界裂缝方向预测;b.鄂尔多斯盆地上古生界渗透率异常平面分布;据赵文智等 (2003)改动
Fig. 10. The north-east concealed fault zone transformed the petroleum transport system in Ordos basin
-
[1] Atmaoui, N., 2006.Development of Pull-Apart Basins and Associated Structures by the Riedel Shear Mechanism:Insight from Scaled Clay Analogue Models.University of Bochum, Doktorarbeit. [2] Bellahsen, N., Daniel, J.M., 2005.Fault Reactivation Control on Normal Fault Growth:An Experimental Study.Journal of Structural Geology, 27(4):769-780.doi: 10.1016/j.jsg.2004.12.003 [3] Dooley, T.P., Schreurs, G., 2012.Analogue Modelling of Intraplate Strikeslip Tectonics:A Review and New Experimental Results.Tectonophysics, (574-575):1-71.doi: 10.1016/j.tecto.2012.05.030 [4] Ferrill, D.A., Morris, A.P., Stamatakos, J.A., et al., 2000.Crossing Conjugate Normal Faults.AAPG Bulletin, 84(10):1543-1559.doi: 10.1306/8626BEF7-173B-11D7-8645000102C1865D [5] Hardy, S., 2011.Cover Deformation above Steep, Basement Normal Faults:Insights from 2D Discrete Element Modeling.Marine and Petroleum Geology, 28(5):966-972.doi: 10.1016/j.marpetgeo.2010.11.005 [6] Hardy, S., 2013.Propagation of Blind Normal Faults to the Surface in Basaltic Sequences:Insights from 2D Discrete Element Modelling.Marine and Petroleum Geology, 48:149-159.doi: 10.1016/j.marpetgeo.2013.08.012 [7] Hu, S.Y., Yu, Y.J., Dong, D.Z., et al., 2006.Control of Fault Activity on Hydrocarbon Accumulation in Central Junggar Basin.Acta Petrolei Sinica, 27(1):1-7 (in Chinese with English abstract). doi: 10.1111/aphs.2006.27.issue-1 [8] Li, Y.P., Wu, S.G., Han, W.G., et al., 2005.Research of Comprehensive Geophysical Inversion of Pre-Tertiary Tectonics in Dongying Depression.Journal of the University of Petroleum, China, (2):16-20 (in Chinese with English abstract). https://www.researchgate.net/publication/297432413_Research_of_comprehensive_geophysical_inversion_of_pre-Tertiary_tectonics_in_Dongying_depression [9] Luo, Q., 2010.Concept, Principle, Model and Significance of the Fault Controlling Hydrocarbon Theory.Petroleum Exploration and Development, 37(3):316-324 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60035-3 [10] Mollema, P.N., Antonellini, M.A., 1996.Compaction Bands:A Structural Analog for Anti-Mode I Cracks in Aeolian Sandstone.Tectonophysics, 267(1-4):209-228.doi: 10.1016/s0040-1951(96)00098-4 [11] Morley, C.K., 1999.How Successful are Analogue Models in Addressing the Influence of Pre-Existing Fabrics on Rift Structure?Journal of Structural Geology, 21(8-9):1267-1274.doi: 10.1016/s0191-8141(99)00075-9 [12] Qi, P., Ren, J.Y., Shi, S.S., et al., 2010.Features of the Cenozoic Structure of the Coastal Zone in Qikou Sag and its Formation Mechanism.Acta Petrolei Sinica, 31(6):900-905 (in Chinese with English abstract). [13] Qiu, L.J., 2006.Controlling of Petrophysical Fractures on Extra-Low Permeability Oil and Gas Reservoirs in Ordos Basin.Petroleum Exploration and Development, 33(6):667-670 (in Chinese with English abstract). [14] Sanzhong, L., Guochun, Z., Liming, D., et al., 2012.Cenozoic Faulting of the Bohai Bay Basin and Its Bearing on the Destruction of the Eastern North China Craton.Journal of Asian Earth Sciences, 47:80-93.doi: 10.1016/j.jseaes.2011.06.011 [15] Sylvester, A.G., 1988.Strike-Slip Fault.Geol.Soc.Am.Bull., 100(31):1666-1703.doi:10.1130/0016-7606(1988)100 < 1666:SSF>2.3.CO; 2 [16] Thomas, G.E., 1974.Lineament-Block Tectonics:Willistpn-Blood Creek Basin.AAPG Bulletin, 58(7):1305-1322. http://aapgbull.geoscienceworld.org/content/58/7/1305 [17] Wang, W.F., Zhou, W.W., Zhou, J., et al., 2014.Formation Mechanism and Distribution of Buried Fault Zones in the Jinhu Sag.Journal of Jilin University (Earth Science Edition), 44(5):1395-1405 (in Chinese with English abstract). https://www.researchgate.net/publication/288310869_Formation_mechanism_and_distribution_of_buried_fault_zones_in_the_Jinhu_sag [18] Wang, W.F., Zhu, C.H., Zhang, X.J., et al., 2016.Genetic Types and Geological Significances of Transverse Faults at Longmenshan Fault Zone.Earth Science, 41(5):729-741 (in Chinese with English abstract). [19] Wang, Z.C., Zhao, W.Z., Li, Z.Y., et al., 2008.Role of Basement Faults in Gas Accumulation of Xujiahe Formation, Sichuan Basin.Petroleum Exploration and Development, (5):541-547 (in Chinese with English abstract). https://www.researchgate.net/publication/248602134_Role_of_basement_faults_in_gas_accumulation_of_Xujiahe_Formation_Sichuan_Basin [20] Wang, Z.C., Zhao, W.Z., Men, X.Y., et al., 2005.Control of Basement Fault Minor-Activity on Gas Pool Formation of Upper Paleozoic.Petroleum Exploration and Development, 32(1):9-13 (in Chinese with English abstract). [21] Wang, J.M., Wang, J.Y., 2013.Low-Amplitude Structures and Oil-Gas Enrichment on the Yishaan Slope, Ordos Basin.Petroleum Exploration and Development, 40(1):49-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201301007.htm [22] Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2003.Key Role of Basement Fault Control on Oil Accumulation of Yangchang Formation, Upper Triassic, Ordos Basin.Petroleum Exploration and Development, 30(5):2-5 (in Chinese with English abstract). [23] Zhou, W.W., Wang, W.F., An, B., et al., 2014a.Identification of Potential Fault Zones and its Geological Significance in Bohai Bay Basin.Earth Science, (11):1627-1638 (in Chinese with English abstract). https://www.researchgate.net/publication/285964480_Identification_of_potential_fault_zones_and_its_geological_significance_in_Bohai_Bay_Basin [24] Zhou, W.W., Wang, W.F., An, B., et al., 2014b.Genetic Types of Concealed Fault Zone and Its Significance on Hydrocarbon Accumulation.Natural Gas Geoscience, 25(11):1527-1538 (in Chinese with English abstract). [25] 胡素云, 蔚远江, 董大忠, 等, 2006.准噶尔盆地腹部断裂活动对油气聚集的控制作用.石油学报, 27(1): 1-7. doi: 10.7623/syxb200601001 [26] 李云平, 吴时国, 韩文功, 等, 2005.东营凹陷前古近系构造综合地球物理反演.石油大学学报:自然科学版, (2): 16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200502004.htm [27] 罗群, 2010.断裂控烃理论的概念、原理、模式与意义.石油勘探与开发, 37(3): 316-324. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003010.htm [28] 祁鹏, 任建业, 史双双, 等, 2010.歧口凹陷沿岸带新生代构造特征及其形成机制.石油学报, 31(6): 900-905. doi: 10.7623/syxb201006005 [29] 邱领军, 2006.鄂尔多斯盆地储集层物性断裂对超低渗透油气藏的控制作用.石油勘探与开发, 33(6): 667-670. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606004.htm [30] 汪泽成, 赵文智, 李宗银, 等, 2008.基底断裂在四川盆地须家河组天然气成藏中的作用.石油勘探与开发, 5: 541-547. doi: 10.3321/j.issn:1000-0747.2008.05.003 [31] 汪泽成, 赵文智, 门相勇, 等, 2005.基底断裂"隐性活动"对鄂尔多斯盆地上古生界天然气成藏的作用.石油勘探与开发, 32(1): 9-13. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200501004.htm [32] 王建民, 王佳媛, 2013.鄂尔多斯盆地伊陕斜坡上的低幅度构造与油气富集.石油勘探与开发, 40(1): 49-57. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301007.htm [33] 王伟锋, 周维维, 李亚辉, 等, 2014.金湖凹陷隐性断裂带形成机制及分布.吉林大学学报 (地球科学版), 5: 1395-1405. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405001.htm [34] 王伟锋, 朱传华, 张晓杰, 等, 2016.龙门山断裂带横断层成因类型及地质意义.地球科学, 41(5): 729-741. http://www.earth-science.net/WebPage/Article.aspx?id=3300 [35] 赵文智, 胡素云, 汪泽成, 等, 2003.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用.石油勘探与开发, 30(5): 2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200305000.htm [36] 周维维, 王伟锋, 安邦, 等, 2014a.渤海湾盆地隐性断裂带识别及其地质意义.地球科学, (11): 1627-1638. http://www.earth-science.net/WebPage/Article.aspx?id=2982 [37] 周维维, 王伟锋, 安邦, 等, 2014b.渤海湾盆地隐性断裂带成因类型特征及其对油气聚集的控制作用.天然气地球科学, 25(11): 1527-1538. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201411007.htm