EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province
-
摘要: 紫云山岩体是赣中地区与钨铀成矿关系极为密切的过铝质花岗岩体,但目前该岩体的成岩时代尚不明确.通过偏光显微镜、扫描电镜、电子探针等手段,首次开展了紫云山花岗岩中赋存晶质铀矿的精细矿物学研究.结果表明:晶质铀矿主要赋存于黑云母之中,少数被黄铁矿包裹,部分晶质铀矿被不同程度溶蚀和交代,表明晶质铀矿是本区花岗岩型铀矿的主要铀源矿物之一.利用电子探针U-Th-Pb化学定年法测得蕉坑单元 (J3J)5颗晶质铀矿年龄为154.5~168.9 Ma,加权平均年龄为161.8±2.4 Ma (MSWD=0.26,n=26),庙前单元 (J3M) 三颗晶质铀矿年龄为152.8~164.7 Ma,加权平均年龄为159.7±3.2 Ma (MSWD=0.2,n=15).获得的年龄与南岭地区主要含钨花岗岩的侵入时间高度一致,对应华南中生代大规模岩浆活动的第二阶段.晶质铀矿年龄与华南含钨花岗岩锆石U-Pb年龄非常一致,验证了过铝质富铀花岗岩中晶质铀矿电子探针定年方法的可行性.Abstract: The Ziyunshan peraluminous granite, located in central Jiangxi Province is closely related to uranium and tungsten mineralization. In order to obtain the accurate age of this granite, the electron microscope, SEM and EMPA were firstly used to study uraninites in the Ziyunshan granite in this study. Results show that most of the uraninites are wrapped in biotite or muscovitized biotite, and only one is surrounded by pyrite. Some uraninite grains have been fractured or altered, which indicates uraninite is one of the most important uranium source minerals of granite type uranium deposits in this area. Five uraninite grains electron microprobe U-Th-Pb dating results in the Jiaokeng unit (J3J) are between 154.5 Ma and 168.9 Ma, the weighted average age is 161.8±2.4 Ma (MSWD=0.26, n=26). Chemical ages of three uraninite grains in the Miaoqian unit (J3M) are between 152.8 Ma and 164.7 Ma, the weighted average age is 159.7±3.2 Ma (MSWD=0.2, n=15). Chemical ages obtained here are very consistent with W-bearing granites in the South China. It is confirmed that uraninite EMPA chemical dating is a suitable method for U-fertile peraluminous granites.
-
Key words:
- uraninite /
- uranium-source minerals /
- EMPA chemical dating /
- Ziyunshan granite /
- central Jiangxi Province /
- mineralogy
-
图 1 紫云山岩体地质简图
1.第四系;2.白垩系;3.三叠系;4.震旦系;5.万源岩组;6.蕉坑单元花岗岩;7.庙前单元花岗岩;8.瑶里单元花岗岩;9.断层;10.构造边界;11.水库.图a据Yan et al.(2003)修改
Fig. 1. Geological sketch of the Ziyunshan pluton
表 1 紫云山花岗岩晶质铀矿电子探针数据 (%) 及年龄值
Table 1. EPMA analyses results (%) and chemical ages of uraninites from Ziyunshan granite
序号 测点号 Y2O3 ThO2 UO2 La2O3 PbO P2O5 CaO Total 年龄 (Ma) 2σ(Ma) 焦坑单元 (J3J) 1 13ZY-6-9 0.69 8.76 86.9 0 1.93 0 0 98.2 160.1 6.3 2 13ZY-6-11 0.97 8.15 82.6 0 1.87 0 0 93.6 163.2 6.4 3 14ZYS-3-2 0.70 7.16 88.4 0 1.91 0.02 0.14 98.3 156.9 6.2 4 14ZYS-3-3 0.72 6.67 88.2 0.04 1.93 0.06 0 97.6 159.2 6.3 5 14ZYS-3-4 0.65 8.05 86.5 0.02 1.95 0 0 97.2 163.2 6.4 6 14ZYS-3-5 0.67 7.73 88.2 0 2.05 0.06 0 98.7 168.5 6.6 7 14ZYS-3-6 0.65 8.05 87.1 0.08 1.93 0.06 0 97.9 160.5 6.3 8 13ZY-7-1 0.64 8.69 85.2 0 1.94 0 0 96.5 164.3 6.5 9 13ZY-7-2 0.65 8.36 85.3 0 1.88 0 0 96.2 159.4 6.3 10 13ZY-7-3 0.69 8.62 85.5 0 1.95 0.03 0 96.8 164.1 6.5 11 13ZY-7-4 0.69 8.20 85.6 0 1.88 0 0 96.4 158.3 6.2 12 13ZY-7-5 0.66 8.55 85.7 0 1.96 0.01 0 96.9 165.1 6.5 13 13ZY-7-6 0.68 8.49 85.7 0 1.94 0 0 96.8 163.6 6.4 14 13ZY-7-7 0.68 8.08 85.3 0 1.93 0 0 96.0 163.7 6.4 15 13ZY-7-8 0.75 7.98 86.0 0 1.93 0.03 0 96.7 162.3 6.4 16 13ZY-7-11 0.74 9.59 85.5 0.04 2.01 0.04 0 97.9 168.9 6.6 17 13ZY-7-12 0.60 9.69 84.7 0 1.89 0 0 96.9 160.5 6.3 18 13ZY-7-13 0.70 9.33 84.6 0 1.94 0.03 0 96.6 164.6 6.5 19 13ZY-7-14 0.68 9.79 84.8 0.01 1.88 0 0 97.2 158.9 6.3 20 13ZY-7-15 0.66 9.88 83.6 0.03 1.80 0 0 96.0 154.5 6.1 21 13ZY-7-16 0.85 9.9 83.5 0 1.85 0 0 96.1 159.0 6.3 22 13ZY-7-17 0.97 9.94 82.6 0 1.88 0 0 95.4 163.2 6.4 23 13ZY-7-18 0.75 9.09 86.0 0 1.95 0 0 97.8 162.9 6.4 24 13ZY-7-19 0.85 9.74 83.2 0 1.89 0 0 95.7 163.4 6.4 25 13ZY-7-20 0.83 9.79 83.2 0 1.87 0 0 95.7 161.1 6.3 26 13ZY-7-21 0.68 9.01 79.5 0.03 1.79 0 0.07 91.1 161.5 6.4 庙前单元 (J3M) 27 13ZY-9-1 0.10 3.65 90.2 0.03 1.96 0.02 0 95.9 159.4 6.3 28 13ZY-9-2 0.11 4.03 88.8 0.02 1.92 0 0 94.8 158.9 6.3 29 13ZY-9-3 0.22 3.52 91.2 0 1.99 0.01 0 97.0 160.8 6.3 30 13ZY-9-4 0.07 2.55 89.9 0 2.01 0 0 94.5 164.7 6.5 31 13ZY-9-5 0.07 2.99 91.3 0 1.99 0 0 96.3 160.5 6.3 32 13ZY-9-6 0.04 2.44 93.5 0 2.06 0.01 0 98.1 162.5 6.4 33 13ZY-9-7 0.07 2.17 87.7 0 1.87 0 0 91.8 157.7 6.2 34 13ZY-9-11 0.21 6.38 88.4 0 1.94 0.07 0 97.0 159.8 6.3 35 13ZY-9-12 0.19 6.50 88.0 0 1.85 0.06 0 96.6 152.8 6 36 13ZY-9-13 0.52 7.84 87.2 0.06 1.93 0.02 0 97.6 160.3 6.3 37 13ZY-9-14 0.42 5.52 91.5 0 1.97 0.07 0 99.5 157.3 6.2 38 13ZY-9-15 0.41 6.31 89.8 0 1.96 0 0 98.5 158.7 6.2 39 13ZY-9-16 0.54 7.34 87.5 0 1.94 0 0 97.4 161.0 6.3 40 13ZY-9-17 0.38 6.69 88.1 0 1.93 0 0 97.1 159.1 6.3 41 13ZY-9-18 0.60 7.47 88.4 0 2.00 0 0 98.5 163.6 6.4 -
[1] Bowles, J.F.W., 1990.Age Dating of Individual Grains of Uraninite in Rocks from Electron Microprobe Analyses.Chemical Geology, 83(S1-2):47-53.doi: 10.1016/0009-2541(90)90139-X [2] Butera, K.M., Williams, I.S., Blevin, P.L., et al., 2001.Zircon U-Pb Dating of Early Palaeozoic Monzonitic Intrusives from the Goonumbla Area, New South Wales.Australian.Journal of Earth Science, 48(3):457-464.doi: 10.1046/j.1440-0952.2001.00870.x [3] Cameron-Schimann, M., 1962.Electron Microprobe Study of Uranium Minerals and It's Application to Some Canadian Deposits [Microform].Journal of Electroanalytical Chemistry, 4(1):51-58. doi: 10.1016/0022-0728(62)80027-8 [4] Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., et al., 1987.Alpha-Decay-Induced Fracturing in Zircon:The Transition from the Crystalline to the Metamict State.Science, 236(4808):1556-1559.doi: 10.1126/science.236.4808.1556 [5] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007.EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen:Records of Multi-Tectonometamorphic Events.Chinese Science Bulletin, 52(16):2252-2263(in Chinese). doi: 10.1007/s11434-007-0299-5 [6] Chen, P.R., Hua, R.M., Zhang, B.T.et al., 2002.Early Yanshanian Post-Orogenic Granitoids in the Nanling Region-Petrological Constraints and Geodynamic Settings.Science in China (Series D), 32(4):279-287 (in Chinese). [7] Cocherie, A., Albarede, F., 2001.An Improved U-Th-Pb Age Calculation for Electron Microprobe Dating of Monazite.Geochimica et Cosmochimica Acta, 65(65):4509-4522.doi: 10.1016/S0016-7037(01)00753-0 [8] Cocherie, A., Be., M.E., Legendre, O., et al., 2005.Electron Microprobe Dating as a Tool for Determining the Closure of Th-U-Pb Systems in Migmatitic Monazites.American Mineralogist, 90(4):607-618. doi: 10.2138/am.2005.1303 [9] Cocherie, A., Legender, O., 2007.Potential Minerals for Determining U-Th-Pb Chemical Age Using Electron Microprobe.Lithos, 93(93):288-309.doi: 10.1016/j.lithos.2006.03.069 [10] Cross, A., Jaireth, S., Rapp, R., 2011.Reconnaissance-Style EPMA Chemical U-Th-Pb Dating of Uraninite.Australian Journal of Earth Sciences, 58(6):675-683.doi: 10.1080/08120099.2011.598190 [11] Deer, W.A., Howie, R.A., Zussman, J., 1992.An Introduction to the Rock-Forming Minerals.Longman Scientific and Technical, Essex, 696. [12] Ewing, R.C., 1994.The Metamict State:1993—The Centennial.Nuclear Instruments & Methods in Physics Research, 91(1-4):22-29.doi:10.1016/0168-583X (94)96186-7 [13] Fayek, M., Janeczek, J., Ewing, R.C., 1997.Mineral Chemistry and Oxygen Isotopic Aanalyses of Uraninite, Pitchblende and Uranium Alteration Minerals from the Cigar Lake Deposit, Saskatchewan, Canada.Applied Geochemistry, 12(5):549-565.doi:10.1016/S0883-2927 (97)00032-2 [14] Förster, H.J., Rhede, D., Stein, H.J., et al., 2012.Paired Uraninite and Molybdenite Dating of the Königshain Granite:Implications for the Onset of Late-Variscan Magmatism in the Lausitz Block.International Journal of Earth Sciences, 101(1):57-67.doi: 10.1007/s00531-010-0631-1 [15] Gao, Y.Y., Li, X.H., Griffin, W.L., et al., 2014.Screening Criteria for Reliable U-Pb Geochronology and Oxygen Isotope Analysis in Uranium-Rich Zircons:A Case Study from the Suzhou A-Type Granites, SE China.Lithos, 192(4):180-191. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501003009.htm [16] Ge, X.K., Qin, M.K., Fan, G., 2011.Review on the Application of Electron Microprobe Chemical Dating Method in the Age Research of Uraninite/Pitchblende.World Nuclear Geoscience, 28(1):55-62 (in Chinese with English abstract). [17] Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007.Precise Zircon SHRIMP U-Pb and Quartz Vein Rb-Sr Dating of Mesozoic Taoxikeng Tungsten Polymetal Lic Deposit in Southern Jiangxi.Mineral Deposits, 26(4):432-442 (in Chinese with English abstract). [18] Guo, G.L., Zhang, Z.S., Liu, X.D., et al., 2012.EPMA Chemical U-Th-Pb Dating of Uraninite in Guangshigou Uranium Deposit.Journal of East China Institute of Technology, 35(4):309-314 (in Chinese with English abstract). [19] Horn, I., Rudnick, R.L, McDonough, W.F., 2000.Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS:Application to U-Pb Geochronology.Chemical.Geology, 167(3):281-301.doi:10.1016/S0009-2541(99) 00168-0 [20] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005.Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nan Ling Range.Geological Journal of China Universities, 11(3):291-304 (in Chinese with English abstract). [21] Kempe, U., 2003.Precise Electron Microprobe Age Determination in Altered Uraninite:Consequences on the Intrusion Age and the Metallogenic Significance of the Kirchberg Granite (Erzgebirge, Germany).Contributions to Mineralogy and Petrology, 145(1):107-118.doi: 10.1007/s00410-002-0439-5 [22] Kotzer, T.G., Kyser, T.K., 1993.O, U, and Pb Isotopic and Chemical Variations in Uraninite:Implications for Setermining the Temporal and Fluid History of Ancient Terrains.American Mineralogist, 78:1262-1274. https://www.researchgate.net/publication/235999500_O_U_and_Pb_Isotopic_and_Chemical_Variations_in_Uraninite_-_Implications_for_Determining_the_Temporal_and_Fluid_History_of_Ancient_Terrains [23] Li, G.L., Hua, R.M., Wei, X.L., et al., 2014.Re-Os Isotopic Ages of Two Types of Molybdenite from Zhangdongkeng Tungsten Deposit in Southern Jiangxi Province and Their Geologic Implications.Earth Science, 39(2):165-173 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402005.htm [24] Li, G.L., Hua, R.M., Wei, X.L., et al., 2011.Rb-Sr Isochron Age of Single-Grain Muscovite in the Xu Shan W-Cu Deposit, Central Jiang Xi, and Its Geological Signficence.Earth Science, 36(2):382-388 (in Chinese with English abstract). [25] Li, H.Q., Lu, Y.F., Wan, G., Deng, H., et al., 2006.Dating of the Rock-Forming and Ore Forming Ages and Their Geological Significances in the Furong Ore-Field, Qitian Mountain, Hunan.Geological Review, 52(1):113-121 (in Chinese with English abstract). [26] Li, J.D., Bai, D.Y., Wu, G.Y., et al., 2005.Zircon SHRIMP Dating of the Qitianling Granite, Chenzhou, Southern, Hunan, and Its Geological Significance.Geological Billetin of China, 24(5):411-414 (in Chinese with English abstract). [27] Li, Q.L., Li, X.H., Lan, Z.W., et al., 2013.Monazite and Xenotime U-Th-Pb Geochronology by Ionmicroprobe:Dating Highly Fractionated Granites at Xihuashan Tungsten Mine, SE China.Contributions to Mineralogy and Petrology, 166(1):65-80.doi: 10.1007/s00410-013-0865-6 [28] Li, X.H., Liu, X.M., Liu, Y.S., et al., 2015., Accuracy of LA-ICPMS Zircon U-Pb Age Determination:An Inter-Laboratory Comparison.Science in China (Series D), 45(9):1294-1303 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201510004.htm [29] Li, X.J., Guo, T., Wang, Q.F., 2003.Electron Microprobe Chemical Dating Technique.Earth Science Frontiers, 10(2):411-414 (in Chinese with English abstract). [30] Liu, J., Mao, J.W., Ye, H.S., et al., 2008.Zircon LA-ICPMS U-Pb Dating of Hukeng Granite in Wugongshan Area, Jiangxi Province and Its Geochemical Characteristics.Acta Perologica Sinica, 24(8):1813-1822 (in Chinese with English abstract). https://www.researchgate.net/publication/283778992_Zircon_LA-ICPMS_U-Pb_dating_of_Hukeng_granite_in_Wugongshan_area_Jiangxi_Province_and_its_geoehemical_characteristics [31] Liu, Y., 2013.Geochronology and Geochemical of Ziyunshan Pluton at Yuhuashan Area in Jiangxi and Its Geological Significance (Dissertation).East China University of Technology, Nanchang, 25-32(in Chinese with English abstract). [32] Ludwig, K.R., 1991.ISOPLOT; A Plotting and Regression Program for Radiogenic-Isotope Data; Version 2.53.Open-File Report.U.S.Geological Survey, Denver. [33] Luo, J.C., Hu, R.Z., Shi, S.H., 2015.Timing of Uranium Mineralization and GeologicalImplications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China:New Constraint from Chemical U-Pb Age.Journal of Earth Science, 26(6):911-919.doi: 10.1007/s12583-015-0542-y [34] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). https://www.researchgate.net/publication/230474119_Mesozoic_Large-scale_Mineralization_and_Multiple_Lithospheric_Extensions_in_South_China [35] Matthew, V.M., Andrew, G.T., Gordon, P.W., et al., 2015.Release of Uranium from Highly Radiogenic Zircon Through Metamictization:The Source of Orogenic Uranium Ores.Geology, 44(1).doi: 10.1130/G37238.1 [36] Montel, J.M., Foret, S., Veschambre, M., et al., 1996.Electron Microprobe Dating of Monazite.Chemical Geology, 131(1-4):37-53.doi: 10.1016/0009-2541(96)00024-1 [37] Nemchin, A.A., Horstwood, M.S.A., Whitehouse, M.J., 2013.High-Spatial-Resolution Geochronology.Elements, 9(1):31-37.doi: 10.2113/gselements.9.1.31 [38] Ozha, M.K., Mishra, B., Singh, G., 2015.Reaction Aureoles within Biotite and Albite Surrounding Uraninite and Possible Mobilization of Radio-Centres:An Example from Rajasthan, India.Mineral Resources in a Sustainable World, 1863-1866. [39] Peng, S.B., Zhu, J.P., Li, Z.C., et al., 2004.U-Th-Pb Dating by Electron Microprobe and Its Application in Structural Analysis.Rock & Mineral Analysis, 23(11):44-51(in Chinese with English abstract). [40] Procházka, V., Seydoux-Guillaume, A.M., Trojek, T., et al., 2011.Alteration Halos around Radioactive Minerals in Plutonic and Metamorphic Rocks of Northern Moldanubian Area, Bohemian Massif.European Journal of Mineralogy, 23(4):551-566.doi: 10.1127/0935-1221/2011/0023-2108 [41] Suzuki, K., Adachi, M., 1991.Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrane, Northeast Japan, Revealed by the Chemical Th-U-Total Pb Isochron Ages of Monazite, Zircon and Xenotime.Geochemical Journal, 25(5):357-376.doi: 10.2343/geochemj.25.357 [42] Suzuki, K., Adachi, M., Tanaka, T., 1991.Middle Precambrian Provenance of Jurassic Sandstone in the Mino Terrane, Central Japan:T-U-Total Pb Evidence from an Electron Microprobe Monazite Study.Sedimentary Geology, 75(S1-2):141-147.doi:10.1016/0037-0738 (91)90055-I [43] Tang, A., 2016.Study on Chronology, Rock Geochemistry, Uranium Bearing Mineral of Ziyunshan Peraluminous Granite, Centre JiangXi (Dissertation).East China Institute of Technology, 25-37(in Chinese with English abstract). [44] Tang, A., Li, G.l., Zhou, L.Q., 2015.Compositional Characteristics of Biotite in Ziyunshan Ore Bearing Granite, Central Jiangxi:Implications for Petrogenesis and Mineralization.Journal of Mineralogy and Petrology, 35(3):29-34 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/259954 [45] Tiepolo, M., 2003.A Laser Probe Coupled with ICP-Double-Focusing Sectorfield Mass Spectrometer for in Situ Analysis of Geological Samples and U.Canadian Mineralogist, 41(5):259-272.doi: 10.2113/gscanmin.41.2.259 [46] Votyakov, S.L., Ivanov, K.S., Khiller, V.V., 2011.Chemical Microprobe Th-U-Pb Age Dating of Monazite and Uraninite Grains from Granites of the Yamal Crystalline Basement.Doklady Earth Sciences, 439(1):994-997.doi: 10.1134/S1028334X1107018X [47] Weber, W.J., Ewing, R.C., 2002.Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides.MRS Proceedings, 713.dio:10.1557/PROC-713-JJ3.1 [48] White, L.T., Ireland, T.R., 2012.High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations.Chemical Geology, 306-307(19):78-91.doi: 10.1016/j.chemgeo.2012.02.025 [49] Williams, I.S., Hergt, J.M., 2000.U-Pb Dating of Tasmanian Dolerites:A Cautionary Tale of SHRIMP Analysis of High-U Zircons.In:Woodhead, J.D., Hergt, J.M., Noble, W.P.eds., Beyond 2000:New Frontiers in Isotope Geoscience.The University of Melbourne, Lorne, 185-188. [50] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System Within the Yangtze Block (South China).Tectonophysics, 361(3-4):239-254.doi: 10.1016/S0040-1951(02)00646-7 [51] Yang, T.L., Jiang, S.Y.2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotope.Earth Science, 40(12):2002-2020 (in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_dqkx201512005.aspx [52] Yao, J.M., Hua, R.M., Lin, J.F., 2005.Zircon LA-ICPMS U-Pb Dating and Geological Characteristics of Huangshaping Granite in Southeast Hunan Province, China.Acta Petrologica Sinica, 21(3):688-686 (in Chinese with English abstract). https://www.researchgate.net/publication/280687801_Zircon_LA-ICPMS_U-Pb_dating_and_geochemical_characteristics_of_Huangshaping_granite_in_southeast_Hunan_province_China [53] Yu, G.S., Xiao, K.C., 1986.Basic Characteristics of an Ancient Ophiolite Belt and Plate Tectonics in Northeastern Jinagxi.Regional Geology of China, (4):369-362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD198604010.htm [54] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2009.New Dating of the Piaotang Granite and Related Tungsten Mineralization in Southern Jiangxi.Acta Petrologica Sinica, 83(5):659-670 (in Chinese with English abstract). https://www.researchgate.net/publication/279717533_New_dating_of_the_Dajishan_granite_and_related_tungsten_mineralization_in_Southern_Jiangxi [55] Zhang, W.L., Wang, R.C., Hua, R.M., et al., 2003.Chemical Th-U-Total Pb Isochron of Dating Accessary Minerals:Principle and Application to Zircon from the Piaotang Muscovite Granite in the Xihuashan Complex, South China.Geological Review, 49(3):263-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303005.htm [56] Zhao, H.B., Liu, Y.F., Yang, S., et al., 2014.The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite.Rock & Mineral Analysis, 33(1):102-109 (in Chinese with English abstract). [57] Zhao, K, D., Jiang, S.Y., Ling, H.F., et al., 2014.Reliability of LA-ICP-MS U-Pb Dating of Zircons with High U Concentrations:A Case Study from the U-Bearing Douzhashan Granite in South China.Chemical Geology, 389:110-121.doi:10.1016/j.chemgeo.201 4.09.018 [58] Zhou, J.X., Chen, Z.Y., Rui, Z.Y., 2002.Th-U-TPb Chemical Dating of Monazite by Electron Probe.Rock & Mineral Analysis, 21(4):241-246 (in Chinese with English abstract). [59] 陈能松, 孙敏, 王勤燕, 等, 2007.东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录.科学通报, 52(11):1297-1306. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200711015.htm [60] 陈培荣, 华仁民, 章邦桐, 2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学 (D辑), 32(4):279-289. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm [61] 葛祥坤, 秦明宽, 范光, 2011.电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状.世界核地质科学, 28(1):55-62. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201101012.htm [62] 郭春丽, 王登红, 陈毓川, 等, 2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.矿床地质, 26(4):432-442. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200704008.htm [63] 郭国林, 张展适, 刘晓东, 等, 2012.光石沟铀矿床晶质铀矿电子探针化学定年研究.东华理工大学学报:自然科学版, 35(4):309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201204004.htm [64] 华仁民, 陈培荣, 张文兰, 等, 2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报, 11(3):291-304. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm [65] 李光来, 华仁民, 韦星林, 等, 2011.江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义.地球科学, 36(2):382-388. http://www.earth-science.net/WebPage/Article.aspx?id=2091 [66] 李光来, 华仁民, 韦星林, 等, 2014.赣南樟东坑钨矿两类矿化中辉钼矿的Re-Os同位素定年及其地质意义.地球科学, 39(2):165-173. http://www.earth-science.net/WebPage/Article.aspx?id=2816 [67] 李华芹, 路远发, 王登红, 等, 2006.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评, 52(1):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601018.htm [68] 李金冬, 柏道远, 伍光英, 等, 2005.湘南郴州地区骑田岭花岗岩锆石SHRIMP定年及其地质意义.地质通报, 24(5):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505003.htm [69] 李献华, 柳小明, 刘勇胜, 等, 2015.LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析.中国科学 (D辑), 45(9):1294-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm [70] 李学军, 郭涛, 王庆飞, 2003.电子探针化学测年方法.地学前缘, 10(2):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302026.htm [71] 刘珺, 毛景文, 叶会寿, 等, 2008.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征.岩石学报, 24(8):1813-1822. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808013.htm [72] 刘颖, 2013. 江西省玉华山地区紫云山岩体年代学、地球化学特征及地质意义 (硕士学位论文). 南昌: 东华理工大学, 25-32. [73] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm [74] 彭松柏, 朱家平, 李志昌, 等, 2004.国外电子探针铀-钍-铅定年方法及其在构造分析中的应用前景.岩矿测试, 23(11):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200401011.htm [75] 唐傲, 2016. 赣中紫云山过铝质花岗岩年代学、岩石地球化学及载铀矿物特征研究 (硕士学位论文). 南昌: 东华理工大学, 25-37. [76] 唐傲, 李光来, 周龙全, 等, 2015.赣中紫云山岩体含矿花岗岩黑云母成分特征及其成岩成矿意义.矿物岩石, 35(3):29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201503005.htm [77] 姚军明, 华仁民, 林锦富, 2005.湘东南黄沙坪花岗岩LA-ICPS锆石U-Pb定年及岩石地球化学特征.岩石学报, 21(3):688-686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503011.htm [78] 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://www.earth-science.net/WebPage/Article.aspx?id=3205 [79] 于根生, 肖柯才, 1986.赣东北古蛇绿岩带及板块构造基本特征.中国区域地质, (4):369-362. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198604010.htm [80] 张文兰, 王汝成, 华仁民, 等, 2003.副矿物的电子探针化学定年方法原理及应用.地质论评, 49(3):263-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200303005.htm [81] 张文兰, 华仁民, 王汝成, 等, 2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报, 83(5):659-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200905007.htm [82] 赵慧博, 刘亚非, 阳珊, 等, 2014.电子探针测年方法应用于晶质铀矿的成因类型探讨.岩矿测试, 33(1):102-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201401018.htm [83] 周剑雄, 陈振宇, 芮宗瑶, 2002.独居石的电子探针钍-铀-铅化学测年.岩矿测试, 21(4):241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200204001.htm