• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义

    杨震 姜华 杨明国 梅红波 胡光道 张黎黎 张裴培

    杨震, 姜华, 杨明国, 梅红波, 胡光道, 张黎黎, 张裴培, 2017. 冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地球科学, 42(3): 339-356. doi: 10.3799/dqkx.2017.026
    引用本文: 杨震, 姜华, 杨明国, 梅红波, 胡光道, 张黎黎, 张裴培, 2017. 冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地球科学, 42(3): 339-356. doi: 10.3799/dqkx.2017.026
    Yang Zhen, Jiang Hua, Yang Mingguo, Mei Hongbo, Hu Guangdao, Zhang Lili, Zhang Peipei, 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356. doi: 10.3799/dqkx.2017.026
    Citation: Yang Zhen, Jiang Hua, Yang Mingguo, Mei Hongbo, Hu Guangdao, Zhang Lili, Zhang Peipei, 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356. doi: 10.3799/dqkx.2017.026

    冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义

    doi: 10.3799/dqkx.2017.026
    基金项目: 

    云南铜业 (集团) 有限公司和中国地质大学 (武汉) 合作项目 2010026410

    详细信息
      作者简介:

      杨震 (1988-),男,博士研究生,主要从事矿产普查与勘探方面研究.ORCID:0000-0002-7505-8632.E-mail: yzcug2013@163.com

      通讯作者:

      姜华,ORCID:0000-0002-2689-3957.E-mail: jh@yunnancopper.com

    • 中图分类号: P597

    Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance

    • 摘要: 岗讲铜钼矿床是西藏冈底斯成矿带中段典型的斑岩型矿床,岗讲矿床成岩成矿时代、岩浆演化过程及其与成岩成矿关系尚不明确,利用LA-ICP-MS锆石U-Pb定年方法对岗讲矿区主要岩体二长花岗斑岩、花岗闪长斑岩和英云闪长玢岩成岩时代进行研究,获得锆石U-Pb年龄加权平均值分别为16.6±0.3 Ma (MSWD=0.94,n=10)、16.1±0.2 Ma (MSWD=1.07,n=12)、14.4±0.4 Ma (MSWD=1.12,n=7);同时采用辉钼矿Re-Os同位素测年方法首次对岗讲矿床石英硫化物脉中的辉钼矿进行定年,获得12件辉钼矿Re-Os同位素模式年龄集中于13.24±0.20 Ma~13.55±0.22 Ma,加权平均年龄为13.4±0.1 Ma (MSWD=0.65),等时线年龄为13.6±1.6 Ma (MSWD=1.2).结果表明:(1) 岗讲矿区复式岩体侵入序列为含巨斑黑云二长花岗岩-二长花岗斑岩-花岗闪长斑岩-流纹斑岩 (深部定名为英云闪长玢岩),成岩时限为16.6~14.4 Ma,成矿时代为13.4 Ma左右,成岩成矿是一个连续的岩浆演化过程;(2) 辉钼矿中Re含量为155.4~171.1 μg/g,均值为162.9 μg/g,指示其成矿物质中有幔源成分的加入;(3) 矿床产出于中新世印度-亚洲大陆碰撞后伸展构造环境.

       

    • 图  1  冈底斯成矿带大地构造位置 (a)、矿床分布 (b) 及岗讲矿区地质简图 (c)

      a.据芮宗瑶等 (2004);b.据冷秋锋等 (2015);c.据张庆松等 (2012)

      Fig.  1.  Tectonic location of the Gangdese metallogenic belt (a), the distribution of main porphyry deposit (b) and geological sketch of Gangjiang mining area (c)

      图  2  岗讲矿区8号勘探线地质剖面

      第四系浮土层;2.流纹斑岩;3.英云闪长玢岩;4.花岗闪长斑岩;5.二长花岗斑岩;6.钻孔;7.Cu-Mo矿 (化) 体;8.氧化-原生矿化带划分线 (a.氧化带;b.混合矿化带;c.原生矿化带);9.平硐及编号;10.采样位置;据四川省冶金地质勘查院 (2012)修改

      Fig.  2.  Line No.8 geological section of the Gangjiang mining area

      图  3  岗讲铜钼矿床岩浆序列岩石及矿石手标本及显微照片

      a.二长花岗斑岩手标本;b.花岗闪长斑岩手标本 (呈岩脉产出);c.英云闪长玢岩手标本;d.二长花岗斑岩;e.花岗闪长斑岩;f.英云闪长玢岩;g.辉钼矿-石英细脉;h.细脉状辉钼矿化截面 (辉钼矿呈鳞片状);i.辉钼矿 (产出于岩体节理裂隙面上).Bt.黑云母;Chl.绿泥石;Kfs.钾长石;Pl.斜长石;Q.石英;Ccp.黄铜矿;Mo.辉钼矿

      Fig.  3.  Hand specimen and microscopic photographs of magmatic series rocks and ore in Gangjiang copper-molybdenum deposit

      图  4  岗讲铜钼矿床二长花岗斑岩 (a)、花岗闪长斑岩 (b) 和英云闪长玢岩 (c) 锆石阴极发光图像

      Fig.  4.  CL images of zircons from monzogranite (a), granodiorite (b) and tonolity (c) in Gangjiang copper-molybdenum deposit

      图  5  岗讲铜钼矿床二长花岗斑岩 (a)、花岗闪长斑岩 (b) 和英云闪长玢岩 (c) 锆石U-Pb谐和图解

      Fig.  5.  Zircon U-Pb concoria diagram from monzogranite (a), granodiorite (b) and tonolity (c) in Gangjiang copper-molybdenum deposit

      图  6  岗讲矿床辉钼矿Re-Os等时线年龄 (a) 及加权平均平均年龄 (b)

      Fig.  6.  Re-Os isotopic isochron (a) and weighted meanmodel age (b) of molybdenite in Gangjiang deposit

      图  7  冈底斯成矿带成岩成矿时代频谱

      Fig.  7.  Spectrum diagrams of diagenesis and ore-forming ages in Gangdese metallogenic belt

      表  1  岗讲铜钼矿床锆石U-Pb测年样品采集位置

      Table  1.   The collection location of zircon U-Pb dating sample in Gangjiang copper-molybdenum deposit

      二长花岗斑岩 (共8件) 花岗闪长斑岩 (共8件) 英云闪长玢岩 (共9件)
      ZKW0800-410 m ZK2411-512 m DZK1201-431 m QZK301-520 m ZK1604-425 m ZK2006-430 m
      ZK2411-512 m ZK807-140 m ZKN812-424 m BZK1514-425 m ZK802-81 m GJ18-84 m
      ZK2003-25 m ZK805-97 m ZK807-111 m ZK807-133 m ZK805-77 m GJ21-22 m
      ZK803-120 m ZK807-114 m ZK1204-102 m ZK1204-115 m ZK2005-49 m GJ15-95 m
      ZK1204-119 m
      下载: 导出CSV

      表  2  岗讲铜钼矿床岩体LA-ICP-MS锆石U-Pb定年结果

      Table  2.   LA-ICP-MS zircon U-Pb dating results of rocks in Gangjiang copper-molybdenum deposit

      测点 同位素比值 年龄 (Ma)
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      A5508-1(二长花岗斑岩)
      1.1 0.055 6 18.53 0.017 0 16.12 0.002 3 11.91 17.2 2.8 15.1 1.6
      1.2 0.061 3 48.51 0.021 6 56.52 0.002 6 18.12 21.7 5.2 16.7 0.2
      2.1 0.096 4 69.04 0.039 5 72.72 0.003 1 29.09 29.4 4.6 20.2 1.2
      2.2 0.127 0 73.80 0.041 0 92.32 0.002 6 14.60 20.8 3.2 16.4 0.3
      3.1 0.057 3 34.65 0.019 9 31.77 0.002 8 34.06 20.0 2.3 17.8 1.1
      4.1 0.051 3 18.03 0.033 3 23.00 0.005 0 17.96 33.3 0.7 32.4 2.0
      5.1 0.137 9 39.88 0.057 0 36.88 0.003 1 20.14 26.3 6.3 20.0 1.3
      5.2 0.058 1 36.35 0.019 2 35.71 0.002 5 13.39 19.4 3.6 15.9 0.7
      6.1 0.068 4 47.13 0.024 2 53.65 0.002 7 31.89 24.2 6.9 17.1 0.4
      7.1 0.149 9 47.62 0.056 6 54.85 0.002 8 11.81 25.9 7.2 17.9 1.2
      8.1 0.103 6 46.09 0.039 6 54.65 0.002 9 25.36 29.4 9.9 18.4 1.7
      8.2 0.050 2 30.84 0.016 3 30.06 0.002 5 19.64 16.4 0.2 16.2 0.5
      9.1 0.063 3 44.20 0.021 5 50.43 0.002 5 18.89 21.6 4.7 16.2 0.5
      10.1 0.193 3 57.63 0.089 7 94.92 0.003 1 28.31 26.7 5.9 20.0 1.4
      11.1 0.048 4 39.74 0.016 2 40.86 0.002 5 11.75 16.4 0.5 16.1 0.6
      A5508-2(花岗闪长斑岩)
      1.1 0.055 9 31.52 0.019 7 29.17 0.002 6 21.33 19.8 2.9 16.9 0.7
      2.1 0.066 5 61.17 0.024 7 73.83 0.002 6 13.62 24.8 2.1 16.9 0.8
      3.1 0.063 8 15.21 0.019 0 24.30 0.002 3 26.64 19.1 3.6 14.9 1.2
      4.1 0.054 5 27.50 0.018 8 29.95 0.002 6 14.88 18.9 3.8 16.7 0.4
      5.1 0.065 3 42.44 0.022 6 50.15 0.002 5 20.35 22.6 0.1 16.0 0.2
      5.2 0.064 3 51.95 0.023 5 52.82 0.002 7 15.37 23.6 0.9 17.2 1.1
      6.1 0.053 8 26.90 0.023 9 23.02 0.003 4 21.31 24.0 1.3 21.8 1.2
      7.1 0.051 9 38.19 0.016 9 39.80 0.002 4 24.69 17.0 5.7 15.6 0.6
      8.1 0.076 5 60.94 0.025 6 49.16 0.002 6 24.19 25.6 2.9 16.6 0.5
      8.2 0.093 9 31.28 0.0316 1 31.92 0.002 6 30.23 31.1 8.4 17.1 1.0
      9.1 0.071 8 17.57 0.020 2 18.57 0.002 2 10.10 20.3 2.4 14.2 1.9
      10.1 0.095 1 44.87 0.035 6 47.26 0.002 8 22.77 35.6 12.9 17.8 1.5
      10.2 0.064 5 20.73 0.020 7 16.25 0.002 5 13.34 20.8 1.9 16.0 0.2
      11.1 0.068 3 33.06 0.020 4 30.32 0.002 3 14.77 20.5 2.2 15.0 1.1
      12.1 0.055 2 23.83 0.016 8 22.83 0.002 4 15.99 16.9 5.8 15.3 0.8
      A5508-3(英云闪长玢岩)
      1.1 0.085 9 62.46 0.027 4 72.79 0.002 4 12.68 15.9 1.7 15.1 0.2
      2.1 0.166 6 37.31 0.053 4 42.55 0.002 4 21.51 16.5 1.1 15.7 0.6
      3.1 0.363 2 51.42 0.199 6 70.10 0.004 0 29.38 27.6 9.8 25.7 1.5
      3.2 0.233 9 53.81 0.112 1 90.62 0.003 2 32.24 22.4 4.8 20.5 0.9
      4.1 0.139 3 82.71 0.067 5 159.91 0.002 5 61.90 16.8 0.8 16.2 1.0
      4.2 0.132 2 36.19 0.042 4 56.54 0.002 3 22.53 15.5 2.1 14.9 0.2
      5.1 0.165 3 81.51 0.057 3 66.78 0.002 6 23.67 18.1 0.5 16.9 1.7
      6.1 0.085 3 21.70 0.024 1 25.85 0.002 1 18.17 14.6 3.0 13.6 1.6
      7.1 0.140 1 46.11 0.047 0 54.41 0.002 5 24.08 17.8 0.2 16.3 1.3
      7.2 0.094 6 37.37 0.026 5 44.30 0.002 1 15.04 14.2 3.4 13.3 1.6
      8.1 0.190 1 77.91 0.083 6 122.76 0.002 7 40.34 19.4 1.8 17.1 1.9
      9.1 0.063 0 17.54 0.018 3 24.82 0.002 0 12.10 13.5 4.1 13.1 2.0
      10.1 0.103 9 40.96 0.030 9 38.48 0.002 2 12.53 16.6 1.0 14.2 0.8
      下载: 导出CSV

      表  3  岗讲铜钼矿床辉钼矿Re-Os同位素分析结果

      Table  3.   Re-Os isotopic data of molybdenites from Gangjiang copper-molybdenum deposit

      样品编号 样重 (g) Re±2σ(μg/g) 普Os±2σ(ng/g) 187Re±2σ(μg/g) 187Os±2σ(ng/g) 模式年龄 (Ma)
      BSPD2-03-1 0.005 04 161.3±1.4 0.001 6±0.037 1 101.4±0.9 22.38±0.17 13.24±0.20
      BSPD2-03-2 0.010 06 163.8±1.8 0.065 2±0.018 4 102.9±1.1 23.23±0.14 13.55±0.22
      BSPD2-03-3 0.010 53 165.0±2.0 0.115 2±0.025 3 103.7±1.2 23.22±0.17 13.44±0.23
      BSPD2-03-4 0.010 28 161.0±1.4 0.000 8±0.050 2 101.2±0.9 22.81±0.13 13.52±0.19
      BSPD2-03-5 0.010 44 155.9±1.3 0.091 5±0.017 8 98.0±0.8 21.92±0.16 13.42±0.20
      BSPD2-03-6 0.010 18 165.0±1.4 0.105 1±0.033 0 103.7±0.9 23.16±0.15 13.41±0.19
      BSPD2-03-7 0.010 38 171.1±1.5 0.105 9±0.025 3 107.6±0.9 23.95±0.14 13.36±0.19
      BSPD2-03-8 0.010 36 164.8±1.4 0.110 8±0.018 2 103.6±0.9 23.08±0.16 13.38±0.20
      BSPD2-03-9 0.010 07 165.8±1.3 0.092 8±0.018 4 104.2±0.8 23.18±0.14 13.35±0.19
      BSPD2-03-10 0.010 96 162.5±1.3 0.000 7±0.119 9 102.2±0.8 22.72±0.16 13.35±0.19
      BSPD2-03-11 0.010 36 155.4±1.1 0.060 4±0.026 0 97.7±0.7 21.75±0.16 13.36±0.19
      BSPD2-03-12 0.010 73 162.9±1.2 0.092 4±0.025 2 102.4±0.8 22.79±0.22 13.36±0.21
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [2] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7
      [3] Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth Science Reviews, 68(3-4):173-196.doi: 10.1016/j.earscirev.2004.05.001
      [4] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):205-215.doi: 10.1017/s0263593300006611
      [5] Du, A.D., He, H.L., Yin, N.W., et al., 1994.A Study on the Rhenium-Osmium Geochronometry of Molybdenites.Acta Geologica Sinica, 68(4):339-347 (in Chinese with English abstract).
      [6] Du, A.D., He, H.L., Yin, N.W., et al., 1995.A Study of the Rhenium-Osmium Geochronometry of Molybdenites.Acta Geologica Sinica (English Edition), 8(2):171-181.doi: 10.1111/j.1755-6724.1995.mp8002004.x
      [7] Du, A.D., Qu, W.J., Li, C., et al., 2009.A Review on the Development of Re-Os Isotopic Dating Methods and Techniques.Rock and Mineral Analysis, 28(3):288-304 (in Chinese with English abstract).
      [8] Du, A.D., Wu, S.Q., Sun, D.Z., et al., 2004.Preparation and Certification of Re-Os Dating Reference Materials:Molybdenites HLP and JDC.Geostandards and Geoanalytical Research, 28(1):41-52.doi: 10.1111/j.1751-908X.2004.tb01042.x
      [9] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001.Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation.Rock and Mineral Analysis, 20(4):247-252 (in Chinese with English abstract).
      [10] Fang, G.C., Chen, Y.C., Chen, Z.H., et al., 2014.Zircon U-Pb and Molybdenite Re-Os Geochronology of the Panggushan Tungsten Deposit in South Jiangxi Province and Its Significance.Acta Geoscientica Sinica, 35(1):76-84 (in Chinese with English abstract). https://www.researchgate.net/publication/283764147_Zircon_U-Pb_and_molybdenite_Re-Os_geochronology_of_the_Pangushan_tungsten_deposit_in_South_Jiangxi_Province_and_its_significance
      [11] Foster, J.G., Lambert, D.D., Frick, L.R., et al., 1996.Re-Os Isotopic Evidence for Genesis of Archaean Nickel Ores from Uncontaminated Komatiites.Nature, 382(6593):703-706.doi: 10.1038/382703a0
      [12] Gaetani, M., Garzanti, E., 1991.Multicyclic History of the Northern India Continental Margin (Northwestern Hinwlaya).AAPG Bulletin, 75:1427-1446.doi: 10.1306/0c9b2957-1710-11d7-8645000102c1865d
      [13] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.3135
      [14] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Oregen.Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). http://www.oalib.com/paper/1470744
      [15] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adaktic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155.doi:10.1016/s0012-821x (04)00007-x
      [16] Hou, Z.Q., Ma, H.W., Zaw, K., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145.doi: 10.2113/98.1.125
      [17] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposites no Related to Oceanic-Slab Subduction Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351 (in Chinese with English abstract). https://www.researchgate.net/publication/284381456_Porphyry_Cu-Mo-Au_deposits_no_related_to_oceanic-slab_subduction_Examples_from_Chinese_porphyry_deposits_in_continental_settings
      [18] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003.Re-Os Dating of Molybdenite from the Gangdese Metallogenic Belt, Tibet:Applications of Mineralization Time and Dynamic Background.Science in China (Series D), 33(7):609-618 (in Chinese).
      [19] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
      [20] Hou, Z.Q., Wang, E.Q., 2008.Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract). http://www.oalib.com/paper/1558971
      [21] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006
      [22] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract).
      [23] Huang, Y., Ding, J., Li, G.M., et al., 2015.U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhunuo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance.Acta Geologica Sinica, 89(1):99-108 (in Chinese with English abstract).
      [24] Jian, R.T., Zhao, X, K., Jiang, H., et al., 2016.Geochemical Characteristics of Magmatic Rock in Nimu Porphyry Copper Polymetallic Deposit in Tibet and Its Implications for Petrogenesis.Science Technology and Engineering, 16(4):141-147(in Chinese with English abstract).
      [25] Jiang, S.Y., Yang, J.H., Zhao, K.D., et al., 2000.Re-Os Isotope Tracer and Dating Methods in Ore Deposits Research.Journal of Nanjing University (Natural Sciences), 36(6):669-677 (in Chinese with English abstract).
      [26] Jin, X.D., Li, W.J., Wu, H.Y., et al., 2010.Development of Re-Os Isotopic Dating Analytical Technique and Determination Know-How on ICP-MS Precise Dating for Molybdenite.Acta Petrologica Sinica, 26(5):1617-1624 (in Chinese with English abstract). http://www.oalib.com/paper/1476558
      [27] Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012.Neo-Tethys Mineralization on the Southern Margin of the Gangdise-Metallogenic Belt, Tibet, China:Evidence from Re-Os Ages of Xiongcun Orebody No.Ⅰ.Earth Science, 37(3):515-525 (in Chinese with English abstract).
      [28] Leng, C.B., Zhang, X.C., Zhou, W.D., 2010.A Primary Study of the Geological Characteristics and the Zircon U-Pb Age of the Gangjiang Porphyry Copper-Molgbdenum Deposit in Nimu, Tibet.Earth Science Frontiers, 17(2):185-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201002025.htm
      [29] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606007.htm
      [30] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2015.Re-Os Dating of Molybdenite from the Lakange Porphyry Cu-Mo Deposit in Tibet and Its Geological Significance.Geology in China, 42(2):570-584 (in Chinese with English abstract). https://www.researchgate.net/publication/282268883_Re-Os_dating_of_molybdenite_from_the_Lakange_porphyry_Cu-Mo_deposit_in_Tibet_and_its_geological_significance
      [31] Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise-Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170 (in Chinese with English abstract).
      [32] Li, J.X., Qin, K.Z., Li, G.M., et al., 2007.K-Ar and 40Ar-39Ar Age Dating of Nimu Porphyry Copper Orefield in Central Gangdese:Constrains on Magmatic-Hydrothermal Evolution and Metallogenetic Tectonic Setting.Acta Petrologica Sinica, 23(5):953-966 (in Chinese with English abstract).
      [33] Lin, W., Liang, H.Y., Zhang, Y.Q., et al., 2004.Petrochemistry and SHRIMP U-Pb Zircon Age of the Chongjiang Ore-Bearing Porphyry in the Gangdese Porphyry Copper Belt.Geochimica, 33(6):585-592 (in Chinese with English abstract).
      [34] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [35] Ludwig, K.R., 1999.A Geochronological Toolkit for Microsoft Excel.Geochronology Center, Berkeley.
      [36] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999.Re-Os Isotopic Dating of Molybdenites in the Xianliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance.Geochima et Cosmochim Acta, 163(11-12):1815-1818.doi: 10.1016/S0016-7037(99)00165-9
      [37] Meng, X.J., Hou, Z.Q., Gao, Y.F., et al., 2003.Re-Os Dating for Molybdenite from Qulong Porphyry Copper Deposit in Gangdese Metallogenic Belt, Xizang and Its Metallogenic Significance.Geological Review, 49(6):660-666 (in Chinese with English abstract).
      [38] Miller, C., Schuster, R., Klotzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424.doi: 10.1093/petroj/40.9.1399
      [39] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Chracteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract).
      [40] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract).
      [41] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      [42] Qin, Z.P., Wang, X.W., Duo, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rock in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348(in Chinese with English abstract). https://www.researchgate.net/publication/285347618_LA-ICP-MS_U-Pb_zircon_age_of_intermediate-acidic_intrusive_rocks_in_Jiama_of_Tibet_and_its_metallogenic_significance
      [43] Qu, X.M., Hou, Z.Q., Zaw, K., et al., 2007.Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223.doi: 10.1016/j.Oregeorev.2005.03.012
      [44] Qu, X.M., Hou, Z.Q., Mo, X.X., et al., 2006.Relationship Between Gangdese Porphyry Copper Deposits and Uplifting of Southern Tibet Plateau:Evidence from Multistage Zircon of Ore-Bearing Porphyries.Mineral Deposits, 25(4):388-400 (in Chinese with English abstract).
      [45] Qu, X.M., Hou, Z.Q., Li, Z.Q., 2003.40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significcance.Acta Geological Sinica, 77(2):245-252 (in Chinese with English abstract).
      [46] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002.Implications of S and Pb Isotopic Compositions of the Gangdise Porphyry Copper Belt for the Ore-Forming Material Source and Material Recycling within the Oregenic Belt.Geological Bulletin of China, 21(11):768-776(in Chinese with English abstract).
      [47] Qu, X.M., Hou, Z.Q., Huang, W., 2001.Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt?Mineral Deposits, 20(4):355-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200104009.htm
      [48] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003.Metallogenic Epoch of Gangdese Porphyry Copper Belt and Uplift of the Qinghai-Tibetan Plateau.Mineral Deposits, 22(3):217-225 (in Chinese with English abstract).
      [49] Rui, Z.Y., Li, G.M., Zhang, L.S., et al., 2004.The Response of Porphyry Copper Deposits to Important Geological Events in Xizang.Earth Science Frontiers, 11(1):145-152 (in Chinese with English abstract).
      [50] Shirey, S.B., Walker, R.J., 1995.Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis.Analytical Chemistry, 67(13):2136-2141.doi: 10.1021/ac00109a036
      [51] Sichuan Provincial Metallurgical Geological Prospecting Institute, 2012.Geological Report of Copper Mine in Tibet's Nimu County Gangjiang and Around.Chengdu:Sichuan Metallurgical Geological Prospecting Institute (In Chinese).
      [52] Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996.Re-Os Ages of Group ⅠA, ⅡA, ⅣA and ⅥB Iron Meteorites.Science, 271(5252):1099-1102.doi: 10.1126/science.271.5252.1099
      [53] Song, B., Zhang, Y.H., Wang, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract).
      [54] Turner, S., Hawkesworth, C.J., Liu, J.Q., et al., 1993.Timing of Tibetan Uplift Constrained by Analysis of Volcanic Rocks.Nature, 364(6432):50-54.doi: 10.1038/364050a0
      [55] Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010.Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt.Acta Petrologica Sinica, 26(6):1820-1832 (in Chinese with English abstract). http://www.oalib.com/paper/1476154
      [56] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409003.htm
      [57] Wang, L.Q., Tang, J.X., Chen, Y.C., et al., 2011.LA-ICP-MS Zircon U-Pb Dating of Ore-Bearing Monzogranite Porphyry in Bangpu Molybdenum (Copper) Deposit, Tibet and Its Significance.Mineral Deposits, 30(2):349-360 (in Chinese with English abstract).
      [58] Wu, J., Xu, Y.D., An, X.Y., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Gangdese Area, Tibetan Plateau.Earth Science, 39(8):1052-1064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201408009.htm
      [59] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602 (in Chinese with English abstract).
      [60] Xia, B.B., Xia, B., Wang, B.D., et al., 2007.Ore-Bearing Adakitic Porphyry in the Middle of Gangdese Thickened Lower Crustal Melting and the Genesis of Porphyry Cu-Mo Deposit.Geological Science and Technology Information, 26(4):19-26 (in Chinese with English abstract).
      [61] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014
      [62] Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538 (in Chinese with English abstract). https://www.researchgate.net/publication/284187747_Porphyry_Cu_deposits_in_collisional_orogen_setting_A_preliminary_genetic_model
      [63] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization.Mineral Deposits, 27(3):279-318 (in Chinese with English abstract).
      [64] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibet Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.Earth.28.1.211
      [65] Ying, L.J., Wang, D.H., Tang, J.X., et al., 2010.Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance.Acta Geologica Sinica, 84(8):1165-1174 (in Chinese with English abstract). https://www.researchgate.net/publication/287496841_Re-Os_isotopic_dating_of_molybdenite_in_skarn_from_the_Jiama_copper_polymetallic_deposit_of_Tibet_and_its_metallogenic_significance
      [66] Zhang.Q., 2011.Reappraisal of the Origin of C-Type Adakitic Rocks from East China.Acta Petrologica et Mineralogica, 30(4):739-747 (in Chinese with English abstract).
      [67] Zhang, Q., Qin K.Z., Wang, Y.L., et al., 2004.Study on Adakite Broadened to Chellenge the Cu and Au Exloration in China.Acta Petrologica Sinica, 20(2):195-204 (in Chinese with English abstract). https://www.researchgate.net/publication/296947619_Study_on_adakite_broadened_to_challenge_the_Cu_and_Au_exploration_in_China
      [68] Zhang, Q., Wang, Y., Wang, Y.L., 2003.On the Relationship between Adakite and Its Tectonic Setting.Geotectonica et Metallogenia, 27(2):101-108 (in Chinese with English abstract).
      [69] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244 (in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China
      [70] Zhang, Q.S., Zheng, L.B., Wang, G.W., et al., 2012.Geological Characteristics of Gangjiang-Bairong Porphyry Cu-Mo Deposit in Tibet and Ore-Searching Directions.Contributions to Geology and Mineral Resources Research, 27(3):300-307 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201203007.htm
      [71] Zheng, Y.Y., Duo, J., Wang, R.J., et al., 2007a.New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet.Geology in China, 34(2):324-334 (in Chinese with English abstract).
      [72] Zheng, Y.Y., Zhang, G.Y., Xu, R.K., et al., 2007b.Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet.Chinese Science Bulletin, 55(21):2542-2548 (in Chinese with English abstract). doi: 10.1007/s11434-007-0406-7
      [73] Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004.Finding and Significance of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet.Earth Science, 29(3):333-339 (in Chinese with English abstract). https://www.researchgate.net/publication/279712382_Finding_and_significances_of_Chongjiang_porphyry_copper_molybdenum_aurum_deposit_Tibet
      [74] Zhou, W.D., Zhang, Z.W., Yuan, S.C., et al., 2014.Characteristics and Mineralization Epoches of the Bairong Porphyry Copper Molybdenum Deposit in the Nyemo County, Tibet.Bulletin of Mineralogy, Petrology and Geochemistry, 33(2):177-184 (in Chinese with English abstract).
      [75] Zhou, X., Wen, C.Q., Zhang, Y., et al., 2013.Re-Os Dating of Molybdenite from the Bangpu Polymetallic Deposit of Tibet, and Its Geological Significance.Journal of Mineralogy & Petrology, 33(2):59-64 (in Chinese with English abstract). https://www.researchgate.net/publication/298582952_Re-Os_dating_of_molybdenite_from_the_Bangpu_polymetallic_deposit_of_Tibet_and_its_geological_significance
      [76] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010.Presence of Permian Extension and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin, 122(7-8):979-993.doi: 10.1130/b30062.1
      [77] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003
      [78] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442
      [79] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China.Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). https://www.researchgate.net/publication/287635476_Spatial-temporal_distribution_and_tectonic_setting_of_Jurassic_magmatism_in_the_Gangdise_belt_Tibet
      [80] 杜安道, 何红蓼, 殷宁万, 等, 1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报, 68(4):339-347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404003.htm
      [81] 杜安道, 屈文俊, 李超, 等, 2009.铼-锇同位素定年方法及分析测试技术的进展.岩矿测试, 28(3):288-304. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903027.htm
      [82] 杜安道, 赵敦敏, 王淑贤, 等, 2001.Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试, 20(4):247-252. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200104001.htm
      [83] 方贵聪, 陈毓川, 陈郑辉, 等, 2014.赣南盘古山钨矿床锆石U-Pb和辉钼矿Re-Os年龄及其意义.地球学报, 35(1):76-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401011.htm
      [84] 侯可军, 李延河, 田有荣, 2009.LA-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
      [85] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20 (2):239-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm
      [86] 侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702020.htm
      [87] 侯增谦, 曲晓明, 王淑贤, 等, 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学 (D辑), 33(7):609-618. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm
      [88] 侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606000.htm
      [89] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm
      [90] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm
      [91] 黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501008.htm
      [92] 坚润堂, 赵献昆, 姜华, 等, 2016.西藏尼木斑岩铜多金属矿区岩浆岩地球化学特征及成因探讨.科学技术与工程, 16(4):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201604025.htm
      [93] 蒋少涌, 杨竞红, 赵葵东, 等, 2000.金属矿床Re-Os同位素示踪与定年研究.南京大学学报 (自然科学版), 36(6):669-677. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200006001.htm
      [94] 靳新娣, 李文君, 吴华英, 等, 2010.Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术.岩石学报, 26(5):1617-1624. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005025.htm
      [95] 郎兴海, 唐菊兴, 陈毓川, 等, 2012.西藏冈底斯成矿带南缘新特提斯洋俯冲成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学, 37(3):515-525. http://www.earth-science.net/WebPage/Article.aspx?id=2255
      [96] 冷成彪, 张兴春, 周维德, 2010.西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄.地学前缘, 17(2):185-197. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002025.htm
      [97] 冷秋锋, 唐菊兴, 郑文宝, 等, 2015.西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义.中国地质, 42(2):570-584.
      [98] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312
      [99] 李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200402007.htm
      [100] 李金祥, 秦克章, 李光明, 等, 2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar-39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报, 23(5):953-966.
      [101] 林武, 梁华英, 张玉泉, 等, 2004.冈底斯铜矿带冲江含矿斑岩的岩石地球化学及锆石SHRIMP年龄特征.地球化学, 33(6):585-592. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406005.htm
      [102] 孟祥金, 侯增谦, 高永丰, 等, 2003.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质评论, 49(6):660-666. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306016.htm
      [103] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503001.htm
      [104] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      [105] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      [106] 秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2):339-348. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102015.htm
      [107] 曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿 (化) 带:西藏第二条"玉龙"铜矿带?.矿床地质, 20(4):355-366. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200104009.htm
      [108] 曲晓明, 侯增谦, 李佑国, 2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报, 21(11):768-776. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200211014.htm
      [109] 曲晓明, 侯增谦, 李振清, 2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义.地质学报, 77(2):245-252.
      [110] 曲晓明, 侯增谦, 莫宣学, 等, 2006.冈底斯斑岩铜矿与南部青藏高原隆升之关系-来自含矿斑岩中多阶段锆石的证据.矿床地质, 25(4):388-400. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604003.htm
      [111] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质, 22(3):217-225. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303000.htm
      [112] 芮宗瑶, 李光明, 张立生, 等, 2004.西藏斑岩铜矿对重大地质事件的响应.地学前缘, 11(1):145-152. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401015.htm
      [113] 四川省冶金地质勘查院, 2012. 西藏尼木县岗讲及外围铜矿地质报告. 成都: 四川省冶金地质勘查院.
      [114] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
      [115] 王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006016.htm
      [116] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pa年代学及岩石地球化学证据.地球科学, 39(9):1277-1288. http://www.earth-science.net/WebPage/Article.aspx?id=2935
      [117] 王立强, 唐菊兴, 陈毓川, 等, 2011.西藏邦铺钼 (铜) 矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 30(2):349-360. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102016.htm
      [118] 吴旌, 徐亚东, 安显银, 等, 2014.冈底斯新元古代‐中生代沉积盆地演化.地球科学.39(8):1052-1064. http://www.earth-science.net/WebPage/Article.aspx?id=2917
      [119] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      [120] 夏抱本, 夏斌, 王保弟, 等, 2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成岩.地质科技情报, 26(4):19-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704004.htm
      [121] 杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200905002.htm
      [122] 杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200803003.htm
      [123] 应立娟, 王登红, 唐菊兴, 等, 2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义.地质学报, 84(8):1165-1174. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
      [124] 张旗, 2011.关于C型埃达克岩成岩的再探讨.矿石矿物学杂志, 30(4):739-747. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201104021.htm
      [125] 张旗, 秦克章, 王元龙, 等, 2004.加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面.岩石学报, 20(2):195-204. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402001.htm
      [126] 张旗, 王焰, 钱靑, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm
      [127] 张旗, 王焰, 王元龙, 2003.埃达克岩与构造环境.大地构造与成矿学, 27(2):101-108. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200302000.htm
      [128] 张庆松, 郑立波, 王光旺, 等, 2012.西藏岗讲-白容斑岩铜钼矿地质特征及找矿方向.地质找矿论丛, 27(3):300-307. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201203007.htm
      [129] 郑有业, 多吉, 王瑞江, 等, 2007a.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展.中国地质, 34(2) 324-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702015.htm
      [130] 郑有业, 张刚阳, 许荣科, 等, 2007b.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束.科学通报, 52(21):2542-2548. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200721014.htm
      [131] 郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜 (钼金) 矿床的发现及意义.地球科学, 29(3):333-339. http://www.earth-science.net/WebPage/Article.aspx?id=1369
      [132] 周维德, 张正伟, 袁盛朝, 等, 2014.西藏尼木县白容斑岩型铜钼矿床特征及成矿期次.矿物岩石地球化学通报, 33(2):177-184. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402005.htm
      [133] 周雄, 温春齐, 张贻, 等, 2013.西藏邦铺钼铜多金属矿床辉钼矿Re-Os年代学及地质意义.矿物岩石, 33(2):59-64. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201302009.htm
      [134] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4):458-468. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200804004.htm
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  6582
    • HTML全文浏览量:  1651
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-10-01
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回