Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance
-
摘要: 岗讲铜钼矿床是西藏冈底斯成矿带中段典型的斑岩型矿床,岗讲矿床成岩成矿时代、岩浆演化过程及其与成岩成矿关系尚不明确,利用LA-ICP-MS锆石U-Pb定年方法对岗讲矿区主要岩体二长花岗斑岩、花岗闪长斑岩和英云闪长玢岩成岩时代进行研究,获得锆石U-Pb年龄加权平均值分别为16.6±0.3 Ma (MSWD=0.94,n=10)、16.1±0.2 Ma (MSWD=1.07,n=12)、14.4±0.4 Ma (MSWD=1.12,n=7);同时采用辉钼矿Re-Os同位素测年方法首次对岗讲矿床石英硫化物脉中的辉钼矿进行定年,获得12件辉钼矿Re-Os同位素模式年龄集中于13.24±0.20 Ma~13.55±0.22 Ma,加权平均年龄为13.4±0.1 Ma (MSWD=0.65),等时线年龄为13.6±1.6 Ma (MSWD=1.2).结果表明:(1) 岗讲矿区复式岩体侵入序列为含巨斑黑云二长花岗岩-二长花岗斑岩-花岗闪长斑岩-流纹斑岩 (深部定名为英云闪长玢岩),成岩时限为16.6~14.4 Ma,成矿时代为13.4 Ma左右,成岩成矿是一个连续的岩浆演化过程;(2) 辉钼矿中Re含量为155.4~171.1 μg/g,均值为162.9 μg/g,指示其成矿物质中有幔源成分的加入;(3) 矿床产出于中新世印度-亚洲大陆碰撞后伸展构造环境.
-
关键词:
- 地球化学 /
- 锆石U-Pb测年 /
- 辉钼矿Re-Os测年 /
- 斑岩铜钼矿床 /
- 冈底斯
Abstract: The Gangjiang Copper-Molybdenum deposit is a typical porphyry deposit, which locates in the Central Gangdese metallogenic belt. In order to determine the ages of magmatism and mineralization, and disentangle the complicated magmatic evolution and the relationship between magmatic process and copper-molybdenum mineralization, the author carried out a study of LA-ICP-MS zircon U-Pb ages of the monzogranite porphyry, granodiorite porphyry, and tonalite porphyrite in Gangjiang mining area. It is shown that the zircon U-Pb weighted isochron ages are 16.6±0.3 Ma (MSWD=0.94, n=10), 16.1±0.2 Ma (MSWD=1.07, n=12), 14.4±0.4 Ma (MSWD=1.12, n=7). Meanwhile, twelve molybdenite samples separated from quartz sulfides in Gangjiang copper orebodies were used for Re-Os dating, and the model ages obtained range from 13.24±0.20 Ma to 13.55±0.22 Ma, with weighted average 13.4±0.1 Ma (MSWD=0.65) and isochron age 13.6±1.6 Ma (MSWD=1.2). On the basis of geological studies, and conbined with the results mentioned above and previous research data, it is proposed that the rock mass intrusion sequence is monzogranite porphyry→granodiorite porphyry→tonalite porphyrite→rhyolite porphyry. The porphyry occurred ranges from 16.6 Ma to 14.4 Ma, and the mineralization age of Gangjiang deposit is about 13.4 Ma, and petrogenetic and metallogenic is a continuous process of magmatic evolution. The Re content of the molybdenite is 155.4-171.1 μg/g, with an average of 162.9 μg/g, suggesting that the metallogenic material originated from a source with mantle components. Gangjiang porphyry copper-molybdenum deposit was formed in post-collisional extension setting of India-Asia continental collision orogenic belt during the Miocene.-
Key words:
- geochemistry /
- zircon U-Pb dating /
- molybdenite Re-Os dating /
- porphyry Cu-Mo deposit /
- Gangdese
-
图 1 冈底斯成矿带大地构造位置 (a)、矿床分布 (b) 及岗讲矿区地质简图 (c)
a.据芮宗瑶等 (2004);b.据冷秋锋等 (2015);c.据张庆松等 (2012)
Fig. 1. Tectonic location of the Gangdese metallogenic belt (a), the distribution of main porphyry deposit (b) and geological sketch of Gangjiang mining area (c)
图 2 岗讲矿区8号勘探线地质剖面
第四系浮土层;2.流纹斑岩;3.英云闪长玢岩;4.花岗闪长斑岩;5.二长花岗斑岩;6.钻孔;7.Cu-Mo矿 (化) 体;8.氧化-原生矿化带划分线 (a.氧化带;b.混合矿化带;c.原生矿化带);9.平硐及编号;10.采样位置;据四川省冶金地质勘查院 (2012)修改
Fig. 2. Line No.8 geological section of the Gangjiang mining area
图 3 岗讲铜钼矿床岩浆序列岩石及矿石手标本及显微照片
a.二长花岗斑岩手标本;b.花岗闪长斑岩手标本 (呈岩脉产出);c.英云闪长玢岩手标本;d.二长花岗斑岩;e.花岗闪长斑岩;f.英云闪长玢岩;g.辉钼矿-石英细脉;h.细脉状辉钼矿化截面 (辉钼矿呈鳞片状);i.辉钼矿 (产出于岩体节理裂隙面上).Bt.黑云母;Chl.绿泥石;Kfs.钾长石;Pl.斜长石;Q.石英;Ccp.黄铜矿;Mo.辉钼矿
Fig. 3. Hand specimen and microscopic photographs of magmatic series rocks and ore in Gangjiang copper-molybdenum deposit
表 1 岗讲铜钼矿床锆石U-Pb测年样品采集位置
Table 1. The collection location of zircon U-Pb dating sample in Gangjiang copper-molybdenum deposit
二长花岗斑岩 (共8件) 花岗闪长斑岩 (共8件) 英云闪长玢岩 (共9件) ZKW0800-410 m ZK2411-512 m DZK1201-431 m QZK301-520 m ZK1604-425 m ZK2006-430 m ZK2411-512 m ZK807-140 m ZKN812-424 m BZK1514-425 m ZK802-81 m GJ18-84 m ZK2003-25 m ZK805-97 m ZK807-111 m ZK807-133 m ZK805-77 m GJ21-22 m ZK803-120 m ZK807-114 m ZK1204-102 m ZK1204-115 m ZK2005-49 m GJ15-95 m ZK1204-119 m 表 2 岗讲铜钼矿床岩体LA-ICP-MS锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb dating results of rocks in Gangjiang copper-molybdenum deposit
测点 同位素比值 年龄 (Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ A5508-1(二长花岗斑岩) 1.1 0.055 6 18.53 0.017 0 16.12 0.002 3 11.91 17.2 2.8 15.1 1.6 1.2 0.061 3 48.51 0.021 6 56.52 0.002 6 18.12 21.7 5.2 16.7 0.2 2.1 0.096 4 69.04 0.039 5 72.72 0.003 1 29.09 29.4 4.6 20.2 1.2 2.2 0.127 0 73.80 0.041 0 92.32 0.002 6 14.60 20.8 3.2 16.4 0.3 3.1 0.057 3 34.65 0.019 9 31.77 0.002 8 34.06 20.0 2.3 17.8 1.1 4.1 0.051 3 18.03 0.033 3 23.00 0.005 0 17.96 33.3 0.7 32.4 2.0 5.1 0.137 9 39.88 0.057 0 36.88 0.003 1 20.14 26.3 6.3 20.0 1.3 5.2 0.058 1 36.35 0.019 2 35.71 0.002 5 13.39 19.4 3.6 15.9 0.7 6.1 0.068 4 47.13 0.024 2 53.65 0.002 7 31.89 24.2 6.9 17.1 0.4 7.1 0.149 9 47.62 0.056 6 54.85 0.002 8 11.81 25.9 7.2 17.9 1.2 8.1 0.103 6 46.09 0.039 6 54.65 0.002 9 25.36 29.4 9.9 18.4 1.7 8.2 0.050 2 30.84 0.016 3 30.06 0.002 5 19.64 16.4 0.2 16.2 0.5 9.1 0.063 3 44.20 0.021 5 50.43 0.002 5 18.89 21.6 4.7 16.2 0.5 10.1 0.193 3 57.63 0.089 7 94.92 0.003 1 28.31 26.7 5.9 20.0 1.4 11.1 0.048 4 39.74 0.016 2 40.86 0.002 5 11.75 16.4 0.5 16.1 0.6 A5508-2(花岗闪长斑岩) 1.1 0.055 9 31.52 0.019 7 29.17 0.002 6 21.33 19.8 2.9 16.9 0.7 2.1 0.066 5 61.17 0.024 7 73.83 0.002 6 13.62 24.8 2.1 16.9 0.8 3.1 0.063 8 15.21 0.019 0 24.30 0.002 3 26.64 19.1 3.6 14.9 1.2 4.1 0.054 5 27.50 0.018 8 29.95 0.002 6 14.88 18.9 3.8 16.7 0.4 5.1 0.065 3 42.44 0.022 6 50.15 0.002 5 20.35 22.6 0.1 16.0 0.2 5.2 0.064 3 51.95 0.023 5 52.82 0.002 7 15.37 23.6 0.9 17.2 1.1 6.1 0.053 8 26.90 0.023 9 23.02 0.003 4 21.31 24.0 1.3 21.8 1.2 7.1 0.051 9 38.19 0.016 9 39.80 0.002 4 24.69 17.0 5.7 15.6 0.6 8.1 0.076 5 60.94 0.025 6 49.16 0.002 6 24.19 25.6 2.9 16.6 0.5 8.2 0.093 9 31.28 0.0316 1 31.92 0.002 6 30.23 31.1 8.4 17.1 1.0 9.1 0.071 8 17.57 0.020 2 18.57 0.002 2 10.10 20.3 2.4 14.2 1.9 10.1 0.095 1 44.87 0.035 6 47.26 0.002 8 22.77 35.6 12.9 17.8 1.5 10.2 0.064 5 20.73 0.020 7 16.25 0.002 5 13.34 20.8 1.9 16.0 0.2 11.1 0.068 3 33.06 0.020 4 30.32 0.002 3 14.77 20.5 2.2 15.0 1.1 12.1 0.055 2 23.83 0.016 8 22.83 0.002 4 15.99 16.9 5.8 15.3 0.8 A5508-3(英云闪长玢岩) 1.1 0.085 9 62.46 0.027 4 72.79 0.002 4 12.68 15.9 1.7 15.1 0.2 2.1 0.166 6 37.31 0.053 4 42.55 0.002 4 21.51 16.5 1.1 15.7 0.6 3.1 0.363 2 51.42 0.199 6 70.10 0.004 0 29.38 27.6 9.8 25.7 1.5 3.2 0.233 9 53.81 0.112 1 90.62 0.003 2 32.24 22.4 4.8 20.5 0.9 4.1 0.139 3 82.71 0.067 5 159.91 0.002 5 61.90 16.8 0.8 16.2 1.0 4.2 0.132 2 36.19 0.042 4 56.54 0.002 3 22.53 15.5 2.1 14.9 0.2 5.1 0.165 3 81.51 0.057 3 66.78 0.002 6 23.67 18.1 0.5 16.9 1.7 6.1 0.085 3 21.70 0.024 1 25.85 0.002 1 18.17 14.6 3.0 13.6 1.6 7.1 0.140 1 46.11 0.047 0 54.41 0.002 5 24.08 17.8 0.2 16.3 1.3 7.2 0.094 6 37.37 0.026 5 44.30 0.002 1 15.04 14.2 3.4 13.3 1.6 8.1 0.190 1 77.91 0.083 6 122.76 0.002 7 40.34 19.4 1.8 17.1 1.9 9.1 0.063 0 17.54 0.018 3 24.82 0.002 0 12.10 13.5 4.1 13.1 2.0 10.1 0.103 9 40.96 0.030 9 38.48 0.002 2 12.53 16.6 1.0 14.2 0.8 表 3 岗讲铜钼矿床辉钼矿Re-Os同位素分析结果
Table 3. Re-Os isotopic data of molybdenites from Gangjiang copper-molybdenum deposit
样品编号 样重 (g) Re±2σ(μg/g) 普Os±2σ(ng/g) 187Re±2σ(μg/g) 187Os±2σ(ng/g) 模式年龄 (Ma) BSPD2-03-1 0.005 04 161.3±1.4 0.001 6±0.037 1 101.4±0.9 22.38±0.17 13.24±0.20 BSPD2-03-2 0.010 06 163.8±1.8 0.065 2±0.018 4 102.9±1.1 23.23±0.14 13.55±0.22 BSPD2-03-3 0.010 53 165.0±2.0 0.115 2±0.025 3 103.7±1.2 23.22±0.17 13.44±0.23 BSPD2-03-4 0.010 28 161.0±1.4 0.000 8±0.050 2 101.2±0.9 22.81±0.13 13.52±0.19 BSPD2-03-5 0.010 44 155.9±1.3 0.091 5±0.017 8 98.0±0.8 21.92±0.16 13.42±0.20 BSPD2-03-6 0.010 18 165.0±1.4 0.105 1±0.033 0 103.7±0.9 23.16±0.15 13.41±0.19 BSPD2-03-7 0.010 38 171.1±1.5 0.105 9±0.025 3 107.6±0.9 23.95±0.14 13.36±0.19 BSPD2-03-8 0.010 36 164.8±1.4 0.110 8±0.018 2 103.6±0.9 23.08±0.16 13.38±0.20 BSPD2-03-9 0.010 07 165.8±1.3 0.092 8±0.018 4 104.2±0.8 23.18±0.14 13.35±0.19 BSPD2-03-10 0.010 96 162.5±1.3 0.000 7±0.119 9 102.2±0.8 22.72±0.16 13.35±0.19 BSPD2-03-11 0.010 36 155.4±1.1 0.060 4±0.026 0 97.7±0.7 21.75±0.16 13.36±0.19 BSPD2-03-12 0.010 73 162.9±1.2 0.092 4±0.025 2 102.4±0.8 22.79±0.22 13.36±0.21 -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [2] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7 [3] Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth Science Reviews, 68(3-4):173-196.doi: 10.1016/j.earscirev.2004.05.001 [4] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):205-215.doi: 10.1017/s0263593300006611 [5] Du, A.D., He, H.L., Yin, N.W., et al., 1994.A Study on the Rhenium-Osmium Geochronometry of Molybdenites.Acta Geologica Sinica, 68(4):339-347 (in Chinese with English abstract). [6] Du, A.D., He, H.L., Yin, N.W., et al., 1995.A Study of the Rhenium-Osmium Geochronometry of Molybdenites.Acta Geologica Sinica (English Edition), 8(2):171-181.doi: 10.1111/j.1755-6724.1995.mp8002004.x [7] Du, A.D., Qu, W.J., Li, C., et al., 2009.A Review on the Development of Re-Os Isotopic Dating Methods and Techniques.Rock and Mineral Analysis, 28(3):288-304 (in Chinese with English abstract). [8] Du, A.D., Wu, S.Q., Sun, D.Z., et al., 2004.Preparation and Certification of Re-Os Dating Reference Materials:Molybdenites HLP and JDC.Geostandards and Geoanalytical Research, 28(1):41-52.doi: 10.1111/j.1751-908X.2004.tb01042.x [9] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001.Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation.Rock and Mineral Analysis, 20(4):247-252 (in Chinese with English abstract). [10] Fang, G.C., Chen, Y.C., Chen, Z.H., et al., 2014.Zircon U-Pb and Molybdenite Re-Os Geochronology of the Panggushan Tungsten Deposit in South Jiangxi Province and Its Significance.Acta Geoscientica Sinica, 35(1):76-84 (in Chinese with English abstract). https://www.researchgate.net/publication/283764147_Zircon_U-Pb_and_molybdenite_Re-Os_geochronology_of_the_Pangushan_tungsten_deposit_in_South_Jiangxi_Province_and_its_significance [11] Foster, J.G., Lambert, D.D., Frick, L.R., et al., 1996.Re-Os Isotopic Evidence for Genesis of Archaean Nickel Ores from Uncontaminated Komatiites.Nature, 382(6593):703-706.doi: 10.1038/382703a0 [12] Gaetani, M., Garzanti, E., 1991.Multicyclic History of the Northern India Continental Margin (Northwestern Hinwlaya).AAPG Bulletin, 75:1427-1446.doi: 10.1306/0c9b2957-1710-11d7-8645000102c1865d [13] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.3135 [14] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Oregen.Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). http://www.oalib.com/paper/1470744 [15] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adaktic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155.doi:10.1016/s0012-821x (04)00007-x [16] Hou, Z.Q., Ma, H.W., Zaw, K., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145.doi: 10.2113/98.1.125 [17] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposites no Related to Oceanic-Slab Subduction Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351 (in Chinese with English abstract). https://www.researchgate.net/publication/284381456_Porphyry_Cu-Mo-Au_deposits_no_related_to_oceanic-slab_subduction_Examples_from_Chinese_porphyry_deposits_in_continental_settings [18] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003.Re-Os Dating of Molybdenite from the Gangdese Metallogenic Belt, Tibet:Applications of Mineralization Time and Dynamic Background.Science in China (Series D), 33(7):609-618 (in Chinese). [19] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract). [20] Hou, Z.Q., Wang, E.Q., 2008.Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract). http://www.oalib.com/paper/1558971 [21] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006 [22] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract). [23] Huang, Y., Ding, J., Li, G.M., et al., 2015.U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhunuo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance.Acta Geologica Sinica, 89(1):99-108 (in Chinese with English abstract). [24] Jian, R.T., Zhao, X, K., Jiang, H., et al., 2016.Geochemical Characteristics of Magmatic Rock in Nimu Porphyry Copper Polymetallic Deposit in Tibet and Its Implications for Petrogenesis.Science Technology and Engineering, 16(4):141-147(in Chinese with English abstract). [25] Jiang, S.Y., Yang, J.H., Zhao, K.D., et al., 2000.Re-Os Isotope Tracer and Dating Methods in Ore Deposits Research.Journal of Nanjing University (Natural Sciences), 36(6):669-677 (in Chinese with English abstract). [26] Jin, X.D., Li, W.J., Wu, H.Y., et al., 2010.Development of Re-Os Isotopic Dating Analytical Technique and Determination Know-How on ICP-MS Precise Dating for Molybdenite.Acta Petrologica Sinica, 26(5):1617-1624 (in Chinese with English abstract). http://www.oalib.com/paper/1476558 [27] Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012.Neo-Tethys Mineralization on the Southern Margin of the Gangdise-Metallogenic Belt, Tibet, China:Evidence from Re-Os Ages of Xiongcun Orebody No.Ⅰ.Earth Science, 37(3):515-525 (in Chinese with English abstract). [28] Leng, C.B., Zhang, X.C., Zhou, W.D., 2010.A Primary Study of the Geological Characteristics and the Zircon U-Pb Age of the Gangjiang Porphyry Copper-Molgbdenum Deposit in Nimu, Tibet.Earth Science Frontiers, 17(2):185-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201002025.htm [29] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606007.htm [30] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2015.Re-Os Dating of Molybdenite from the Lakange Porphyry Cu-Mo Deposit in Tibet and Its Geological Significance.Geology in China, 42(2):570-584 (in Chinese with English abstract). https://www.researchgate.net/publication/282268883_Re-Os_dating_of_molybdenite_from_the_Lakange_porphyry_Cu-Mo_deposit_in_Tibet_and_its_geological_significance [31] Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise-Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170 (in Chinese with English abstract). [32] Li, J.X., Qin, K.Z., Li, G.M., et al., 2007.K-Ar and 40Ar-39Ar Age Dating of Nimu Porphyry Copper Orefield in Central Gangdese:Constrains on Magmatic-Hydrothermal Evolution and Metallogenetic Tectonic Setting.Acta Petrologica Sinica, 23(5):953-966 (in Chinese with English abstract). [33] Lin, W., Liang, H.Y., Zhang, Y.Q., et al., 2004.Petrochemistry and SHRIMP U-Pb Zircon Age of the Chongjiang Ore-Bearing Porphyry in the Gangdese Porphyry Copper Belt.Geochimica, 33(6):585-592 (in Chinese with English abstract). [34] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [35] Ludwig, K.R., 1999.A Geochronological Toolkit for Microsoft Excel.Geochronology Center, Berkeley. [36] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999.Re-Os Isotopic Dating of Molybdenites in the Xianliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance.Geochima et Cosmochim Acta, 163(11-12):1815-1818.doi: 10.1016/S0016-7037(99)00165-9 [37] Meng, X.J., Hou, Z.Q., Gao, Y.F., et al., 2003.Re-Os Dating for Molybdenite from Qulong Porphyry Copper Deposit in Gangdese Metallogenic Belt, Xizang and Its Metallogenic Significance.Geological Review, 49(6):660-666 (in Chinese with English abstract). [38] Miller, C., Schuster, R., Klotzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424.doi: 10.1093/petroj/40.9.1399 [39] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Chracteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). [40] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). [41] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080 [42] Qin, Z.P., Wang, X.W., Duo, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rock in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348(in Chinese with English abstract). https://www.researchgate.net/publication/285347618_LA-ICP-MS_U-Pb_zircon_age_of_intermediate-acidic_intrusive_rocks_in_Jiama_of_Tibet_and_its_metallogenic_significance [43] Qu, X.M., Hou, Z.Q., Zaw, K., et al., 2007.Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223.doi: 10.1016/j.Oregeorev.2005.03.012 [44] Qu, X.M., Hou, Z.Q., Mo, X.X., et al., 2006.Relationship Between Gangdese Porphyry Copper Deposits and Uplifting of Southern Tibet Plateau:Evidence from Multistage Zircon of Ore-Bearing Porphyries.Mineral Deposits, 25(4):388-400 (in Chinese with English abstract). [45] Qu, X.M., Hou, Z.Q., Li, Z.Q., 2003.40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significcance.Acta Geological Sinica, 77(2):245-252 (in Chinese with English abstract). [46] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002.Implications of S and Pb Isotopic Compositions of the Gangdise Porphyry Copper Belt for the Ore-Forming Material Source and Material Recycling within the Oregenic Belt.Geological Bulletin of China, 21(11):768-776(in Chinese with English abstract). [47] Qu, X.M., Hou, Z.Q., Huang, W., 2001.Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt?Mineral Deposits, 20(4):355-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200104009.htm [48] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003.Metallogenic Epoch of Gangdese Porphyry Copper Belt and Uplift of the Qinghai-Tibetan Plateau.Mineral Deposits, 22(3):217-225 (in Chinese with English abstract). [49] Rui, Z.Y., Li, G.M., Zhang, L.S., et al., 2004.The Response of Porphyry Copper Deposits to Important Geological Events in Xizang.Earth Science Frontiers, 11(1):145-152 (in Chinese with English abstract). [50] Shirey, S.B., Walker, R.J., 1995.Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis.Analytical Chemistry, 67(13):2136-2141.doi: 10.1021/ac00109a036 [51] Sichuan Provincial Metallurgical Geological Prospecting Institute, 2012.Geological Report of Copper Mine in Tibet's Nimu County Gangjiang and Around.Chengdu:Sichuan Metallurgical Geological Prospecting Institute (In Chinese). [52] Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996.Re-Os Ages of Group ⅠA, ⅡA, ⅣA and ⅥB Iron Meteorites.Science, 271(5252):1099-1102.doi: 10.1126/science.271.5252.1099 [53] Song, B., Zhang, Y.H., Wang, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). [54] Turner, S., Hawkesworth, C.J., Liu, J.Q., et al., 1993.Timing of Tibetan Uplift Constrained by Analysis of Volcanic Rocks.Nature, 364(6432):50-54.doi: 10.1038/364050a0 [55] Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010.Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt.Acta Petrologica Sinica, 26(6):1820-1832 (in Chinese with English abstract). http://www.oalib.com/paper/1476154 [56] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409003.htm [57] Wang, L.Q., Tang, J.X., Chen, Y.C., et al., 2011.LA-ICP-MS Zircon U-Pb Dating of Ore-Bearing Monzogranite Porphyry in Bangpu Molybdenum (Copper) Deposit, Tibet and Its Significance.Mineral Deposits, 30(2):349-360 (in Chinese with English abstract). [58] Wu, J., Xu, Y.D., An, X.Y., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Gangdese Area, Tibetan Plateau.Earth Science, 39(8):1052-1064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201408009.htm [59] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602 (in Chinese with English abstract). [60] Xia, B.B., Xia, B., Wang, B.D., et al., 2007.Ore-Bearing Adakitic Porphyry in the Middle of Gangdese Thickened Lower Crustal Melting and the Genesis of Porphyry Cu-Mo Deposit.Geological Science and Technology Information, 26(4):19-26 (in Chinese with English abstract). [61] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 [62] Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538 (in Chinese with English abstract). https://www.researchgate.net/publication/284187747_Porphyry_Cu_deposits_in_collisional_orogen_setting_A_preliminary_genetic_model [63] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization.Mineral Deposits, 27(3):279-318 (in Chinese with English abstract). [64] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibet Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.Earth.28.1.211 [65] Ying, L.J., Wang, D.H., Tang, J.X., et al., 2010.Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance.Acta Geologica Sinica, 84(8):1165-1174 (in Chinese with English abstract). https://www.researchgate.net/publication/287496841_Re-Os_isotopic_dating_of_molybdenite_in_skarn_from_the_Jiama_copper_polymetallic_deposit_of_Tibet_and_its_metallogenic_significance [66] Zhang.Q., 2011.Reappraisal of the Origin of C-Type Adakitic Rocks from East China.Acta Petrologica et Mineralogica, 30(4):739-747 (in Chinese with English abstract). [67] Zhang, Q., Qin K.Z., Wang, Y.L., et al., 2004.Study on Adakite Broadened to Chellenge the Cu and Au Exloration in China.Acta Petrologica Sinica, 20(2):195-204 (in Chinese with English abstract). https://www.researchgate.net/publication/296947619_Study_on_adakite_broadened_to_challenge_the_Cu_and_Au_exploration_in_China [68] Zhang, Q., Wang, Y., Wang, Y.L., 2003.On the Relationship between Adakite and Its Tectonic Setting.Geotectonica et Metallogenia, 27(2):101-108 (in Chinese with English abstract). [69] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244 (in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China [70] Zhang, Q.S., Zheng, L.B., Wang, G.W., et al., 2012.Geological Characteristics of Gangjiang-Bairong Porphyry Cu-Mo Deposit in Tibet and Ore-Searching Directions.Contributions to Geology and Mineral Resources Research, 27(3):300-307 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201203007.htm [71] Zheng, Y.Y., Duo, J., Wang, R.J., et al., 2007a.New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet.Geology in China, 34(2):324-334 (in Chinese with English abstract). [72] Zheng, Y.Y., Zhang, G.Y., Xu, R.K., et al., 2007b.Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet.Chinese Science Bulletin, 55(21):2542-2548 (in Chinese with English abstract). doi: 10.1007/s11434-007-0406-7 [73] Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004.Finding and Significance of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet.Earth Science, 29(3):333-339 (in Chinese with English abstract). https://www.researchgate.net/publication/279712382_Finding_and_significances_of_Chongjiang_porphyry_copper_molybdenum_aurum_deposit_Tibet [74] Zhou, W.D., Zhang, Z.W., Yuan, S.C., et al., 2014.Characteristics and Mineralization Epoches of the Bairong Porphyry Copper Molybdenum Deposit in the Nyemo County, Tibet.Bulletin of Mineralogy, Petrology and Geochemistry, 33(2):177-184 (in Chinese with English abstract). [75] Zhou, X., Wen, C.Q., Zhang, Y., et al., 2013.Re-Os Dating of Molybdenite from the Bangpu Polymetallic Deposit of Tibet, and Its Geological Significance.Journal of Mineralogy & Petrology, 33(2):59-64 (in Chinese with English abstract). https://www.researchgate.net/publication/298582952_Re-Os_dating_of_molybdenite_from_the_Bangpu_polymetallic_deposit_of_Tibet_and_its_geological_significance [76] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010.Presence of Permian Extension and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin, 122(7-8):979-993.doi: 10.1130/b30062.1 [77] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003 [78] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442 [79] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China.Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). https://www.researchgate.net/publication/287635476_Spatial-temporal_distribution_and_tectonic_setting_of_Jurassic_magmatism_in_the_Gangdise_belt_Tibet [80] 杜安道, 何红蓼, 殷宁万, 等, 1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报, 68(4):339-347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404003.htm [81] 杜安道, 屈文俊, 李超, 等, 2009.铼-锇同位素定年方法及分析测试技术的进展.岩矿测试, 28(3):288-304. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903027.htm [82] 杜安道, 赵敦敏, 王淑贤, 等, 2001.Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试, 20(4):247-252. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200104001.htm [83] 方贵聪, 陈毓川, 陈郑辉, 等, 2014.赣南盘古山钨矿床锆石U-Pb和辉钼矿Re-Os年龄及其意义.地球学报, 35(1):76-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401011.htm [84] 侯可军, 李延河, 田有荣, 2009.LA-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [85] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20 (2):239-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm [86] 侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702020.htm [87] 侯增谦, 曲晓明, 王淑贤, 等, 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学 (D辑), 33(7):609-618. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm [88] 侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606000.htm [89] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm [90] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm [91] 黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501008.htm [92] 坚润堂, 赵献昆, 姜华, 等, 2016.西藏尼木斑岩铜多金属矿区岩浆岩地球化学特征及成因探讨.科学技术与工程, 16(4):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201604025.htm [93] 蒋少涌, 杨竞红, 赵葵东, 等, 2000.金属矿床Re-Os同位素示踪与定年研究.南京大学学报 (自然科学版), 36(6):669-677. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200006001.htm [94] 靳新娣, 李文君, 吴华英, 等, 2010.Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术.岩石学报, 26(5):1617-1624. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005025.htm [95] 郎兴海, 唐菊兴, 陈毓川, 等, 2012.西藏冈底斯成矿带南缘新特提斯洋俯冲成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学, 37(3):515-525. http://www.earth-science.net/WebPage/Article.aspx?id=2255 [96] 冷成彪, 张兴春, 周维德, 2010.西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄.地学前缘, 17(2):185-197. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002025.htm [97] 冷秋锋, 唐菊兴, 郑文宝, 等, 2015.西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义.中国地质, 42(2):570-584. [98] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312 [99] 李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200402007.htm [100] 李金祥, 秦克章, 李光明, 等, 2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar-39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报, 23(5):953-966. [101] 林武, 梁华英, 张玉泉, 等, 2004.冈底斯铜矿带冲江含矿斑岩的岩石地球化学及锆石SHRIMP年龄特征.地球化学, 33(6):585-592. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406005.htm [102] 孟祥金, 侯增谦, 高永丰, 等, 2003.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质评论, 49(6):660-666. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306016.htm [103] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503001.htm [104] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm [105] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [106] 秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2):339-348. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102015.htm [107] 曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿 (化) 带:西藏第二条"玉龙"铜矿带?.矿床地质, 20(4):355-366. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200104009.htm [108] 曲晓明, 侯增谦, 李佑国, 2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报, 21(11):768-776. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200211014.htm [109] 曲晓明, 侯增谦, 李振清, 2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义.地质学报, 77(2):245-252. [110] 曲晓明, 侯增谦, 莫宣学, 等, 2006.冈底斯斑岩铜矿与南部青藏高原隆升之关系-来自含矿斑岩中多阶段锆石的证据.矿床地质, 25(4):388-400. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604003.htm [111] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质, 22(3):217-225. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303000.htm [112] 芮宗瑶, 李光明, 张立生, 等, 2004.西藏斑岩铜矿对重大地质事件的响应.地学前缘, 11(1):145-152. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401015.htm [113] 四川省冶金地质勘查院, 2012. 西藏尼木县岗讲及外围铜矿地质报告. 成都: 四川省冶金地质勘查院. [114] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [115] 王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006016.htm [116] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pa年代学及岩石地球化学证据.地球科学, 39(9):1277-1288. http://www.earth-science.net/WebPage/Article.aspx?id=2935 [117] 王立强, 唐菊兴, 陈毓川, 等, 2011.西藏邦铺钼 (铜) 矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 30(2):349-360. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102016.htm [118] 吴旌, 徐亚东, 安显银, 等, 2014.冈底斯新元古代‐中生代沉积盆地演化.地球科学.39(8):1052-1064. http://www.earth-science.net/WebPage/Article.aspx?id=2917 [119] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm [120] 夏抱本, 夏斌, 王保弟, 等, 2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成岩.地质科技情报, 26(4):19-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704004.htm [121] 杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200905002.htm [122] 杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200803003.htm [123] 应立娟, 王登红, 唐菊兴, 等, 2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义.地质学报, 84(8):1165-1174. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm [124] 张旗, 2011.关于C型埃达克岩成岩的再探讨.矿石矿物学杂志, 30(4):739-747. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201104021.htm [125] 张旗, 秦克章, 王元龙, 等, 2004.加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面.岩石学报, 20(2):195-204. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402001.htm [126] 张旗, 王焰, 钱靑, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm [127] 张旗, 王焰, 王元龙, 2003.埃达克岩与构造环境.大地构造与成矿学, 27(2):101-108. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200302000.htm [128] 张庆松, 郑立波, 王光旺, 等, 2012.西藏岗讲-白容斑岩铜钼矿地质特征及找矿方向.地质找矿论丛, 27(3):300-307. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201203007.htm [129] 郑有业, 多吉, 王瑞江, 等, 2007a.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展.中国地质, 34(2) 324-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702015.htm [130] 郑有业, 张刚阳, 许荣科, 等, 2007b.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束.科学通报, 52(21):2542-2548. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200721014.htm [131] 郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜 (钼金) 矿床的发现及意义.地球科学, 29(3):333-339. http://www.earth-science.net/WebPage/Article.aspx?id=1369 [132] 周维德, 张正伟, 袁盛朝, 等, 2014.西藏尼木县白容斑岩型铜钼矿床特征及成矿期次.矿物岩石地球化学通报, 33(2):177-184. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402005.htm [133] 周雄, 温春齐, 张贻, 等, 2013.西藏邦铺钼铜多金属矿床辉钼矿Re-Os年代学及地质意义.矿物岩石, 33(2):59-64. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201302009.htm [134] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4):458-468. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200804004.htm