Architecture Model and Sedimentary Evolution of Deepwater Turbidity Channel: A Case Study of M Oilfield in West Africa
-
摘要: 浊积水道是深水油田的重要储层类型,其构型模式制约油田的高效开发.依据岩心、露头、测井及地震资料,采用地震地层学、地震沉积学、沉积岩石学的方法对西非M油田中下陆坡区浊积水道进行了半定量-定量化构型模式研究,并分析了其沉积演化规律.结果表明:研究区3~5级构型单元为单一水道、复合水道、水道体系;单一水道弯曲度与坡度呈负相关,水道内部岩石相充填由底部到顶部、轴部到边缘粒度变细,厚度变薄;复合水道内部单一水道在平面上存在侧向和沿古流向两种迁移类型,剖面上存在水平式、斜列式和摆动式3种叠置样式.M油田O73油组主要发育半限制性和非限制性水道体系,平面上近物源端以发育半限制性水道体系为主,远物源端以发育非限制性水道体系为主;垂向演化规律以非限制性水道体系内部最为典型,从底部到顶部,单一水道下切能力逐渐减弱,侧向加积能力逐渐增强,弯曲度逐渐增大,水道砂体规模逐渐变小.综合分析表明,古地形坡度和物源供给是控制M油田浊积水道沉积类型及演化的主要因素.Abstract: As an important reservoir type in deepwater environment, turbidite channel and studies on its architecture are important t for efficient development of an oil field. In order to clearly understand the reservoir architecture of M oilfield, a semi-quantitative to quantitative study on turbidite channel depositional architecture patterns was conducted by analyses of seismic stratigraphy, seismic sedimentology and sedimentary petrography of the middle to lower slope at M oilfield, West Africa, and the sedimentary evolution was analyzed on the basis of core, outcrop, logging and seismic data. Results show that in the study area, stages 3 to 5 are single channel, complex channel, and channel system respectively. Single channel sinuosity is negatively correlated with slope, and internal grain size becomes increasingly fine and thickness decreases from bottom to top and from the axis to the edge. The migration type of a single channel within one complex channel can be divided into lateral migration and along paleocurrent migration horizontally, and lateral stack, echelon stack, and swing stack in section view. O73 channel system comprises of a semi-confining type and a non-confining type. Horizontally, there is semi-confining channel system close to the source while non-confining one far away from it. In terms of vertical evolution, it is most typically displayed within non-confining channel system, which shows decreasing undercutting and more lateral accretion, larger sinuosity and smaller channel sand body from the bottom up. Comprehensive analyses indicate that controlling factors of M oilfield turbidite sedimentary model and its evolution are paleotography slope and source supply.
-
图 2 浊积水道体系不同级次构型划分关系
据林煜等(2013)修改
Fig. 2. Configuration unit sedimentary pattern of turbidity channel
图 4 浅层水道坡度测量(a) 和陆坡坡度与水道弯曲度相关性分析(b)
图a平面位置见图 3a红色虚线,图中蓝色虚线为水道轮廓,红色虚线为坡度的大致分区
Fig. 4. Slope gradient measurement through shallow tuibidite channel deposit (a) and correlation analysis between slope gradient and channel sinuosity (b)
图 5 西非地区M油田单一水道内部岩石相特征
a.块状含砾质-粗砂岩相,Well-1A,3 196.25 m;b.块状含泥屑-粗砂岩相,Well-1A,3 197.16 m;c.底部滞留沉积,Well-1A,3 199.06 m;d.块状砾质-粗砂岩相,Well-1A,3 202.29 m;e.块状砂岩相(见冲刷面),Well-2B,3 213.03 m;f.薄层泥质粉砂岩相,Well-2B,3 205.00 m;g.波纹层理粉砂岩相,Well-2B,3 206.12 m;h.块状砾质-中粗砂岩相(顶部含漂浮泥砾),Well-2B,3 202.08 m;i.波纹层理粉砂岩相,Well-2B,3 209.26 m;j.块状中细粒砂岩相,Well-2B,3 213.67 m;井位见图 9
Fig. 5. Inner lithofacies characteristics of single channel in M oilfield
图 8 西非地区M油田O73复合水道主要迁移模式及纵向分期
b1.水平式侧向前移,b2.斜列式垂向迁移,b3.摆动式垂向迁移;图a中不同颜色实线条代表不同迁移模式,红色虚线为非限制性水道体系下切界面;剖面位置见图 9
Fig. 8. Profile migration patterns and vertical evolution of single channel of zone O73 in M oilfield
表 1 深水浊积水道沉积构型级次划分方案对比(有修改)
Table 1. Comparison of turbidity channel architecture partition scheme (after modified)
Mutti and Normark (1987) 林煜等(2013) 1 盆地充填、扇复合体 7 海底扇复合体 2 单一扇体 6 单一海底扇 3 扇体发育某一阶段 5 水道体系 4 复合水道 4 水道天然堤微地貌 3 单一水道 5 岩石相、层理微地貌 2 单一水道内部沉积单元(如鲍马序列) 1 沉积单元内部某一韵律段 -
[1] Abreu, V., Sullivan, M., Pirmez, C., et al., 2003.Lateral Accretion Packages (LAPs):An Important Reservoir Element in Deep Water Sinuous Channels.Marine and Petroleum Geology, 20(6-8):631-648.doi: 10.1016/j.marpetgeo.2003.08.003 [2] Anka, Z., Séranne, M., Lopez, M., et al., 2009.The Long-Term Evolution of the Congo Deep-Sea Fan:A Basin-Wide View of the Interaction between a Giant Submarine Fan and a Mature Passive Margin (ZaiAngo Project).Tectonophysics, 470(1-2):42-56.doi: 10.1016/j.tecto.2008.04.009 [3] Bouma, A.H., 1985.Introduction to Submarine Fans and Related Turbiditie Systems.In:Bouma, A.H., Normark, W.R., Barnes, N.E., eds., Submarine Fans and Related Turbidite Systems.Springer-Verlag, Berlin. [4] Chen, H., Xie, X.N., Mao, K.N., 2015.Deep-Water Contourite Depositional System in Vicinity of Yi'tong Shoal on Northern Margin of the South China Sea.Earth Science, 40(4):733-743(in Chinese with English abstract). https://www.researchgate.net/publication/281704630_Deep-water_contourite_depositional_system_in_vicinity_of_Yi'tong_Shoal_on_northern_margin_of_the_South_China_Sea [5] Clark, J.D., Pickering, K.T., 1996.Submarine Channels:Processes and Architecture.Vallis Press, London. [6] Deng, R.J., Deng, Y.H., Yu, S., et al., 2008.Hydrocarbon Geology and Reservoir Formation Characteristics of Niger Delta Basin.Petroleum Exploration and Development, 35(6):755-762(in Chinese with English abstract). https://www.researchgate.net/publication/279894435_Hydrocarbon_geology_and_reservoir_formation_characteristics_of_Niger_Delta_Basin [7] Deptuck, M.E., Steffens, G.S., Barton, M., et al., 2003.Architecture and Evolution of Upper Fan Channel-Belts on the Niger Delta Slope and in the Arabian Sea.Marine and Petroleum Geology, 20(6-8):649-676.doi: 10.1016/j.marpetgeo.2003.01.004 [8] Habgood, E.L., Kenyon, N.H., Masson, D.G., et al., 2003.Deep-Water Sediment Wave Fields, Bottom Current Sand Channels and Gravity Flow Channel-Lobe Systems:Gulf of Cadiz, NE Atlantic.Sedimentology, 50(3):483-510.doi: 10.1046/j.1365-3091.2003.00561.x [9] He, Y.L., Xie, X.N., Lu, Y.C., et al., 2011.Architecture and Characteristics of Mass Transport Deposits (Mtds) in Qiongdongnan Basin in Northern South China Sea.Earth Science, 36(5):905-913(in Chinese with English abstract). https://www.researchgate.net/publication/286549173_Architecture_and_characteristics_of_mass_transport_deposits_MTDs_in_Qiongdongnan_basin_in_northern_South_China_Sea [10] Heiniö, P., Davies, R.J., 2007.Knickpoint Migration in Submarine Channels in Response to Fold Growth, Western Niger Delta.Marine and Petroleum Geology, 24(6-9):434-449.doi: 10.1016/j.marpetgeo.2006.09.002 [11] Hubbard, S.M., de Ruig, M.J.D., Graham, S.A., 2009.Confined Channel-Levee Complex Development in an Elongate Depo-Center:Deep-Water Tertiary Strata of the Austrian Molasse Basin.Marine and Petroleum Geology, 26(1):85-112.doi: 10.1016/j.marpetgeo.2007.11.006 [12] Kane, I.A., Kneller, B.C., Dykstra, M., et al., 2007.Anatomy of a Submarine Channel-Levee:An Example from Upper Cretaceous Slope Sediments, Rosario Formation, Baja California, Mexico.Marine and Petroleum Geology, 24(6-9):540-563.doi: 10.1016/j.marpetgeo.2007.01.003 [13] Kolla, V., 2007.A Review of Sinuous Channel Avulsion Patterns in some Major Deep-Sea Fans and Factors Controlling them.Marine and Petroleum Geology, 24(6-9):450-469.doi: 10.1016/j.marpetgeo.2007.01.004 [14] Kolla, V., Bourges, P., Urruty, J.M., et al., 2001.Evolution of Deep-Water Tertiary Sinuous Channels Offshore Angola (West Africa) and Implications for Reservoir Architecture.AAPG Bulletin, 85(8):1373-1405.doi: 10.1306/8626cac3-173b-11d7-8645000102c1865d [15] Labourdette, R., 2007.Integrated Three-Dimensional Modeling Approach of Stacked Turbidite Channels.AAPG Bulletin, 91(11):1603-1618.doi: 10.1306/06210706143 [16] Li, H., He, Y.B., Wang, Z.Q., 2011.Morphology and Characteristics of Deep-Water High Sinuous Channel-Levee System.Journal of Palaeogeography, 13(2):139-149(in Chinese with English abstract). [17] Li, L., Wang, Y.M., Huang, Z.C., et al., 2008.Study on Sequence Stratigraphy and Seismic Facies in Deep-Water Niger Delta.Acta Sedimentologica Sinica, 26(3):407-416(in Chinese with English abstract). [18] Liao, J.H., Xu, Q., Chen, Y., et al., 2016.Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun Liwan Sag.Earth Science, 41(6):1041-1054 (in Chinese with English abstract). https://www.researchgate.net/publication/305417628_Sedimentary_characteristics_and_genesis_of_the_deepwater_channel_system_in_Zhujiang_Formation_of_Baiyun-Liwan_Sag [19] Lin, Y., Wu, S.H., Wang, X., et al., 2013.Research on Architecture Model of Deepwater Turbidity Channel System:A Case Study of a Deepwater Research Area in Niger Delta Basin, West Africa.Geological Review, 59(3):510-520(in Chinese with English abstract). [20] Liu, J.P., Pan, X.H., Ma, J., et al., 2008.Petroleum Geology and Resources in West Africa:An Overview.Petroleum Exploration and Development, 35(3):378-384(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60086-5 [21] Liu, Z.D., Li, J.H., 2009.Tectonic Evolution and Petroleum Geology Characteristics of Petroliferous Salt Basins Area Along Passive Continental Margin, West Africa.Marine Origin Petroleum Geology, 14(3):46-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200903010.htm [22] Lü, M., Wang, Y., Chen, Y., 2008.A Discussion on Origins of Submarine Fan Deposition Model and Its Exploration Significance in Nigeria Deep-Water Area.China Offshore Oil and Gas, 20(4):275-282(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200804017.htm [23] Menard, H.W., Jr., 1955.Deep-Sea Channels, Topography, and Sedimentation.AAPG Bulletin, 39(2):236-255.doi: 10.1306/5ceae136-16bb-11d7-8645000102c1865d [24] Mutti, E., Normark, W.R., 1987.Comparing Examples of Modern and Ancient Turbidite Systems:Problems and Concepts.Marine Clastic Sedimentology, 1-38.doi: 10.1007/978-94-009-3241-8_1 [25] Peakall, J., McCaffrey, B., Kneller, B., 2000.A Process Model for the Evolution, Morphology, and Architecture of Sinuous Submarine Channels.Journal of Sedimentary Research, 70(3):434-448.doi: 10.1306/2dc4091c-0e47-11d7-8643000102c1865d [26] Posamentier, H.W., Kolla, V., 2003.Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings.Journal of Sedimentary Research, 73(3):367-388.doi: 10.1306/111302730367 [27] Shanmugam, G., 2008.The Constructive Functions of Tropical Cyclones and Tsunamis on Deep-Water Sand Deposition during Sea Level Highstand:Implications for Petroleum Exploration.AAPG Bulletin, 92(4):443-471.doi: 10.1306/12270707101 [28] Slatt, R.M., 2006.Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers.Handbook of Petroleum Exploration and Production.Elsevier, Amsterdam.doi:10.1016/s1567-8032(06) x8035-7 [29] Stow, D.A.V., Reading, H.G., Collinson, J.D., 1996.Deep Seas.In:Reading, H.G., ed., Sedimentary Environments:Processes, Facies and Stratigraphy.Blackwell Science, Oxford. [30] Sun, H., Jiang, T., Li, C.F., et al., 2014.Characteristics of Gravity Flow Deposits in Slope Basin of Nankai Trough and Their Responses to Subduction Tectonics.Earth Science, 39(10):1383-1394(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201410001.htm [31] Wang, H.R., Wang, Y.M., Qiu, Y., et al., 2009.The Control of the Multiple Geomorphologic Breaks on Evolution of Gravity Flow Dynamics in Deep-Water Environment.Acta Geologica Sinica, 83(6):812-819(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=edd637d85d85133bfd24067c270f1d63&encoded=0&v=paper_preview&mkt=zh-cn [32] Wood, L.J., Mize-Spansky, K.L., 2009.Quantitative Seismic Geomorphology of a Quaternary Leveed-Channel System, Offshore Eastern Trinidad and Tobago, Northeastern South America.AAPG Bulletin, 93(1):101-125.doi: 10.1306/08140807094 [33] Wynn, R.B., Cronin, B.T., Peakall, J., 2007.Sinuous Deep-Water Channels:Genesis, Geometry and Architecture.Marine and Petroleum Geology, 24(6-9):341-387.doi: 10.1016/j.marpetgeo.2007.06.001 [34] Xie, X.N., Chen, Z.H., Sun, Z.P., et al., 2012.Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South China Sea.Earth Science, 37(4):627-634(in Chinese with English abstract). https://www.researchgate.net/publication/287580941_Depositional_architecture_characteristics_of_deepwater_depositional_systems_on_the_continental_margins_of_northwestern_South_China_Sea [35] Xiong, L.P., Wang, J., Yin, J.Y., et al., 2005.Tectonic Evolution and its Control on Hydrocarbon Accumulation in West Africa.Oil & Gas Geology, 26(5):641-643, 645-646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200505015.htm [36] Yu, S., Cheng, T., Chen, Y., 2012.Depositional Characteristics of Deepwater Systems in the Niger Delta Basin.Earth Science, 37(4):763-770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204016.htm [37] Zhang, W.B., Liu, Z.Q., Chen, Z.H., et al., 2015.Establishment and Application of Geological Data Base on Deep-Water Channels in Angola Block.Acta Sedimentologica Sinica, 33(1):142-152(in Chinese with English abstract). [38] Zhao, X.M., Wu, S.H., Liu, L., 2012.Sedimentary Architecture Model of Deep-Water Channel Complexes in Slope Area of West Africa.Journal of China University of Petroleum (Natural Science Edition), 36(6):1-5, 12(in Chinese with English abstract). [39] Zhuo, H.T., Wang, Y.M., Xu, Q., et al., 2013.Sedimentary Characteristics and Genesis of Lateral Accretion Packages in the Pliocene of Dongfang Area of Yinggehai Basin in Northern South China Sea.Journal of Palaeogeography, 15(6):787-794(in Chinese with English abstract). [40] 陈慧, 解习农, 毛凯楠, 2015.南海北缘一统暗沙附近深水等深流沉积体系特征.地球科学, 40(4): 733-743. http://www.earth-science.net/WebPage/Article.aspx?id=3061 [41] 邓荣敬, 邓运华, 于水, 等, 2008.尼日尔三角洲盆地油气地质与成藏特征.石油勘探与开发, 35(6): 755-762. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200806022.htm [42] 何云龙, 解习农, 陆永潮, 等, 2011.琼东南盆地深水块体流构成及其沉积特征.地球科学, 36(5): 905-913. http://www.earth-science.net/WebPage/Article.aspx?id=2165 [43] 李华, 何幼斌, 王振奇, 2011.深水高弯度水道-堤岸沉积体系形态及特征.古地理学报, 13(2): 139-149. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201102004.htm [44] 李磊, 王英民, 黄志超, 等, 2008.尼日尔三角洲深水区层序地层及地震相研究.沉积学报, 26(3): 407-416. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200803007.htm [45] 廖计华, 徐强, 陈莹, 等, 2016.白云-荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制.地球科学, 41(6): 1041-1054. http://www.earth-science.net/WebPage/Article.aspx?id=3315 [46] 刘剑平, 潘校华, 马君, 等, 2008.西部非洲地区油气地质特征及资源概述.石油勘探与开发, 35(3): 378-384. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200803021.htm [47] 刘祚冬, 李江海, 2009.西非被动大陆边缘含油气盐盆地构造背景及油气地质特征分析.海相油气地质, 14(3): 46-52. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200903010.htm [48] 林煜, 吴胜和, 王星, 等, 2013.深水浊积水道体系构型模式研究——以西非尼日尔三角洲盆地某深水研究区为例.地质论评, 59(3): 510-520. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201303012.htm [49] 吕明, 王颖, 陈莹, 2008.尼日利亚深水区海底扇沉积模式成因探讨及勘探意义.中国海上油气, 20(4): 275-282. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200804017.htm [50] 孙辉, 姜涛, 李春峰, 等, 2014.日本南海海槽斜坡盆地重力流沉积特征及其对俯冲构造的响应.地球科学, 39(10): 1383-1394. http://www.earth-science.net/WebPage/Article.aspx?id=2955 [51] 王海荣, 王英民, 邱燕, 等, 2009.深水环境多级地貌坡折控制下的重力流动力学的演变.地质学报, 83(6): 812-819. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200906008.htm [52] 解习农, 陈志宏, 孙志鹏, 等, 2012.南海西北陆缘深水沉积体系内部构成特征.地球科学, 37(4): 627-634. http://www.earth-science.net/WebPage/Article.aspx?id=2269 [53] 熊利平, 王骏, 殷进垠, 等, 2005.西非构造演化及其对油气成藏的控制作用.石油与天然气地质, 26(5): 641-643, 645-646. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200505015.htm [54] 于水, 程涛, 陈莹, 2012.尼日尔三角洲盆地深水沉积体系特征.地球科学, 37(4): 763-770. http://www.earth-science.net/WebPage/Article.aspx?id=2282 [55] 张文彪, 刘志强, 陈志海, 等, 2015.安哥拉深水水道地质知识库建立及应用.沉积学报, 33(1): 142-152. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501015.htm [56] 赵晓明, 吴胜和, 刘丽, 2012.西非陆坡区深水复合水道沉积构型模式.中国石油大学学报(自然科学版), 36(6): 1-5, 12. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201206002.htm [57] 卓海腾, 王英民, 徐强, 等, 2013.南海北部莺歌海盆地东方区上新统侧积复合体沉积特征及成因.古地理学报, 15(6): 787-794. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201306006.htm