• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据

    谭清立 王岳军 张玉芝 李庶波 周永智 王玉琨

    谭清立, 王岳军, 张玉芝, 李庶波, 周永智, 王玉琨, 2017. 江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据. 地球科学, 42(2): 173-190. doi: 10.3799/dqkx.2017.014
    引用本文: 谭清立, 王岳军, 张玉芝, 李庶波, 周永智, 王玉琨, 2017. 江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据. 地球科学, 42(2): 173-190. doi: 10.3799/dqkx.2017.014
    Tan Qingli, Wang Yuejun, Zhang Yuzhi, Li Shubo, Zhou Yongzhi, Wang Yukun, 2017. Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen: Evidence for Early Neoproterozoic Oceanic Crust Subduction. Earth Science, 42(2): 173-190. doi: 10.3799/dqkx.2017.014
    Citation: Tan Qingli, Wang Yuejun, Zhang Yuzhi, Li Shubo, Zhou Yongzhi, Wang Yukun, 2017. Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen: Evidence for Early Neoproterozoic Oceanic Crust Subduction. Earth Science, 42(2): 173-190. doi: 10.3799/dqkx.2017.014

    江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据

    doi: 10.3799/dqkx.2017.014
    基金项目: 

    国家自然科学基金项目 41402165

    国家自然科学基金项目 41375198

    详细信息
      作者简介:

      谭清立(1987-),男,博士研究生,从事岩石大地构造研究.ORCID:0000-0003-2346-3641.E-mail: tanqli@mail2.sysu.edu.cn

    • 中图分类号: P588.12;P597.3

    Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen: Evidence for Early Neoproterozoic Oceanic Crust Subduction

    • 摘要: 平水一带早新元古代岩浆岩的精细年代学约束及其形成构造背景的厘定是理清华南内部新元古代演化机制的重要突破口.对江南造山带东段平水地区桃红岩体中的闪长岩进行了详细的锆石U-Pb年代学(LA-ICP-MS)、全岩地球化学和Sr-Nd同位素研究,结果显示:闪长岩锆石U-Pb年龄为913±2 Ma和898±2 Ma,代表其形成年龄;去掉挥发分并百分化处理后,SiO2、Al2O3、Na2O和K2O含量分别为58.33%~63.36%、15.76%~17.42%、2.62%~3.12%和0.53%~1.53%,属低钾-中钾系列;铝饱和指数(A/CNK) 为0.84~0.92,属偏铝质;轻重稀土分异明显((La/Yb)N=4.65~6.09)、轻微Eu异常(δEu=0.82~1.01)、高场强元素(Nb、Ta、Ti、P) 强烈亏损、大离子亲石元素(Rb、Ba、K、Sr) 相对富集,具岛弧岩浆亲缘性;具低(87Sr/86Sr)i值(0.703 060~0.703 076)、高εNd(t) 值(+6.58~+6.76).综合研究认为桃红闪长岩为扬子与华夏陆块之间的古洋壳南东向俯冲的过程中,被俯冲板片流体和熔体改造的地幔楔橄榄岩部分熔融的产物;双溪坞群及其同期岩浆岩应是扬子与华夏陆块早期拼合阶段的产物,与格林威尔构造事件无关.

       

    • 图  1  华南新元古代地层简图(a) 和江南造山带东段平水地区地质简图(b)

      图a据Wang et al.(2013b);图b据浙江省地质矿产局(1996)

      Fig.  1.  Simplified geological maps of the Neoproterozoic basement of the Yangtze and Cathaysia Blocks (a) and Pingshui region in eastern Jiangnan Orogen (b)

      图  2  桃红闪长岩样品13WY-147A (a) 和13WY-147B (b) 显微照片

      Bt.黑云母;Pl.斜长石;Qz.石英;Ep.绿帘石;Chl.绿泥石;Spn.榍石

      Fig.  2.  Photomicrograph of Taohong diorite samples 13WY-147A (a) and 13WY-147B (b)

      图  3  桃红闪长岩锆石U-Pb年龄谐和图和阴极发光图像(CL)

      Fig.  3.  Zircon U-PbConcordia diagramand CL images for the Taohong diorite samples

      图  4  桃红闪长岩样品(a) SiO2-K2O图解,(b) A/CNK-A/NK图解,(c) SiO2-(Na2O+K2O) 图解和(d) QAP图解

      图a据Middlemost (1985);图b据Peccerillo and Taylor (1976);图c据Middlemost (1994);图d据Baker (1979)

      Fig.  4.  (a) SiO2-K2O, (b) A/CNK-A/NK, (c) SiO2-(Na2O+K2O) and (d) QAP classification diagrams for the Taohong diorite samples

      图  5  桃红闪长岩哈克图解

      图中埃达克型高镁安山岩/闪长岩数据来自Rapp et al.(1999)Tatsumi (2006)张玉芝等(2015)

      Fig.  5.  Hacker diagrams for the Taohong diorite samples

      图  6  桃红闪长岩球粒陨石标准化稀土元素配分图(a) 和微量元素原始地幔标准化微量元素蛛网图(b)

      球粒陨石和原始地幔标准化数据分别引自Taylor and Mclennan (1985)Sun and McDonough (1989)

      Fig.  6.  The chondrite-normalized REE pattern (a) and PM-normalized spider diagram (b) for the Taohong diorite samples

      图  7  桃红闪长岩(87Sr/86Sr)i-εNd(t) 关系(a),SiO2-Nb/La关系(b),SiO2-εNd(t) 关系(c) 和La-La/Sm关系(d)

      MORB、BSE数据来自Hawkesworth et al.(1984)Hart (1988)Weaver (1991).AFC、FC和部分熔融趋势来自Wang et al.(2013c)Zhang et al.(2013)

      Fig.  7.  The relations of (87Sr/86Sr)i-εNd(t)(a), SiO2-Nb/La (b), SiO2-εNd(t)(c) and La-La/Sm (d) for the Taohong diorite samples

      图  8  桃红闪长岩SiO2-Mg#图解

      底图据Cai et al.(2015);图中1~4 GPa实验变玄武质和榴辉岩熔体的范围来自Rapp and Watson (1995)Rapp et al.(1999),0.8~1.6 GPa和1 000~1 050 ℃地壳熔体的范围来自Rapp and Watson (1995)Sen and Dunn (1994),0.7 GPa和825~852 ℃地壳熔体的范围来自Springer and Seck (1997),幔源岩浆结晶分异形成的安山岩/闪长岩的范围来自Tatsumi (2006),橄榄岩熔体和高镁安山岩/闪长岩范围来自Rapp et al.(1999)Tatsumi (2006)张玉芝等(2015)

      Fig.  8.  SiO2 versus Mg# for the Taohong diorite samples

      图  9  桃红闪长岩Th/Yb-Nd/Yb关系(a) 和Zr/Yb-Nb/Yb关系(b)

      Pearce and Peate (1995)

      Fig.  9.  The relations of Th/Yb-Nd/Yb (a) and Zr/Yb-Nb/Yb (b) for the Taohong diorite samples

      表  1  桃红闪长岩样品LA-ICP-MS锆石U-Pb分析结果

      Table  1.   Zircon LA-ICP-MS dating results for the Taohong diorite samples

      分析点 Th (10-6) U (10-6) Th/U 同位素比值 年龄(Ma)
      207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ
      13WY-147A-01 188 383 0.49 0.069 55 0.000 24 1.459 58 0.015 05 0.152 26 0.001 57 917 6 914 6 914 9
      13WY-147A-02 247 332 0.75 0.069 47 0.000 22 1.455 78 0.015 22 0.152 02 0.001 60 922 7 912 6 912 9
      13WY-147A-03 207 305 0.68 0.069 57 0.000 28 1.459 93 0.014 71 0.152 24 0.001 48 917 8 914 6 913 8
      13WY-147A-04 200 311 0.64 0.069 61 0.000 28 1.465 37 0.014 21 0.152 66 0.001 40 917 7 916 6 916 8
      13WY-147A-05 203 432 0.47 0.069 63 0.000 27 1.459 93 0.014 79 0.152 25 0.001 58 917 8 914 6 914 9
      13WY-147A-06 269 304 0.89 0.069 30 0.000 26 1.443 74 0.011 56 0.151 08 0.001 14 909 8 907 5 907 6
      13WY-147A-07 206 361 0.57 0.069 43 0.000 25 1.450 39 0.013 86 0.151 61 0.001 45 922 7 910 6 910 8
      13WY-147A-08 180 322 0.56 0.070 27 0.000 33 1.512 31 0.016 14 0.155 92 0.001 46 936 9 935 7 934 8
      13WY-147A-09 167 321 0.52 0.069 68 0.000 33 1.472 76 0.014 41 0.153 26 0.001 35 920 9 919 6 919 8
      13WY-147A-10 249 307 0.81 0.069 32 0.000 23 1.443 61 0.013 61 0.151 10 0.001 43 909 7 907 6 907 8
      13WY-147A-11 196 322 0.61 0.069 57 0.000 28 1.463 21 0.012 71 0.152 53 0.001 23 917 8 915 5 915 7
      13WY-147A-12 251 350 0.72 0.069 38 0.000 22 1.451 30 0.012 76 0.151 69 0.001 29 909 7 910 5 910 7
      13WY-147A-13 193 286 0.67 0.069 57 0.000 36 1.462 24 0.014 13 0.152 56 0.001 38 917 11 915 6 915 8
      13WY-147A-14 213 301 0.71 0.069 75 0.000 30 1.467 11 0.013 56 0.152 53 0.001 30 920 5 917 6 915 7
      13WY-147A-15 213 326 0.65 0.074 30 0.000 61 1.546 91 0.016 76 0.151 71 0.001 62 1050 17 949 7 911 9
      13WY-147A-16 283 302 0.94 0.069 49 0.000 21 1.458 56 0.013 95 0.152 18 0.001 42 922 7 913 6 913 8
      13WY-147A-17 204 307 0.67 0.069 83 0.000 33 1.467 88 0.016 25 0.152 38 0.001 55 924 5 917 7 914 9
      13WY-147A-18 212 318 0.67 0.069 39 0.000 31 1.449 13 0.014 61 0.151 54 0.001 46 909 9 910 6 910 8
      13WY-147A-19 253 313 0.81 0.069 68 0.000 25 1.467 94 0.014 47 0.152 79 0.001 45 920 3 917 6 917 8
      13WY-147A-20 169 341 0.50 0.070 01 0.000 29 1.471 25 0.013 24 0.152 44 0.001 28 928 9 919 5 915 7
      13WY-147A-21 184 334 0.55 0.070 27 0.000 25 1.477 62 0.016 71 0.152 37 0.001 61 936 7 921 7 914 9
      13WY-147A-22 257 294 0.87 0.069 60 0.000 27 1.461 50 0.011 52 0.152 34 0.001 14 917 7 915 5 914 6
      13WY-147A-23 197 344 0.57 0.069 46 0.000 26 1.452 83 0.014 04 0.151 78 0.001 43 922 7 911 6 911 8
      13WY-147A-24 161 367 0.44 0.069 89 0.000 26 1.479 24 0.014 60 0.153 64 0.001 52 924 8 922 6 921 8
      13WY-147A-25 143 327 0.44 0.069 60 0.000 25 1.462 88 0.013 36 0.152 42 0.001 32 917 7 915 6 915 7
      13WY-147A-26 166 393 0.42 0.069 58 0.000 18 1.462 00 0.014 64 0.152 41 0.001 52 917 5 915 6 914 9
      13WY-147A-27 200 302 0.66 0.069 66 0.000 24 1.466 48 0.013 63 0.152 75 0.001 40 918 2 917 6 916 8
      13WY-147A-28 184 323 0.57 0.071 97 0.000 47 1.491 23 0.016 70 0.150 71 0.001 65 985 13 927 7 905 9
      13WY-147A-29 184 322 0.57 0.069 59 0.000 26 1.459 23 0.014 70 0.152 21 0.001 51 917 7 914 6 913 8
      13WY-147A-30 185 273 0.68 0.069 61 0.000 31 1.457 74 0.013 81 0.152 05 0.001 41 917 9 913 6 912 8
      13WY-147A-31 248 292 0.85 0.069 72 0.000 25 1.467 05 0.012 09 0.152 71 0.001 26 920 3 917 5 916 7
      13WY-147A-32 243 369 0.66 0.069 84 0.000 27 1.478 29 0.013 60 0.153 60 0.001 38 924 7 922 6 921 8
      13WY-147A-33 190 316 0.60 0.069 61 0.000 29 1.427 10 0.011 70 0.148 68 0.001 09 917 8 900 5 894 6
      13WY-147A-34 267 340 0.79 0.06948 0.000 19 1.452 05 0.013 25 0.151 58 0.001 37 922 6 911 5 910 8
      13WY-147A-35 248 308 0.81 0.069 62 0.000 25 1.460 84 0.015 56 0.152 31 0.001 58 917 7 914 6 914 9
      13WY-147A-36 260 246 1.06 0.069 26 0.000 24 1.440 74 0.013 93 0.150 84 0.001 39 906 12 906 6 906 8
      13WY-147A-37 294 309 0.95 0.069 99 0.000 27 1.495 67 0.012 69 0.154 93 0.001 18 928 40 929 5 929 7
      13WY-147A-38 249 286 0.87 0.069 60 0.000 25 1.463 65 0.013 04 0.152 51 0.001 28 917 7 916 5 915 7
      13WY-147A-39 243 303 0.80 0.069 52 0.000 23 1.460 27 0.013 46 0.152 32 0.001 34 915 6 914 6 914 8
      13WY-147A-40 264 258 1.02 0.069 41 0.000 22 1.452 41 0.013 66 0.151 71 0.001 36 911 6 911 6 911 8
      13wy-147B-01 177 263 0.67 0.068 51 0.000 23 1.412 70 0.013 19 0.149 00 0.001 35 883 12 894 6 895 8
      13wy-147B-02 192 255 0.75 0.068 36 0.000 27 1.399 58 0.011 27 0.148 09 0.001 13 880 7 889 5 890 6
      13wy-147B-03 162 270 0.60 0.069 06 0.000 28 1.435 39 0.013 30 0.150 40 0.001 30 902 8 904 6 903 7
      13wy-147B-04 126 295 0.43 0.069 00 0.000 20 1.432 85 0.013 24 0.150 33 0.001 34 898 6 903 6 903 7
      13wy-147B-05 155 277 0.56 0.068 93 0.000 24 1.424 66 0.012 93 0.149 68 0.001 27 898 3 899 5 899 7
      13wy-147B-06 189 253 0.75 0.068 64 0.000 28 1.410 08 0.012 25 0.148 80 0.001 16 887 9 893 5 894 7
      13wy-147B-08 176 264 0.67 0.068 77 0.000 21 1.411 82 0.014 46 0.148 72 0.001 48 900 6 894 6 894 8
      13wy-147B-09 186 259 0.72 0.068 79 0.000 26 1.417 62 0.013 94 0.149 16 0.001 32 892 9 896 6 896 7
      13wy-147B-10 194 249 0.78 0.068 83 0.000 30 1.423 23 0.014 87 0.149 68 0.001 41 894 8 899 6 899 8
      13wy-147B-11 143 280 0.51 0.068 74 0.000 31 1.414 90 0.014 51 0.149 12 0.001 44 900 10 895 6 896 8
      13wy-147B-12 189 253 0.75 0.068 37 0.000 21 1.421 34 0.011 02 0.150 50 0.001 11 880 7 898 5 904 6
      13wy-147B-13 172 264 0.65 0.068 29 0.000 26 1.399 51 0.010 45 0.148 37 0.001 02 877 4 889 4 892 6
      13wy-147B-14 168 266 0.63 0.068 68 0.000 35 1.405 31 0.014 44 0.148 17 0.001 40 900 10 891 6 891 8
      13wy-147B-15 220 231 0.95 0.068 49 0.000 33 1.428 76 0.010 14 0.150 96 0.000 84 883 10 901 4 906 5
      13wy-147B-16 170 262 0.65 0.067 45 0.000 33 1.400 89 0.009 87 0.150 31 0.000 86 852 9 889 4 903 5
      13wy-147B-17 189 251 0.75 0.067 95 0.000 28 1.411 09 0.010 53 0.150 27 0.001 01 878 9 894 4 902 6
      13wy-147B-18 159 268 0.59 0.067 72 0.000 37 1.402 92 0.010 52 0.149 92 0.000 90 861 11 890 4 901 5
      13wy-147B-19 153 274 0.56 0.067 36 0.000 36 1.387 22 0.011 40 0.148 98 0.001 01 850 11 884 5 895 6
      13wy-147B-20 193 248 0.78 0.067 38 0.000 31 1.388 81 0.009 68 0.149 14 0.000 94 850 9 884 4 896 5
      13wy-147B-21 118 295 0.40 0.067 50 0.000 31 1.399 18 0.011 59 0.149 93 0.001 13 854 11 889 5 901 6
      13wy-147B-22 126 293 0.43 0.067 24 0.000 32 1.374 70 0.011 63 0.147 93 0.001 16 856 10 878 5 889 7
      13wy-147B-23 136 284 0.48 0.067 25 0.000 36 1.380 57 0.010 14 0.148 59 0.000 96 856 11 881 4 893 5
      13wy-147B-24 175 259 0.67 0.066 87 0.000 44 1.369 95 0.011 95 0.148 16 0.000 97 835 18 876 5 891 5
      注:采样点GPS坐标为29°51.4966′N 120°34.3332′E,地点为浙江绍兴平水镇桃红村红兵线与船外线交界处.
      下载: 导出CSV

      表  2  桃红闪长岩样品主量元素(%) 和微量元素(10-6) 分析结果

      Table  2.   Major elements (%) and trace elements (10-6) results for the Taohong diorite samples

      样品 13WY-147A 13WY-147B 13WY-147C 13WY-147D 13WY-147E 13WY-147F Ye et al.(2007)
      SiO2 56.82 57.17 56.80 62.18 57.43 56.88 56.72~66.57
      TiO2 0.57 0.60 0.59 0.53 0.56 0.60 0.62~0.64
      Al2O3 16.94 16.81 16.94 15.46 16.33 16.77 14.46~16.99
      Fe2O3t 8.25 7.93 7.95 6.48 7.78 8.04 4.52~8.24
      MgO 3.62 3.56 3.59 2.68 3.57 3.69 1.82~3.68
      MnO 0.16 0.15 0.15 0.13 0.15 0.15 0.07~0.19
      CaO 7.43 7.18 7.46 5.78 7.86 7.32 4.10~8.47
      K2O 0.59 0.51 0.61 1.50 0.81 0.71 0.60~2.69
      Na2O 2.59 3.04 2.86 2.99 2.55 2.61 2.84~3.49
      P2O5 0.18 0.18 0.19 0.16 0.16 0.18 0.09~0.19
      LOI 2.71 2.64 2.62 1.87 2.56 2.82 1.76~3.23
      Total 99.88 99.76 99.76 99.76 99.76 99.78 99.65~100.51
      A/CNK 0.92 0.90 0.90 0.91 0.84 0.91 0.78~1.02
      Mg# 51 51 51 49 52 52 44~51
      K2O/Na2O 4.36 5.92 4.65 2.00 3.14 3.70
      V 243 227 173 253 244 198 79.3~184
      Cr 33.5 28.1 28.2 25.3 35.1 32.1
      Co 20.9 23.1 23.1 16.7 21.8 23.0
      Ni 13.2 14.6 15.4 10.7 16.4 17.4
      Zn 99.6 82.3 92.7 79.3 88.8 88.4
      Ga 16.4 17.2 17.3 15.8 16.7 17.7 12.1~16.2
      Rb 10.1 11.5 13.2 34.1 16.8 15.7 13.9~38.9
      Sr 502 580 600 518 614 607 369~541
      Y 15.20 15.70 13.90 18.70 15.90 15.70 12.50~19.90
      Zr 52.60 50.00 62.20 80.30 59.20 44.20 28.00~99.10
      Nb 1.90 1.89 1.85 2.40 1.90 1.81 1.87~3.23
      Cs 0.62 0.31 0.27 0.75 0.22 0.38
      Ba 285 253 312 466 360 366 262~635
      La 11.80 11.40 12.10 16.10 12.50 12.00 9.84~20.70
      Ce 22.9 27.2 28.0 37.0 29.4 28.1 20.6~42.6
      Pr 3.50 3.35 3.33 4.36 3.54 3.39 2.58~5.63
      Nd 14.7 14.8 14.3 18.8 15.3 14.9 11.2~24.0
      Sm 3.04 3.59 3.12 4.16 3.58 3.37 2.06~5.10
      Eu 0.99 1.01 0.96 1.02 1.00 1.02 0.71~1.14
      Gd 2.90 3.01 2.81 3.46 2.77 3.07 1.73~4.77
      Tb 0.42 0.48 0.42 0.52 0.45 0.45 0.25~0.66
      Dy 2.43 2.74 2.47 3.07 2.57 2.64 1.45~3.91
      Ho 0.51 0.57 0.49 0.63 0.55 0.55 0.31~0.82
      Er 1.44 1.58 1.45 1.83 1.63 1.60 0.88~2.30
      Tm 0.22 0.24 0.19 0.27 0.25 0.22 0.12~0.35
      Yb 1.41 1.65 1.34 1.89 1.55 1.56 0.88~2.31
      Lu 0.23 0.22 0.20 0.26 0.21 0.20 0.15~0.35
      Hf 1.49 1.31 1.41 2.04 1.62 1.25 0.63~2.62
      Ta 0.33 0.16 0.14 0.22 0.15 0.15 0.11~0.21
      Pb 2.93 2.01 2.23 3.28 2.50 2.24
      Th 1.23 0.92 1.05 2.94 1.38 1.03 0.45~7.10
      U 0.37 0.31 0.33 1.06 0.39 0.34 0.16~3.79
      δEu 1.01 0.94 0.99 0.82 0.97 0.97 0.71~1.15
      (La/Yb)N 5.64 4.65 6.09 5.76 5.43 5.18 4.68~7.58
      Sr/Y 33 37 43 28 39 39 19~48
      下载: 导出CSV

      表  3  桃红闪长岩样品Sr-Nd同位素分析结果

      Table  3.   Sr-Nd isotopic results for Taohong diorite samples

      样品 13WY-147A 13WY-147C 13WY-147F Li et al.(2009)
      87Rb/86Sr 0.058 19 0.063 63 0.074 81 -
      87Sr/86Sr 0.703 817 0.703 898 0.704 049 -
      7 6 7 -
      (87Sr/86Sr)i 0.703 060 0.703 070 0.703 076 -
      147Sm/144Nd 0.125 022 0.132 072 0.136 573 0.116~0.135
      143Nd/144Nd 0.512 547 0.512 598 0.512 623 0.512 552~0.512 635
      6 5 5
      (143Nd/144Nd)i 0.511 801 0.511 810 0.511 808 0.511 821~0.511 912
      tDM(Ga) 1.04 1.03 1.04 0.86~1.02
      εNd(t) +6.58 +6.76 +6.72 +6.74~+8.50
      下载: 导出CSV
    • [1] Baker, F., 1979.Trondhjemite:Definition, Environment and Hypotheses of Origin.In:Baker, F., ed., Trondhjemites, Dacites and Related Rocks.Elsevier, Amsterdam, 1-12.
      [2] Bureau of Geology and Mineral Resource of Zhejiang Province, 1996.Stractigraphy (Lithostratic) of Zhejiang Province.China University of Geosciences Press, Wuhan (in Chinese).
      [3] Cai, Y.F., Wang, Y.J., Cawood, P.A., et al., 2015.Neoproterozoic Crustal Growth of the Southern Yangtze Block:Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone.Precambrian Research, 266:137-149. doi: 10.1016/j.precamres.2015.05.008
      [4] Carmichael, I.S., 2002.The Andesite Aqueduct:Perspectives on the Evolution of Intermediate Magmatism in West-Central (105°-99°W) Mexico.Contributions to Mineralogy and Petrology, 143(6):641-663.doi: 10.1007/s00410-002-0370-9
      [5] Chen, H., Ni, P., Chen, R.Y., et al., 2016.Chronology and Geological Significance of Spillite-Keratophyre in Pingshui Formation, Northwest Zhejiang Province.Geology in China, 43(2):410-418(in Chinese with English abstract).
      [6] Chen Z.H., Guo K.Y., Dong Y.G., et al., 2009a.Possible Early Neoproterozoic Magmatism Associated with Slab Window in the Pingshui Segment of the Jiangshan-Shaoxing Suture Zone:Evidence from Zircon LA-ICP-MS U-Pb Geochronology and Geochemistry.Science in China (Series D), 39(7):994-1008 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG200907005.htm
      [7] Chen, Z.H., Xing, G.F., Guo, K.Y., et al., 2009b.Petrogenesis of Keratophyes in the Pingshui Group, Zhejiang:Constraints from Zircon U-Pb Ages and Hf Isotopes.Chinese Science Bulletin, 54(5):610-617(in Chinese with English abstract). http://d.scholar.cnki.net/detail/SSJD_U/SSJD00003493407
      [8] Class, C., Miller, D.M., Goldstein, S.L., et al., 2000.Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc.Geochemistry, Geophysics, Geosystems, 1(6):1-28.doi: 10.1029/1999gc000010
      [9] Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research, 102(B7):14991-15019.doi: 10.1029/97jb00788
      [10] van de Flierdt, T., Hoernes, S., Jung, S., et al., 2003.Lower Crustal Melting and the Role of Open-System Processes in the Genesis of Syn-Orogenic Quartz Diorite-granite-leucogranite Associations:Constraints from Sr-Nd-O Isotopes from the Bandombaai Complex, Namibia.Lithos, 67(3-4):205-226.doi: 10.1016/s0024-4937(03)00016-1
      [11] Gao, L.Z., Dai, C.G., Liu, Y.X., et al., 2010.Zircon SHRIMP U-Pb Dating of the Tuffaceous Bed of Xiajiang Group in Guizhou Province and Its Stratigraphic Implication.Geology in China, 37(4):1071-1080(in Chinese with English abstract). https://www.researchgate.net/publication/280018736_Zircon_SHRIMP_U-Pb_dating_of_the_tuffaceous_bed_of_xiajiang_group_in_guizhou_province_and_its_stratigraphic_implication
      [12] Gao, L.Z., Huang, Z.Z., Ding, X.Z., et al., 2012a.Zircon SHRIMP U-Pb Dating of Xiushui and Majianqiao Formations in Northwestern Jiangxi Province.Geological Bulletin of China, 31(7):1086-1093(in Chinese with English abstract). https://www.researchgate.net/publication/291105009_Zircon_SHRIMP_U-Pb_dating_of_Xiushui_and_Majianqiao_Formations_in_northwestern_Jiangxi_Province?_sg=IIPoB0xzZJanCTwM8MyzZRJl4_xQ-mB9TSwyWYgkUTp1mkx__wIwYedYr3XjLmz7XLnR3O5mnRVxpVf3IRpHCg
      [13] Gao, L.Z., Liu, Y.X., Ding, X.Z., et al., 2012b.SHRIMP Dating of Cangshuipu Group in the Middle Part of the Jiangnan Orogen and its Implications for Tectonic Evolutions.Geology in China, 39(1):12-20(in Chinese with English abstract).
      [14] Gao L.Z., Zhang C.L., Liu P.J., et al., 2009.Recognition of Meso-and Neoproterozoic Stratigraphic Framework in North and South China.Acta Geoscientica Sinica, 30(4):433-446(in Chinese with English abstract). http://www.oalib.com/paper/1557866
      [15] Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., et al., 2003.Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends.Contributions to Mineralogy and Petrology, 145(5):515-533.doi: 10.1007/s00410-003-0448-z
      [16] Hart, S.R., 1988.Heterogeneous Mantle Domains:Signatures, Genesis and Mixing Chronologies.Earth and Planetary Science Letters, 90(3):273-296.doi: 10.1016/0012-821x(88)90131-8
      [17] Hawkesworth, C.J., Rogers, N.W., van Calsteren, P.W.C., et al., 1984.Mantle Enrichment Processes.Nature, 311:331-335.doi: 10.1038/311331a0
      [18] Jung, S., Hoernes, S., Mezger, K., 2002.Synorogenic Melting of Mafic Lower Crust:Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia).Contributions to Mineralogy and Petrology, 143(5):551-566.doi: 10.1007/s00410-002-0366-5
      [19] Kelemen, P.B., Yogodzinski, G.M., Scholl, D.W., 2003.Along-Strike Variation in the Aleutian Island Arc:Genesis of High Mg# Andesite and Implications for Continental Crust.In:Eiler, J., ed., Inside the Subduction Factory.American Geophysical Union Geophysical Monograph, 138:223-276.doi: 10.1029/138gm11
      [20] Keppie, J.D., Dostal, J., Cameron, K.L., et al., 2003.Geochronology and Geochemistry of Grenvillian Igneous Suites in the Northern Oaxacan Complex, Southern Mexico:Tectonic Implications.Precambrian Research, 120(3-4):365-389.doi: 10.1016/s0301-9268(02)00166-3
      [21] le Bas M.J., 2000.IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks.Journal of Petrology, 41(10):1467-1470.doi: 10.1093/petrology/41.10.1467
      [22] Li, X.H., Li, W.X., He, B., 2012.Building of the South China Block and its Relevance to Assembly and Breakup of Rodinia Supercontinent:Observations, Interpretations and Tests.Bulletin of Mineralogy, Petrology and Geochemistry, 31(6):543-559(in Chinese with English abstract). https://www.researchgate.net/publication/286123654_Building_of_the_South_China_Block_and_its_relevance_to_assembly_and_breakup_of_Rodinia_supercontinent_Observations_interpretations_and_tests
      [23] Li, X.H., Li, W.X., Li, Z.X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia.Lithos, 102(1-2):341-357.doi: 10.1016/j.lithos.2007.04.007
      [24] Li, X.H., Li, W.X., Li, Z.X., et al., 2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks.Precambrian Research, 174(1-2):117-128.doi: 10.1016/j.precamres.2009.07.004
      [25] Li, X.H., Liu, D.Y., Sun, M., et al., 2004.Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its host Granite, SE China.Geological Magazine, 141(2):225-231.doi: 10.1017/s0016756803008823
      [26] Li, X.H., Liu, Y., Tu, X.L., et al., 2002.Precise Determination of Chemical Compositions in Silicate Rocks Using Icp Aesand Icp Ms:A Comparative Study of Sample Digestion Techniquesof Alkali Fusion and Acid Dissolution.Geochimica, 31(3):289-294 (in Chinese with English abstract).
      [27] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003.Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple Collectors Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS).Geochimica, 32(1):91-96(in Chinese with English abstract).
      [28] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [29] Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999.The Breakup of Rodinia:Did it Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3):171-181.doi: 10.1016/s0012-821x(99)00240-x
      [30] Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia.Geoglogy, 30(2):163-166.doi:10.1130/0091-7613(2002)030 < 0163:gccisc>2.0.co; 2.
      [31] Ludwig, K.R., 2001.Users Manual for Isoplot/Ex Rev.2.49:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronological Center Special Publication, Berkeley.
      [32] Middlemost, E.A.K., 1985.Magmas and Magmatic Rocks.Longman, London.
      [33] Middlemost, E.A.K., 1994.Naming Materials in the Magma/igneous Rock System.Earth-Science Reviews, 37(3-4):215-224.doi: 10.1016/0012-8252(94)90029-9
      [34] Parman, S.W., Grove, T.L., 2004.Harzburgite Melting with and without H2O:Experimental Data and Predictive Modeling.Journal of Geophysical Research, 109(B2):1-20.doi: 10.1029/2003jb002566
      [35] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic Arc Magmas.Annual Review of Earth & Planetary Sciences, 23:251-285. https://www.researchgate.net/publication/234148960_Tectonic_Implications_of_the_Composition_of_Volcanic_ARC_Magmas
      [36] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745
      [37] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016.Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947. https://www.researchgate.net/publication/305417476_Early_Paleozoic_subduction_in_Cathaysia_II_New_evidence_from_the_Dashuang_high_magnesian-magnesian_andesite
      [38] Petrone, C.M., Francalanci, L., Carlson, R.W., et al., 2003.Unusual Coexistence of Subduction-Related and Intraplate-Type Magmatism:Sr, Nd and Pb Isotope and Trace Element Data from the Magmatism of the San Pedro-Ceboruco Graben (Nayarit, Mexico).Chemical Geology, 193(1-2):1-24.doi: 10.1016/s0009-2541(02)00229-2
      [39] Qi, L., Hu, J., 2000.Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry.Guangxi Chemical Industry, (S1):140-142 (in Chinese with English abstract).
      [40] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891
      [41] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356.doi: 10.1016/s0009-2541(99)00106-0
      [42] Rivers, T., 1997.Lithotectonic Elements of the Grenville Province:Review and Tectonic Implications.Precambrian Research, 86(3-4):117-154.doi: 10.1016/s0301-9268(97)00038-7
      [43] Sen, C., Dunn, T., 1994.Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa:Implications for the Origin of Adakites.Contributions to Mineralogy and Petrology, 117(4):394-409.doi: 10.1007/bf00307273
      [44] Shaw, A., Downes, H., Thirlwall, M.F., 1993.The Quartz-Diorites of Limousin:Elemental and Isotopic Evidence for Devono-Carboniferous Subduction in the Hercynian Belt of the French Massif Central.Chemical Geology, 107(1-2):1-18.doi: 10.1016/0009-2541(93)90098-4
      [45] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201207004.htm
      [46] Shu, L.S., Faure, M., Yu, J.H., et al., 2011.Geochronological and Geochemical Features of the Cathaysia Block (South China):New Evidence for the Neoproterozoic Breakup of Rodinia.Precambrian Research, 187(3-4):263-276.doi: 10.1016/j.precamres.2011.03.003
      [47] Springer, W., Seck, H.A., 1997.Partial Fusion of Basic Granulites at 5 to 15 Kbar:Implications for the Origin of TTG Magmas.Contributions to Mineralogy and Petrology, 127(1-2):30-45.doi: 10.1007/s004100050263
      [48] Su, J.B., Zhang, Y.Q., Dong, S.W., et al., 2014.Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China:Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen.Journal of Earth Science, 25(4):619-629.doi: 10.1007/s12583-014-0469-8
      [49] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [50] Tatsumi, Y., 1982.Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, Ⅱ.Melting Phase Relations at High Pressures.Earth and Planetary Science Letters, 60(2):305-317.doi: 10.1016/0012-821x(82)90009-7
      [51] Tatsumi, Y., 2001.Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction:Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan.Geology, 29(4):323-326.doi:10.1130/0091-7613(2001)029 < 0323:gmopmo>2.0.co; 2.
      [52] Tatsumi, Y., 2006.High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34(1):467-499.doi: 10.1146/annurev.earth.34.031405.125014
      [53] Taylor, S.R., Mclennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Oxford Press, Oxford.
      [54] Wang, D., Wang, X.L., Zhou, J.C., et al., 2013a.Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen:U-Pb and Hf Isotopes of Detrital Zircons.Precambrian Research, 233:223-236.doi: 10.1016/j.precamres.2013.05.005
      [55] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013b.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305.doi: 10.1016/j.gr.2012.02.019
      [56] Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013c.Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia.Precambrian Research, 231:343-371.doi: 10.1016/j.precamres.2013.03.020
      [57] Wang, Q., 2005.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology, 47(1):119-144.doi: 10.1093/petrology/egi070
      [58] Wang, Q., Xu, J.F., Zhao, Z.H., 2001.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200102009.htm
      [59] Wang, X.C., Li, X.H., Li, W.X., et al., 2007a.Ca.825 Ma Komatiitic Basalts in South China:First Evidence for > 1 500 ℃ Mantle Melts by a Rodinian Mantle Plume.Geology, 35(12):1103.doi: 10.1130/g23878a.1
      [60] Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2007b.Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks.Precambrian Research, 159(1-2):117-131.doi: 10.1016/j.precamres.2007.06.005
      [61] Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008.Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen.Gondwana Research, 14(3):355-367.doi: 10.1016/j.gr.2008.03.001
      [62] Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2014a.Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China.Precambrian Research, 242:154-171.doi: 10.1016/j.precamres.2013.12.023
      [63] Wang, Y.J., Zhang, Y.Z., Fan, W.M., et al., 2014b.Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block:Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses.Precambrian Research, 249:144-161.doi: 10.1016/j.precamres.2014.05.003
      [64] Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2-4):381-397.doi: 10.1016/0012-821x(91)90217-6
      [65] Xia, X.P., Sun, M., Geng, H.Y., et al., 2011.Quasi-Simultaneous Determination of U-Pb and Hf Isotope Compositions of Zircon by Excimer Laser-Ablation Multiple-Collector ICPMS.Journal of Analytical Atomic Spectrometry, 26(9):1868-1871.doi: 10.1039/c1ja10116a
      [66] Xue, H.M., Ma, F., Song, Y.Q., et al., 2010.Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China:Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks.Acta Petrologica Sinica, 26(11):3215-3244 (in Chinese with English abstract). https://www.researchgate.net/publication/279629265_Geochronology_and_geochemisty_of_the_Neoproterozoic_granitoid_association_from_eastern_segment_of_the_Jiangnan_orogen_China_Constraints_on_the_timing_and_process_of_amalgamation_between_the_Yangtze_an
      [67] Ye, M.F., Li, X.H., Li, W.X., et al., 2007.SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block.Gondwana Research, 12(1-2):144-156.doi: 10.1016/j.gr.2006.09.001
      [68] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013.Tectonics of South China Continent and Its Implications.Science in China (Series D), 43(10):1553-1582 (in Chinese). doi: 10.1007/s11430-013-4679-1
      [69] Zhang, A.M., Wang, Y.J., Fan, W.M., et al., 2012.Earliest Neoproterozoic (ca.1.0 Ga) Arc-Back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block:Geochronological and Geochemical Evidence from the Metabasite.Precambrian Research, 220-221:217-233. doi: 10.1016/j.precamres.2012.08.003
      [70] Zhang, B.T., Ling, H.F., Shen, W.Z., 1992.Sm-Nd Isochronic Age of Spilite-Keratophyre of Shuangxiwu Group and Sm-Nd System of Orthomeamphibolite of Chencai Group in Shaoxing, Zhejiang Province.Advance in Earth Sciences, 7(4):94 (in Chinese).
      [71] Zhang, Y.Z., Wang, Y.J., 2016.Early Neoproterozoic (?840 Ma) Arc Magmatism:Geochronological and Geochemical Constraints on the Metabasites in the Central Jiangnan Orogen.Precambrian Research, 275:1-17.doi: 10.1016/j.precamres.2015.11.006
      [72] Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013.Early Neoproterozoic (?850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China):Geochronological and Petrogenetic Constraints from Meta-Basalts.Precambrian Research, 231:325-342.doi: 10.1016/j.precamres.2013.03.016
      [73] Zhang, Y.Z., Wang, Y.J., Guo, X.F., et al., 2015.Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and their Tectonic Implications.Earth Science, 40(11):1781-1795 (in Chinese with English abstract). https://www.researchgate.net/publication/289545541_Geochronology_and_geochemistry_of_Cihua_neoproterozoic_High-Mg_andesites_in_Jiangnan_orogen_and_their_tectonic_implications
      [74] Zhang, Y.Z., Wang, Y.J., Zhang, Y.H., et al., 2015.Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks:Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China.Precambrian Research, 269:18-30.doi: 10.1016/j.precamres.2015.08.003
      [75] Zhao, G.C., Guo, J.H., 2012.Precambrian Geology of China:Preface.Precambrian Research, 222-223:1-12.doi: 10.1016/j.precamres.2012.09.018
      [76] Zhao G.C., 2015.Jiangnan Orogen in South China:Developing from Divergent Double Subduction.Gondwana Research, 27(3):1173-1180.doi: 10.1016/j.gr.2014.09.004
      [77] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011.Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny.Geology, 39(4):299-302.doi: 10.1130/g31701.1
      [78] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Science, 40(1):61-76(in Chinese with English abstract). https://www.researchgate.net/publication/281940790_Petrogenesis_and_geodynamic_setting_of_late_Triassic_quartz_diorites_in_Zhiduo_area_Qinghai_Province
      [79] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150.doi: 10.1016/j.lithos.2006.10.003
      [80] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008.Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China.Precambrian Research, 163(3-4):351-383.doi: 10.1016/j.precamres.2008.01.004
      [81] Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2005.Shrimp U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province.Earth Science, 30(6):685-691 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200506004.htm
      [82] Zhou, H.W., Li, X.H., Wang, H.R., et al., 2002.U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications.Geological Review, 48(S1):22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1005.htm
      [83] Zhou, J.B., Li, X.H., Ge, W.C., et al., 2007.Age and Origin of Middle Neoproterozoic Mafic Magmatism in Southern Yangtze Block and Relevance to the Break-Up of Rodinia.Gondwana Research, 12(1-2):184-197.doi: 10.1016/j.gr.2006.10.011
      [84] Zhou, J.C., Wang, X.L., Qiu, J.S., 2008.Is the Jiangnan Orogenic Belt a Grenvillian Orogenic Belt:Some Problems about the Precambrian Geology of South China.Geological Journal of China Universities, 14(1):64-72(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200801009.htm
      [85] Zhou, J.C., Wang, X.L.and Qiu, J.S., 2009.Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation.Precambrian Research, 170(1-2):27-42. doi: 10.1016/j.precamres.2008.11.002
      [86] Zhou, J.C., Wang, X.L., Qiu, J.S., 2014.Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogen.Science Pressing, Beijing (in Chinese).
      [87] Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2004.Geochemistry of Meso-and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China:Arc or Plume Magmatism? Geochemical Journal, 38(2):139-152.doi: 10.2343/geochemj.38.139
      [88] 陈辉, 倪培, 陈仁义, 等, 2016.浙西北平水铜矿细碧角斑岩成岩年龄及其地质意义.中国地质, 43(2): 410-418. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201602004.htm
      [89] 陈志洪, 郭坤一, 董永观, 等, 2009a.江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动:来自锆石LA-ICP-MS年代学和地球化学的证据.中国科学(D辑), 39(7): 994-1008. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907011.htm
      [90] 陈志洪, 邢光福, 郭坤一, 等, 2009b.浙江平水群角斑岩的成因:锆石U-Pb年龄和Hf同位素制约.科学通报, 54(5): 610-617. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905012.htm
      [91] 高林志, 戴传固, 刘燕学, 等, 2010.黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义.中国地质, 37(4), 1071-1080. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004023.htm
      [92] 高林志, 黄志忠, 丁孝忠, 等, 2012a.赣西北新元古代修水组和马涧桥组SHRIMP锆石U-Pb年龄.地质通报, 31(7): 1086-1093. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207009.htm
      [93] 高林志, 刘燕学, 丁孝忠, 等, 2012b.江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义, 中国地质, 39(1): 12-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201201003.htm
      [94] 高林志, 张传恒, 刘鹏举, 等, 2009.华北-江南地区中、新元古代地层格架的再认识.地球学报, 30(4), 433-446. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB200908001005.htm
      [95] 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解--观察、解释与检验.矿物岩石地球化学通报, 31(6): 543-559. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm
      [96] 李献华, 刘颖, 涂湘林, 等, 2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学, 31(3): 289-294. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203009.htm
      [97] 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICP-MS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96.
      [98] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6): 931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309
      [99] 漆亮, 胡静, 2000.电感耦合等离子体质谱法测定花岗岩、沉积物中的微量元素.广西化工, (S1): 140-142. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHG2000S1062.htm
      [100] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7): 1035-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      [101] 王强, 许继锋, 赵振华, 2001.一种新的火成岩--埃达克岩的研究综述.地球科学进展, 16 (2): 201-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200102009.htm
      [102] 薛怀民, 马芳, 宋永勤, 等, 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报, 26(11): 3215-3244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011006.htm
      [103] 章邦桐, 凌洪飞, 沈渭洲, 1992.浙江绍兴双溪坞群Sm-Nd同位素年龄的确定和Sm-Nd体系在陈蔡群正斜长角闪岩中重置现象的发现.地球科学进展, 7(4): 94. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199204025.htm
      [104] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学(D辑), 43(10): 1553-1582. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      [105] 张玉芝, 王岳军, 郭小飞, 等, 2015.江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义.地球科学, 40(11): 1781-1795. http://www.earth-science.net/WebPage/Article.aspx?id=3185
      [106] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1): 61-76. http://www.earth-science.net/WebPage/Article.aspx?id=3025
      [107] 浙江省地质矿产局, 1996.浙江岩石地层.武汉:中国地质大学出版社.
      [108] 钟玉芳, 马昌前, 佘振兵, 等, 2005.江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学.地球科学, 30(6): 685-691. http://www.earth-science.net/WebPage/Article.aspx?id=1522
      [109] 周汉文, 李献华, 王汉荣, 等, 2002.广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义.地质论评, 48(增刊1), 22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1005.htm
      [110] 周金城, 王孝磊, 邱检生, 2008.江南造山带是否格林威尔期造山带--关于华南前寒武纪地质的几个问题.高校地质学报, 14(1): 64-72. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200801009.htm
      [111] 周金城, 王孝磊, 邱检生, 2014.江南造山带新元古代构造-岩浆演化.北京:科学出版社.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  4153
    • HTML全文浏览量:  1843
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-10-08
    • 刊出日期:  2017-02-15

    目录

      /

      返回文章
      返回