• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响

    李洁祥 郭清海 余正艳

    李洁祥, 郭清海, 余正艳, 2017. 高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响. 地球科学, 42(1): 142-154. doi: 10.3799/dqkx.2017.011
    引用本文: 李洁祥, 郭清海, 余正艳, 2017. 高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响. 地球科学, 42(1): 142-154. doi: 10.3799/dqkx.2017.011
    Li Jiexiang, Guo Qinghai, Yu Zhengyan, 2017. Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers. Earth Science, 42(1): 142-154. doi: 10.3799/dqkx.2017.011
    Citation: Li Jiexiang, Guo Qinghai, Yu Zhengyan, 2017. Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers. Earth Science, 42(1): 142-154. doi: 10.3799/dqkx.2017.011

    高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响

    doi: 10.3799/dqkx.2017.011
    基金项目: 

    中国地质大学(武汉)生物地质与环境地质国家重点实验室自主研究课题 No.GBL11505

    国家自然科学基金项目 No.41572335

    国家电力投资集团公司科技项目 No.2015-138-HHS-KJ-X

    详细信息
      作者简介:

      李洁祥(1989-),男,博士在读,主要从事高温地热流体水文地球化学的研究.ORCID:0000-0002-6515-6466

      通讯作者:

      郭清海,ORCID:0000-0001-6602-9664.E-mail: qhguo2006@gmail.com

    • 中图分类号: P641.3

    Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers

    • 摘要: 传统地球化学温标在估算高温地热系统内浅层热储温度(一般为100~200℃)时存在局限性,其中应用广泛的Na-K温标和K-Mg温标出现误差的原因仍不清楚.在收集了全球代表性热田内采自地热井的201个流体样品的水文地球化学数据后,利用软件WATCH将井口流体地球化学数据还原为热储条件下的对应值;在此基础上,对Na-K温标和K-Mg温标进行了评价,发现钾长石和常见富钾双八面体粘土矿物均可能对浅层热储内地热流体中的钾含量产生影响,富镁双八面体粘土矿物也可达到与地热流体的平衡,而地热流体中钠含量则受水-岩相互作用的影响很小.因此,浅层地热流体的Na-K比值与热储温度不具有对应关系,而K-Mg温标在计算浅层热储温度时虽然具有一定指示意义,但仍无法得到足够准确的结果.

       

    • 图  1  热储中玉髓和石英的饱和状态

      Stefánsson and Arnòrsson(2000)

      Fig.  1.  The saturated state of chalcedony and quartz in thermal reservoirs

      图  2  热储中方解石的饱和状态

      Stefánsson and Arnòrsson(2000)

      Fig.  2.  The saturated state of calcite in thermal reservoirs

      图  3  不同Na-K温标中的Na+、K+比值与温度的关系

      Fig.  3.  The relationship between Na+、K+ ratio with different geothermometers and temperature

      图  4  不同热储温度下Na+、K+的活度比值

      Fig.  4.  The activity ratio of Na+、K+ in different thermal reservoir temperature

      图  5  不同热储温度下CK+2/CMg2+的比值

      Fournier(1990)

      Fig.  5.  The value of CK+2/CMg2+ in different thermal reservoir temperature

      图  6  常见双八面体粘土矿物的KH-Si稳定场

      Fig.  6.  KH-Si stability sketch for common dioctahedral clay minerals

      图  7  常见双八面体粘土矿物的AlH-Si稳定场

      Fig.  7.  AlH-Si stability sketch for common dioctahedral clay minerals

      图  8  地热流体中主要阳离子组分(Na+、K+、Mg2+、Ca2+)与Cl-的相关关系

      Fig.  8.  The correlation between major cation(Na+、K+、Mg2+、Ca2+)and Cl- in geothermal fluid

      图  9  在热储温度下地热流体与不同矿物达到饱和时AlH

      Fig.  9.  The value of AlH when the different minerals is saturated with geothermal fluid in the reservoir temperature

      图  10  地热流体中K+、Mg2+活度的比值与温度之间的关系

      Fig.  10.  The relationship of the activity ratio of K+,Mg2+ and temperature in thermal fluid

      表  1  不同的Na-K温标表达式

      Table  1.   Different Na-K geothermometer expressions

      Na-K温标表达式参考文献
      T=883/[lg(Na/K)+0.780]-273.15Tonani(1980)
      T=933/[lg(Na/K)+0.993]-273.1525~250℃,Arnòrsson et al.(1983)
      T=1319/[lg(Na/K)+1.699]-273.15250~350℃,Arnòrsson et al.(1983)
      T=1217/[lg(Na/K)+1.483]-273.15Fournier(1979)
      T=1178/[lg(Na/K)+1.470]-273.15Nieva and Nieva(1987)
      T=1390/[lg(Na/K)+1.750]-273.15Giggenbach(1988)
      T=(1289±76)/[(lg(Na/K)+1.615(±0.179)]-273.15Verma and Santoyo(1997)
      T=733.6-770.511lg(Na/K)+378.189lg(Na/K)2-95.753lg(Na/K)3+9.544lg(Na/K)4Arnòsson(2000)
      T=1052/{1+exp[1.714lg(Na/K)]+0.252}+76Can(2002)
      T=1273.2tanh{[-0.4144lg(Na/K)]-0.5642}+1156.9Díaz-González and Santoyo(2008)
      T=(883±15)/[(lg(Na/K)+0.894(±0.032)]-273.15Díaz-González and Santoyo(2008)
       注:Na/K为泉水中浓度的比值.
      下载: 导出CSV
    • [1] Aagaard,P.,Helgeson,H.C.,1983.Activity/Composition Relations among Silicates and Aqueous Solutions:Ⅱ.Chemical and Thermodynamic Consequences of Ideal Mixing of Atoms on Homological Sites in Montmorillonites,Illites,and Mixed-Layer Clays.Clays and Clay Minerals,31(3):207-217.doi: 10.1346/ccmn.1983.0310306
      [2] Aja,S.U.,Rosenberg,P.E.,1992.The Thermodynamic Status of Compositionally-Variable Clay Minerals:A Discussion.Clays and Clay Minerals,40(3):292-299.doi: 10.1346/ccmn.1992.0400307
      [3] Arnòrsson,S.,1978.Precipitation of Calcite from Flashed Geothermal Waters in Iceland.Contributions to Mineralogy and Petrology,66(1):21-28.doi: 10.1007/bf00376082
      [4] Arnòsson,S.,2000.The Quartz and Na/K Geothermometers.I.New Thermodynamic Calibration,Proceedings of the World Geothermal Congress,Kyushu,929-934.
      [5] Arnòrsson,S.,Gunnlaugsson,E.,Svavarsson,H.,1983.The Chemistry of Geothermal Waters in Iceland.II.Mineral Equilibria and Independent Variables Controlling Water Compositions.Geochimica et Cosmochimica Acta,47(3):547-566.doi: 10.1016/0016-7037(83)90277-6
      [6] Browne,P.R.L.,1978.Hydrothermal Alteration in Active Geothermal Fields.Annual Review of Earth and Planetary Sciences,6(1):229-248.doi: 10.1146/annurev.ea.06.050178.001305
      [7] Can,I.,2002.A New Improved Na/K Geothermometer by Artificial Neural Networks.Geothermics,31(6):751-760.doi: 10.1016/s0375-6505(02)00044-5
      [8] Capuano,R.M.,Cole,D.R.,1982.Fluid-Mineral Equilibria in a Hydrothermal System,Roosevelt Hot Springs,Utah.Geochimica et Cosmochimica Acta,46(8):1353-1364.doi: 10.1016/0016-7037(82)90271-x
      [9] Chiba,H.,1991.Attainment of Solution and Gas Equilibrium in Japanese Geothermal Systems.Geochemical Journal,25(4):335-355.doi: 10.2343/geochemj.25.335
      [10] Chiodini,G.,Cioni,R.,Guidi,M.,et al.,1991.Chemical Geothermometry and Geobarometry in Hydrothermal Aqueous Solutions:A Theoretical Investigation Based on a Mineral-Solution Equilibrium Model.Geochimica et Cosmochimica Acta,55(10):2709-2727.doi: 10.1016/0016-7037(91)90438-b
      [11] Díaz-González,L.,Santoyo,E.,2008.A New Precise Calibration of the Na/K Geothermometer Using a World Database of Geothermal Fluids and Improved Geochemometric Techniques.Geochimica et Cosmochimica Acta,72(12):215. http://cn.bing.com/academic/profile?id=809cf904de82de0e990b510a81a738ff&encoded=0&v=paper_preview&mkt=zh-cn
      [12] Duchi,V.,Minissale,A.,Manganelli,M.,1992.Chemical Composition of Natural Deep and Shallow Hydrothermal Fluids in the Larderello Geothermal Field.Journal of Volcanology and Geothermal Research,49(3-4):313-328.doi: 10.1016/0377-0273(92)90020-e
      [13] Eberl,D.D.,1980.Alkali Cation Selectivity and Fixation by Clay Minerals.Clays and Clay Minerals,28(3):161-172.doi: 10.1346/ccmn.1980.0280301
      [14] Ellis,A.J.,1979.Chemical Geothermometry in Geothermal Systems.Chemical Geology,25(3):219-226.doi: 10.1016/0009-2541(79)90143-8
      [15] Ellis,A.J.,Mahon,W.A.J.,1967.Natural Hydrothermal Systems and Experimental Hot Water/Rock Interactions (Part Ⅱ).Geochimica et Cosmochimica Acta,31(4):519-538.doi: 10.1016/0016-7037(67)90032-4
      [16] Fournier,R.O.,1979.A Revised Equation for the Na/K Geothermometer.Transactions-Geothermal Resources Council,3:221-224.
      [17] Fournier,R.O.,1989.Lectures on Geochemical Interpretation of Hydrothermal Waters.Geothermal Training Programme,the United Nations University,Reykjavík,41-47.
      [18] Fournier,R.O.,1990.Interpretation of Na-K-Mg Relations in Geothermal Waters.Transactions-Geothermal Resources Council,14:1421-1425. http://cn.bing.com/academic/profile?id=f1cb23b155ade746f7d9ccbae83d7fb5&encoded=0&v=paper_preview&mkt=zh-cn
      [19] Gianelli,G.,Grassi,S.,2001.Water-Rock Interaction in the Active Geothermal System of Pantelleria,Italy.Chemical Geology,181(1-4):113-130.doi: 10.1016/s0009-2541(01)00276-5
      [20] Giggenbach,W.F.,1985.Construction of Thermodynamic Stability Diagrams Involving Dioctahedral Potassium Clay Minerals.Chemical Geology,49(1-3):231-242.doi: 10.1016/0009-2541(85)90158-5
      [21] Giggenbach,W.F.,1988.Geothermal Solute Equilibria.Derivation of Na-K-Mg-Ca Geoindicators.Geochimica et Cosmochimica Acta,52(12):2749-2765.doi: 10.1016/0016-7037(88)90143-3
      [22] Giggenbach,W.F.,1995.Variations in the Chemical and Isotopic Composition of Fluids Discharged from the Taupo Volcanic Zone,New Zealand.Journal of Volcanology and Geothermal Research,68(1-3):89-116.doi: 10.1016/0377-0273(95)00009-j
      [23] Giggenbach,W.F.,Gonfiantini,R.,Jangi,B.L.,et al.,1983.Isotopic and Chemical Composition of Parbati Valley Geothermal Discharges,North-West Himalaya,India.Geothermics,12(2-3):199-222.doi: 10.1016/0375-6505(83)90030-5
      [24] González-Partida,E.,Carrillo-Chávez,A.,Levresse,G.,et al.,2005.Hydro-Geochemical and Isotopic Fluid Evolution of the Los Azufres Geothermal Field,Central Mexico.Applied Geochemistry,20(1):23-39.doi: 10.1016/j.apgeochem.2004.07.006
      [25] Hoffman,J.,Hower,J.,1979.Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers:Application to the Thrust Faulted Disturbed Belt of Montana,U.S.A..Special Publications,26:55-79.doi: 10.2110/pec.79.26.0055
      [26] Holland,T.J.B.,Powell,R.,1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology,16(3):309-343.doi: 10.1111/j.1525-1314.1998.00140.x
      [27] Inoue,A.,1995.Formation of Clay Minerals in Hydrothermal Environments.Origin and Mineralogy of Clays,268-329.doi: 10.1007/978-3-662-12648-6_7
      [28] Inoue,A.,Kohyama,N.,Kitagawa,R.,et al.,1987.Chemical and Morphological Evidence for the Conversion of Smectite to Illite.Clays and Clay Minerals,35(2):111-120.doi: 10.1346/ccmn.1987.0350203
      [29] Inoue,A.,Utada,M.,1983.Further Investigations of a Conversion Series of Dioctahedral Mica/Smectites in the Shinzan Hydrothermal Alteration Area,Northeast Japan.Clays and Clay Minerals,31(6):401-412.doi: 10.1346/ccmn.1983.0310601
      [30] Inoue,A.,Utada,M.,Wakita,K.,1992.Smectite-to-Illite Conversion in Natural Hydrothermal Systems.Applied Clay Science,7(1-3):131-145.doi: 10.1016/0169-1317(92)90035-l
      [31] Japan International Collaboration Agency,Tibet Electric Power Company,2006.Final Report for the Development Program of the Geothermal Resource at Yangbajing.Tibet Electric Power Company,Tibet (in Chinese).
      [32] Karingithi,C.W.,2000.Geochemical Characteristics of the Greater Olkaria Geothermal Field,Kenya.Geothermal Training Programme,the United Nations University,Reykjavík,165-188.
      [33] Li,J.X.,Guo,Q.H.,Wang,Y.X.,2015.Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface:A Case Study in Rehai Geothermal Field,Tengchong.Earth Science,40(9):1576-1584 (in Chinese with English abstract).
      [34] Lutz,S.J.,Moore,J.N.,Copp,J.F.,1996.Integrated Mineralogical and Fluid Inclusion Study of the Coso Geothermal System,California.Proceedings of the Twenty-First Workshop on Geothermal Reservoir Engineering,Stanford University,Palo Alto,187-194. http://cn.bing.com/academic/profile?id=4e740191473cfef9e6f3f62676a25558&encoded=0&v=paper_preview&mkt=zh-cn
      [35] Mas,A.,Guisseau,D.,Mas,P.P.,et al.,2006.Clay Minerals Related to the Hydrothermal Activity of the Bouillante Geothermal Field (Guadeloupe).Journal of Volcanology and Geothermal Research,158(3-4):380-400.doi: 10.1016/j.jvolgeores.2006.07.010
      [36] McMurtry,G.M.,Fan,P.F.,Coplen,T.B.,1977.Chemical and Isotopic Investigations of Groundwater in Potential Geothermal Areas in Hawaii.American Journal of Science,277(4):438-458.doi: 10.2475/ajs.277.4.438
      [37] Mutlu,H.,1998.Chemical Geothermometry and Fluid-Mineral Equilibria for the Ömer-Gecek Thermal Waters,Afyon Area,Turkey.Journal of Volcanology and Geothermal Research,80(3-4):303-321.doi: 10.1016/s0377-0273(97)00051-6
      [38] Nathenson,M.,Urban,T.C.,Diment,W.H.,et al.,1980.Temperatures,Heat Flow,and Water Chemistry from Drill Holes in the Raft River Geothermal System,Cassia County,Idaho.Hydrothermal Systems.doi: 10.2172/5294453
      [39] Nicholson,K.,1993.Geothermal Fluids.Springer-Verlag,Berlin,72-73.doi: 10.1007/978-3-642-77844-5
      [40] Nieva,D.,Nieva,R.,1987.Developments in Geothermal Energy in Mexico—Part Twelve.A Cationic Geothermometer for Prospecting of Geothermal Resources.Heat Recovery Systems and CHP,7(3):243-258.doi: 10.1016/0890-4332(87)90138-4
      [41] Pang,Z.H.,Reed,M.,1998.Theoretical Chemical Thermometry on Geothermal Waters:Problems and Methods.Geochimica et Cosmochimica Acta,62(6):1083-1091.doi: 10.1016/S0016-7037(98)00037-4
      [42] Rae,A.J.,Cooke,D.R.,Brown,K.L.,2011.The Trace Metal Chemistry of Deep Geothermal Water,Palinpinon Geothermal Field,Negros Island,Philippines:Implications for Precious Metal Deposition in Epithermal Gold Deposits.Economic Geology,106(8):1425-1446.doi: 10.2113/econgeo.106.8.1425
      [43] Stefánsson,A.,Arnòrsson,S.,2000.Feldspar Saturation State in Natural Waters.Geochimica et Cosmochimica Acta,64(15):2567-2584.doi: 10.1016/s0016-7037(00)00392-6
      [44] Steiner,A.,1968.Clay Minerals in Hydrothermally Altered Rocks at Wairakei,New Zealand.Clays and Clay Minerals,16(3):193-213.doi: 10.1346/ccmn.1968.0160302
      [45] Tarcan,G.,Filiz,S.,Gemici,U.,2000.Geology and Geochemistry of the Salihli Geothermal Fields,Turkey.Proceedings World Geothermal Congress,Kyushu-Tohoku,1829-1834.
      [46] Tarcan,G.,Gemici,V.,Aksoy,N.,2005.Hydrogeological and Geochemical Assessments of the Gediz Graben Geothermal Areas,Western Anatolia,Turkey.Environmental Geology,47(4):523-534.doi: 10.1007/s00254-004-1174-1
      [47] Tonani,F.B.,1980.Some Remarks on the Application of Geochemical Techniques in Geothermal Exploration.Advances in European Geothermal Research,428-443.doi: 10.1007/978-94-009-9059-3_38
      [48] Truesdell,A.H.,Nathenson,M.,Rye,R.O.,1977.The Effects of Subsurface Boiling and Dilution on the Isotopic Compositions of Yellowstone Thermal Waters.Journal of Geophysical Research,82(26):3694-3704.doi: 10.1029/jb082i026p03694
      [49] Valentino,G.M.,Cortecci,G.,Franco,E.,et al.,1999.Chemical and Isotopic Compositions of Minerals and Waters from the Campi Flegrei Volcanic System,Naples,Italy.Journal of Volcanology and Geothermal Research,91(2-4):329-344.doi: 10.1016/s0377-0273(99)00042-6
      [50] Verma,S.P.,Santoyo,E.,1997.New Improved Equations for Na/K,Na/Li and SiO2 Geothermometers by Outlier Detection and Rejection.Journal of Volcanology and Geothermal Research,79(1-2):9-23.doi: 10.1016/s0377-0273(97)00024-3
      [51] Walshe,J.L.,1986.A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems.Economic Geology,81(3):681-703.doi: 10.2113/gsecongeo.81.3.681
      [52] Weaver,C.E.,Pollard,L.D.,1973.The Chemistry of Clay Minerals.Developments in Sedimentology,15:213.doi: 10.1016/S0070-4571(09)70015-9
      [53] White,D.E.,1957.Thermal Waters of Volcanic Origin.Geological Society of America Bulletin,68(12):1637-1658.doi: 10.1130/0016-7606(1957)682.0.co;2
      [54] Yan,Y.H.,Tillick,D.A.,Peacor,D.R.,et al.,2001.Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks:Ⅱ.The Broadlands-Ohaaki Hydrothermal System,New Zealand.Clays and Clay Minerals,49(2):141-155.doi: 10.1346/ccmn.2001.0490204
      [55] Yang,K.,Browne,P.R.L.,Huntington,J.F.,et al.,2001.Characterising the Hydrothermal Alteration of the Broadlands-Ohaaki Geothermal System,New Zealand,Using Short-Wave Infrared Spectroscopy.Journal of Volcanology and Geothermal Research,106(1-2):53-65.doi: 10.1016/s0377-0273(00)00264-x
      [56] 日本国际协力机构, 中国西藏自治区电力工业局, 2006.中国人民共和国西藏羊八井地热资源开发计划调查最终报告.中国西藏自治区电力工业局, 西藏.
      [57] 李洁祥, 郭清海, 王焰新, 2015.高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例.地球科学, 40(9): 1576-1584. http://www.earth-science.net/WebPage/Article.aspx?id=3161
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  5282
    • HTML全文浏览量:  1797
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-06-16
    • 刊出日期:  2017-01-15

    目录

      /

      返回文章
      返回