Origin of Granodiorite and Mafic Microgranular Enclave in Saizhisi, Qinghai Province: Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints
-
摘要: 祁连造山带分为南祁连、中祁连和北祁连构造带.赛支寺岩体位于中祁连与南祁连构造带的结合部位.首次发现了赛支寺花岗闪长岩及其暗色包体,然而对于暗色包体的成因机理以及与寄主岩石之间的成因联系仍存在很多争议.并对其进行了系统的锆石U-Pb年代学、Lu-Hf同位素、岩石地球化学以及Sr-Nd同位素地球化学研究,探讨赛支寺岩体及其暗色包体的成因及动力学背景.LA-ICP-MS锆石U-Pb年代学表明,赛支寺花岗闪长岩形成于446.1±1.3 Ma,包体形成于446.0±1.0 Ma,两者在误差范围内一致,排除了包体为捕虏体成因.暗色包体具较低的SiO2含量、较高的Na2O/K2O比值,低Sr/Y、La/Yb比值,与寄主岩稀土配分曲线基本一致,但LREE相对较低;86Sr/87Sr=0.706 4~0.706 7,εNd(t)=-7.38~-7.97;发育针状磷灰石,形成于岩浆混合作用.寄主岩SiO2=66.45%~68.12%,Na2O/K2O=0.80~0.97,A/CNK=0.91~1.03,显示准铝质-弱过铝质岩浆特点;富集大离子亲石元素Rb、Th、U、K,亏损Nb、Ta等元素,高Sr/Y、La/Yb比值,轻稀土富集,弱负Eu异常;86Sr/87Sr=0.709 3~0.709 5,εNd(t)=-1.75~-1.03,与祁连造山带I型花岗岩相似;锆石εHf(t)=1.7~6.8,TDM2=995~1 750 Ma.综上所述认为,寄主花岗闪长岩形成于壳幔岩浆混合.结合区域地质背景,赛支寺花岗闪长岩形成于俯冲背景下,幔源岩浆上涌,侵入到下地壳中,造成下地壳物质熔融,由这种既有幔源物质又有古老地壳物质的花岗岩岩浆形成.Abstract: The Qilian orogenic belt is divided into the North, Central and South Qilian belts. The Saizhisi granodiorite is located between Central and South Qilian. In order to study the petrogensis and dynamic background of Saizhisi rocks, zircon U-Pb chronology, Hf isotope, whole rock geochemistry and Sr-Nd isotopes are reported for granodiorite and mafic microgranular enclaves (MMEs) in this area. The LA-ICP-MS analyses on zircons from both the Saizhisi granodiorite and MMEs yielded similar ages at 446.1±1.3 Ma and 446.0±1.0 Ma, respectively. The MMEs contain needle-like apatite, and they are characterized by lower SiO2 contents and higher Na2O/K2O ratios. Their REEs are similar to those of Saizhisi granodiorite and ∑REE are lower than those of the host granodiorite; The 86Sr/87Sr of MMEs=0.706 4-0.706 7, the εNd(t) of MMEs=-7.38 to -7.97. The elemental, U-Pb dating and Sr-Nd isotope suggest that they might have been formed by mixing of mafice and felsic member magmas. The Saizhisi granodiorite is metaluminous to weakly peraluminous with SiO2=66.45%-68.12%, Na2O/K2O=0.80-0.97, and A/CNK=0.91-1.03. The granodiorite is enriched in LILEs and depleted in HFSE, enriched in LREE contents and depleted in HREE contents with negative Euanomaly. The 86Sr/87Sr(0.709 3-0.709 5) and εNd(t) (-7.3794--7.9674) of Saizhisi granodiorite is similar to those of I-type granite of the Qilian Orogen belt. The εHf(t) of Saizhisi granodiorite=1.7-6.8, TDM2=995-1 750 Ma. It is concluded that the Saizhisi granodiorite might have been formed by mixing of mafice and felsic member magmas. Combined with the regional tectonic evolution, it is suggested that the Saizhisi granodiorite was formed in a subduction environment and mostly generated by the mantle which was formed by the lower crust intruded by the upwelling mantle.
-
Key words:
- MMEs /
- Magma mixing /
- Early Paleozoic /
- Saizhisi granodiorite /
- Central-South Qilian /
- zircon /
- isotopes /
- geochronology
-
图 1 研究区地质简图及采样位置
据Song et al.(2006, 2007)、吴才来等(2006, 2010)、陈隽璐等(2008)、雍拥等(2008)、Wu et al.(2011)、熊子良等(2012)和秦海鹏等(2014)
Fig. 1. Sketch geological map and sampling sites of the igneous rocks in Saizhisi
图 9 花岗闪长岩球粒陨石标准化稀土元素配分曲线
Fig. 9. Chondrite-normalized REE patterns of granitoids
图 10 花岗闪长岩球粒陨石标准化微量元素蛛网图
Fig. 10. Primitive mantle normalized trace elements patterns of granitoids
图 11 87Sr-86Sr-εNd(t)关系
据吴才来等(2010)、熊子良等(2012)和Chen et al.(2015)
Fig. 11. The relation of 87Sr-86Sr-εNd(t)
图 12 86Sr/87Sr和εNd(t)与SiO2关系
图例同图 6;FC.分离结晶作用;AFC.岩浆同化混染-结晶分离作用
Fig. 12. The realtion of 86Sr/87Sr and εNd(t) vs. SiO2
图 13 Ga/Al-K2O+Na2O和Ga/Al-TFeO/MgO判别图解
Whalen et al.(1987);图例同图 6;A.A型花岗岩;I-S.I-S型花岗岩
Fig. 13. The discrimination diagram of Ga/Al-K2O+Na2O and Ga/Al-TFeO/MgO
图 15 赛支寺花岗闪长岩Nb-Y和Ta-Y构造环境判别图解
Fig. 15. The discrimination diagram of Nb-Y and Ta-Y
表 1 赛支寺岩体及锆石锆石U-Pb年龄测定结果
Table 1. U-Pb zircon LA-ICP-MS chronological data of samples
样品 组成(10-6) Th/U 元素比值 年龄(Ma) Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PM2-1 111.26 458.38 1 243.44 0.37 0.059 03 0.000 94 0.620 21 0.007 96 0.076 23 0.000 45 0.030 05 0.000 28 568 18 490 5 474 3 PM2-2 116.13 460.42 1 414.74 0.33 0.058 36 0.000 8 0.577 45 0.005 83 0.071 78 0.000 4 0.028 94 0.000 21 543 13 463 4 447 2 PM2-3 56.40 227.43 668.95 0.34 0.056 2 0.000 88 0.555 98 0.006 99 0.071 78 0.000 42 0.027 96 0.000 26 460 18 449 5 447 3 PM2-4 114.75 460.60 1 387.70 0.33 0.061 11 0.000 87 0.598 6 0.006 51 0.071 07 0.000 4 0.031 11 0.000 25 643 14 476 4 443 2 PM2-5 94.64 444.84 1 089.32 0.41 0.068 19 0.001 02 0.672 47 0.007 83 0.071 55 0.000 42 0.034 59 0.000 28 874 15 522 5 445 3 PM2-6 100.34 359.11 1 237.84 0.29 0.059 93 0.000 85 0.591 42 0.006 31 0.071 6 0.000 4 0.030 52 0.000 25 601 14 472 4 446 2 PM2-7 75.19 258.02 881.80 0.29 0.062 6 0.000 92 0.617 15 0.007 02 0.071 53 0.000 41 0.033 61 0.000 29 695 15 488 4 445 2 PM2-8 136.41 732.26 1 575.51 0.46 0.060 71 0.000 8 0.601 13 0.005 61 0.071 84 0.000 39 0.029 79 0.000 19 629 11 478 4 447 2 PM2-9 148.61 770.48 1 709.55 0.45 0.067 66 0.001 27 0.669 85 0.010 81 0.071 83 0.000 48 0.032 28 0.000 35 858 22 521 7 447 3 PM2-10 73.04 350.14 879.34 0.40 0.060 66 0.000 95 0.600 18 0.007 55 0.071 79 0.000 42 0.025 97 0.000 24 627 17 477 5 447 3 PM2-11 125.14 612.79 1 437.01 0.43 0.064 7 0.000 88 0.639 76 0.006 33 0.071 74 0.000 4 0.030 19 0.000 21 765 12 502 4 447 2 PM2-12 141.06 779.01 1 624.11 0.48 0.064 63 0.000 82 0.637 38 0.005 53 0.071 56 0.000 38 0.028 4 0.000 17 762 10 501 3 446 2 PM2-13 100.47 402.27 1 245.61 0.32 0.059 81 0.001 15 0.592 6 0.009 89 0.071 89 0.000 47 0.028 88 0.000 36 597 25 473 6 448 3 PM2-14 87.45 64.80 528.94 0.12 0.068 04 0.000 95 1.344 46 0.017 15 0.143 31 0.000 82 0.043 62 0.000 44 870 30 865 7 863 5 PM3-1 13.48 86.73 149.76 0.58 0.059 86 0.001 43 0.595 37 0.012 91 0.072 16 0.000 53 0.024 14 0.000 30 599 34 474 8 449 3 PM3-2 29.22 308.30 311.00 0.99 0.060 35 0.001 36 0.597 27 0.012 10 0.071 81 0.000 51 0.021 40 0.000 22 616 31 475 8 447 3 PM3-3 47.96 720.48 487.75 1.48 0.056 69 0.001 08 0.558 91 0.009 23 0.071 53 0.000 46 0.020 52 0.000 15 479 25 451 6 445 3 PM3-4 51.54 630.77 498.69 1.26 0.057 65 0.000 90 0.570 93 0.007 16 0.071 86 0.000 41 0.022 35 0.000 14 516 18 459 5 447 2 PM3-5 11.19 74.43 129.99 0.57 0.057 26 0.001 69 0.567 07 0.015 70 0.071 86 0.000 59 0.022 00 0.000 36 502 46 456 10 447 4 PM3-6 35.39 368.27 357.48 1.03 0.062 66 0.001 26 0.621 36 0.010 94 0.071 95 0.000 48 0.024 13 0.000 21 697 26 491 7 448 3 PM3-7 44.12 530.80 466.15 1.14 0.056 89 0.001 76 0.561 07 0.016 86 0.071 53 0.000 50 0.022 23 0.000 11 487 70 452 11 445 3 PM3-8 38.61 415.04 407.75 1.02 0.057 82 0.001 14 0.571 51 0.009 84 0.071 72 0.000 47 0.023 97 0.000 20 523 26 459 6 447 3 PM3-9 11.27 76.87 128.70 0.60 0.058 34 0.001 56 0.576 27 0.014 24 0.071 67 0.000 55 0.025 17 0.000 35 543 41 462 9 446 3 PM3-10 16.36 115.15 184.67 0.62 0.058 02 0.001 36 0.574 37 0.012 17 0.071 83 0.000 51 0.024 10 0.000 30 531 34 461 8 447 3 PM3-11 23.15 214.63 251.05 0.85 0.058 16 0.001 43 0.575 87 0.012 95 0.071 84 0.000 53 0.023 84 0.000 27 536 36 462 8 447 3 注:锆石U-Pb测年在中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室完成. 表 2 赛支寺花岗闪长岩锆石Hf同位素分析结果
Table 2. Zircon Hf isotopic compositions of the Saizhisi granodiorite
样品 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(0) 1σ εHf(t) 1σ TDM1 TDM2 fLu/Hf PM2-01 0.282 702 0.000 040 0.001 547 0.000 038 0.038 456 0.001 020 -2.5 1.5 6.8 1.5 791 922 -0.95 PM2-02 0.282 561 0.000 021 0.000 838 0.000 011 0.022 730 0.000 320 -7.5 0.9 2.1 0.9 973 1 185 -0.97 PM2-03 0.282 551 0.000 027 0.000 701 0.000 006 0.017 996 0.000 349 -7.8 1.1 1.7 1.1 985 1 204 -0.98 PM2-04 0.282 596 0.000 024 0.001 009 0.000 045 0.027 996 0.001 321 -6.2 1.0 3.2 1.0 929 1 121 -0.97 PM2-05 0.282 573 0.000 020 0.000 706 0.000 019 0.017 304 0.000 427 -7.0 0.9 2.5 0.9 954 1 161 -0.98 PM2-06 0.282 586 0.000 019 0.000 984 0.000 023 0.025 761 0.000 564 -6.6 0.8 2.9 0.9 942 1 140 -0.97 PM2-07 0.282 577 0.000 024 0.000 905 0.000 016 0.024 071 0.000 512 -6.9 1.0 2.6 1.0 952 1 156 -0.97 PM2-08 0.282 621 0.000 023 0.001 145 0.000 011 0.031 073 0.000 447 -5.3 1.0 4.0 1.0 897 1 074 -0.97 PM2-09 0.282 671 0.000 023 0.001 372 0.000 066 0.039 828 0.002 039 -3.6 1.0 5.8 1.0 831 980 -0.96 PM2-10 0.282 651 0.000 021 0.001 092 0.000 020 0.031 508 0.000 817 -4.3 0.9 6.2 0.9 853 995 -0.97 PM2-11 0.282 614 0.000 021 0.001 184 0.000 014 0.036 508 0.000 514 -5.6 0.9 3.8 0.9 908 1 089 -0.96 PM2-12 0.282 604 0.000 027 0.000 808 0.000 025 0.023 468 0.000 753 -5.9 1.1 3.5 1.1 913 1 102 -0.98 PM2-14 0.282 597 0.000 022 0.001 048 0.000 025 0.029 330 0.000 787 -6.2 0.9 3.8 0.9 928 1 109 -0.97 注:锆石Hf同位素中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成. 表 3 赛支寺岩体及包体主量元素(%)和微量元素(10-6)分析结果
Table 3. The major (%) and trace (10-6) element analysis of Bayankala Group
样品样号 寄主岩 包体 PM4-3-GXW1 PM4-3-GXW2 PM4-3-GXW3 P2-1GXW1 P2-1GXW2 P2-1GXW3 P1-0GXW1 P1-0GXW2 P1-0GXW3 SiO2 67.35 67.17 68.12 67.14 66.62 66.45 52.35 53.70 55.02 TiO2 0.50 0.49 0.43 0.51 0.58 0.54 0.77 0.86 0.77 Al2O3 14.70 14.82 14.52 14.45 13.93 14.19 16.91 16.26 15.37 Fe2O3 1.54 1.69 1.57 1.58 1.26 1.72 3.59 4.19 4.87 FeO 1.92 1.88 1.63 2.05 2.60 2.05 4.85 5.50 5.60 MgO 1.80 1.85 1.62 1.98 2.11 2.06 4.41 5.66 5.41 MnO 0.07 0.06 0.07 0.07 0.08 0.07 0.18 0.24 0.22 CaO 2.02 2.38 3.01 2.96 3.02 2.88 6.94 7.21 6.17 Na2O 3.81 3.61 3.59 3.74 3.49 3.45 3.88 3.47 3.70 K2O 3.99 3.92 4.22 4.06 3.60 4.30 1.44 1.58 1.51 P2O5 0.27 0.27 0.23 0.28 0.31 0.30 0.16 0.28 0.25 烧失量 1.52 1.35 1.91 0.66 0.85 0.87 1.1 1.57 1.59 TFeO 3.31 3.40 3.04 3.47 3.73 3.59 8.08 9.27 9.98 Na2O/K2O 0.95 0.92 0.85 0.92 0.97 0.80 2.69 2.19 2.45 A/NCK 1.03 1.02 0.91 0.91 0.92 0.91 0.82 0.79 0.81 Mg# 49.20 49.21 48.72 50.49 50.25 50.58 49.33 52.12 49.13 钙长石(An) 8.32 10.12 10.96 10.65 11.91 10.63 27.05 26.11 22.6 石英(Q) 25.24 25.64 24.5 23.17 25.47 23.53 5.61 7.19 9.41 钠长石(Ab) 34.23 32.43 31.78 33.33 31.64 31.04 38.23 33.48 35.71 正长石(Or) 25.62 25.17 26.7 25.86 23.33 27.65 10.14 10.89 10.42 σ 2.50 2.35 2.43 2.52 2.13 2.56 3.03 2.38 2.26 La 81.82 80.14 77.19 81.28 90.26 85.38 23.14 30.64 26.79 Ce 141.2 139.6 132.3 139.4 156.3 148.2 44.41 68.69 51.27 Pr 16.50 16.10 15.20 15.64 17.87 16.76 5.38 9.36 6.34 Nd 56.71 55.08 51.62 53.78 61.54 56.74 20.59 37.67 23.97 Sm 8.92 8.51 7.93 8.23 9.60 8.54 4.02 7.51 4.82 Eu 2.06 2.09 1.94 1.89 2.11 1.98 1.23 1.59 1.29 Gd 6.53 6.19 5.68 6.34 7.26 6.63 3.77 6.32 4.32 Tb 0.970 0.913 0.851 0.896 1.04 0.939 0.653 1.04 0.735 Dy 4.85 4.56 4.10 4.35 4.97 4.48 3.76 5.76 4.26 Ho 0.893 0.817 0.753 0.797 0.904 0.826 0.769 1.16 0.875 Er 2.20 2.07 1.94 2.03 2.31 2.06 2.12 3.19 2.42 Tm 0.327 0.318 0.286 0.301 0.346 0.308 0.325 0.503 0.381 Yb 2.18 2.02 1.85 1.89 2.19 1.98 2.13 3.28 2.50 Lu 0.319 0.309 0.277 0.289 0.333 0.306 0.347 0.514 0.425 LREE 307.20 301.55 286.19 300.23 337.66 317.58 98.77 155.44 114.46 HREE 18.26 17.19 15.74 16.89 19.37 17.53 13.87 21.77 15.92 LREE/HREE 16.82 17.54 18.19 17.77 17.44 18.12 7.12 7.14 7.19 (La/Yb)N 25.31 26.78 28.12 29.01 27.75 29.10 7.33 6.29 7.21 (La/Sm)N 5.77 5.92 6.12 6.21 5.91 6.29 3.62 2.57 3.50 (Gd/Yb)N 2.42 2.48 2.48 2.71 2.67 2.70 1.43 1.55 1.39 δEu 0.79 0.84 0.84 0.77 0.74 0.78 0.95 0.69 0.84 Rb 120.70 94.78 98.96 126.20 116.90 112.90 41.56 47.22 60.55 Ba 1053.73 1092.70 1296.55 935.80 800.41 1093.66 405.00 352.50 354.00 Th 32.34 33.80 29.26 29.97 32.04 32.80 1.66 2.67 3.24 U 5.06 7.28 5.04 3.70 3.78 3.92 0.38 1.11 1.66 Nb 26.50 24.71 20.05 25.32 29.20 26.97 9.48 13.82 7.97 Ta 2.10 1.91 1.29 1.94 2.06 1.95 0.74 0.86 0.50 Sr 769.15 758.20 781.40 725.55 702.57 724.04 474.52 458.21 496.32 Hf 7.48 6.93 6.09 7.05 7.85 7.43 6.25 5.97 4.07 Zr 244.80 237.10 210.10 235.50 265.80 250.90 90.40 117.60 80.50 Y 22.92 21.84 20.20 20.52 23.82 21.82 20.14 29.12 22.29 Cr 24.94 25.84 18.19 35.91 46.27 41.07 22.29 45.25 86.59 Ni 17.81 18.22 15.14 22.33 24.55 23.88 23.71 27.70 24.64 Ga/Al 1.77 1.94 1.88 2.35 2.22 2.16 2.20 2.23 2.21 注:主微量元素在国土资源部武汉矿产资源监督检测中心完成. 表 4 赛支寺寄主岩及包体样品的Sr-Nd同位素组成
Table 4. Sr-Nd isotopic results of mafic microgranular enclaves and hosts rocks of the Saizhisi pluton
87Sr/86Sr 87Rb/86Sr (87Sr/86Sr)t 2σ 143Nd/144Nd εNd(t) 2σ 寄主 PM2-1 0.710 262 0.503 4 0.709 3 0.000 016 0.512 255 -7.467 062 528 0.000 009 PM2-3 0.710 249 0.481 5 0.709 4 0.000 013 0.512 260 -7.379 476 356 0.000 009 PM2-3 0.710 316 0.451 3 0.709 5 0.000 012 0.512 230 -7.967 415 603 0.000 010 包体 PM3-1 0.706 847 0.253 4 0.706 4 0.000 016 0.512 581 -1.114 821 765 0.000 009 PM3-2 0.707 046 0.298 1 0.706 5 0.000 015 0.512 585 -1.030 161 635 0.000 009 PM3-3 0.707 354 0.353 0 0.706 7 0.000 014 0.512 548 -1.751 723 438 0.000 010 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Crust from Hafnium Isotopes in Single Detrital Zircon.Nature, 399(6733):252-255.doi: 10.1038/20426 [2] Baxter, S., Feely, M., 2002.Magma Mixing and Mingling Textures in Granitoids:Examples from Galway Granite, Connemara, Ireland.Mineralogy and Petrology, 76(1-2):63-74.doi: 10.1007/s007100200032 [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contribution to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7 [4] Chappell, B.W., White, A.J.R., Wyborn, D., 1987.The Importance of Residual Source Material (Restite) in Granite Petrogenesis.Journal of Petrology, 28(6):1111-1138.doi: 10.1093/petrology/28.6.1111 [5] Chen, J.L., Xu.X.Y., Zeng, Z.X., et al., 2008.Geochemical Characters and LA-ICPMS Zircon U-Pb Dating Constraints on the Petrogenesis and Tectonic Setting of the Shichuan Intrusion, East Segment of the Central Qilian, NW China.Acta Petrologica Sinica, 24(4):841-854(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200804024.htm [6] Chen, S., Niu, Y., Sun, W., et al., 2015.On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids:Evidence from the Baojishan Pluton in the North Qilian Orogen, China.Mineralogy and Petrology, 109(5):577-596.doi: 10.1007/s00710-015-0383-5 [7] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665.doi: 10.1038/347662a0 [8] Defant, M.J., Jackson, T.E., Drummond, M.S., et al., 1992.The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa Rica:An Overview.Journal of the Geological Society, London, 149:569-579.doi:10.1144/ gsjgs.149.4.0569 [9] Hibbard, M.J., 1991.Textural Anatomy of Twelve Magma-Mixed Granitoid Systems:Enclaves and Granite Petrology.Elsevier, Amsterdam. [10] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.doi: 10.1039/C2JA30078H [11] Liu, L., Qiu, J.S., Li, Z., et al., 2012.Petrogenesis of the Early Cretaceous Quartz Monzonite Pluton at Muchen in Longyou County, Zhejiang Province:Evidences from Elemental and Isotopic Geochemistry of Mafic Microgranular Enclaves and Their Host Rocks.Acta Petrogica Sinica, 28(12):3993-4006 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201212016.htm [12] Pearce, J, A, ,Harris, N.B., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi:10.1007/ BF00384745 [13] Qin, H.P., Wu, C.L., Wang, C.S., et al., 2014.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr/Y-Type Granite from Xigela, Eastern Qilian Area.Acta Petrologica Sinica, 30(12) :3759-3771 (in Chinese with English abstract). https://www.researchgate.net/publication/286308539_LA-ICP-MS_zircon_U-Pb_dating_and_geochemical_characteristics_of_high_SrY-type_granite_from_Xigela_eastern_Qilian_area [14] Song, S.G., Zhang, L., Niu, Y., et al., 2007.Eclogite and Carpholite-Bearing Metasedimentary Rocks in the North Qilian Suture Zone, NW China:Implications for Early Paleozoic Cold Oceanic Subduction and Water Transport into Mantle.Journal of Metamorphic Geology, 25(5):547-563.doi: 10.1111/j.1525-1314.2007.00713.x [15] Song, S.G., Zhang, L.F., Song, B., et al., 2004.North Qilian Mountains Eclogite Zircon SHRIMP Dating and Tectonic Significance.Chinese Science Bulletin, 49(6):592-595(in Chinese). [16] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2006.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology, 47(3):435-455.doi:10.1093/ petrology/ egi080 [17] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins.Geological Society, London, Special Publication, 42(1):313-345.doi:10.1144/GSL.SP.1989.042.01.19 [18] Vervoort, J, D., Pachelt, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379(6566):624-627.doi: 10.1038/379624a0 [19] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202 [20] Wu, C.L., Xu, X.Y., Gao, Q.M., et al., 2010.North Qilian Zoulang Nanshan Caledonian Subduction Complex Accretionary Terrane and Its Dynamics.Acta Petrologica Sinica, 26(4):1027-1044 (in Chinese with English abstract). [21] Wu, C.L., Yao, S.Z., Yang, J.S., et al., 2006.Double Subduction of the Early Paleozoic North Qilian Oceanic Plate:Evidence from Granites in the Central Segment of North Qilian, NW China.Geology in China, 33(6):1197-1208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200606003.htm [22] Wu, C.L., Gao.Y, Frost, B.R., et al., 2011.An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate:Evidence from Zircon SHRIMP Dating of Granites.International Geology Review, 53(2):157-181. doi: 10.1080/00206810902965346 [23] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm [24] Xia, L.Q., Xia, Z.C., Xu, X.Y., 1998.The Volcanic Action of the Early Paleozoic Oceanic Ridges, Oceanic Islands and the back Arc Basin in the North Qilian Mountains.Acta Gologica Sinica, 72(4):301-312(in Chinese with English abstract). [25] Xiao, W., Windley, B.F., Yong, Y., et al., 2009.Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China.Journal of Asian Earth Sciences, 35(3):323-333.doi: 10.1016/j.jseaes.2008.10.001 [26] Xiong, Z.L., Zhang, H.F., Zhang, J., 2012.Petrogenesis and Tectonic Implications of the Maozangsi and Huangyanghe Granitic Intrusions in Lenglongling Area, the Eastern Part of North Qilian Mountains, NW China.Earth Science Frontiers, 19(3):214-227(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203023.htm [27] Yan, Z., Aitchison, J., Fu, C., et al., 2015.Hualong Complex, South Qilian Terrane:U-Pb and Lu-Hf Constraints on Neoproterozoic Microcontinental Fragments Accreted to the Northern Proto-Tethyan Margin.Precambrian Research, 266:65-85.doi: 10.1016/j.precamres.2015.05.001 [28] Yang, G.X., Li, Y.J., Si, G.H., et al., 2010.LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications.Earth Science, 35(4):597-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201004013.htm [29] Yang, T.L., Jiang, S.Y., 2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs)from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes.Earth Science, 40(12):2002-2020(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201512006.htm [30] Yong, Y., Xiao, W.J., Yuan, C., et al., 2008.Geochronology and Geochemistry of Paleozoic Granitic Plutons from the Eastern Central Qilian and Their Tectonic Implications.Acta Petrologica Sinica, 24(4):855-866(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804025.htm [31] Zhang, Q., Zhou, G.Q., Wang, Y., 2003.The Distribution of Time and Space of Chinese Ophiolites and Their Tectonic Settings.Acta Petrologica Sinica, 19(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200301000.htm [32] Zhao, X.M., Zhang, Z.H., Liu, M., et al., 2014.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Granites from the Xiaoliugou Deposit in the Western of the North Qilian.Acta Petrologica Sinica, 30(1):16-34 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201401002.htm [33] Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004.Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 180 Depletion Event in Igneous Rocks during the Neoproterozoic.Geochimica et Cosmochimica Acta, 68(20):4145-4165.doi: 10.1016/j.gca.2004.01.007 [34] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction Related Adakite Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003 [35] Zuo, G.C., Wu, H.Q., 1997.Subductionon Collision Orogenic Model of Early-Paleozoic in the Middle Part of North Qilian Area.Advance in Earth Sciences, 12(4):315-323 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ704.003.htm [36] 陈隽璐, 徐学义, 曾佐勋, 等, 2008.中祁连东段什川杂岩基的岩石化学特征及年代学研究.岩石学报, 24(4):841-854. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804024.htm [37] 刘亮, 邱检生, 李真, 等, 2012.浙江龙游沐尘早白垩世石英二长岩体的成因:镁铁质包体及寄主岩的元素与Sr-Nd同位素地球化学证据.岩石学报, 28(12):3993-4006. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212016.htm [38] 秦海鹏, 吴才来, 王次松, 等, 2014.祁连东部西格拉高Sr/Y型花岗岩LA-ICP-MS锆石U-Pb定年及其地球化学特征.岩石学报, 30(12):3759-3771. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412024.htm [39] 宋述光, 张立飞, 宋彪, 等, 2004.北祁连山榴辉岩锆石SHRIMP定年及其构造意义.科学通报, 49(6):592-595. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406017.htm [40] 吴才来, 徐学义, 高前明, 等, 2010.北祁连早古生代花岗质岩浆作用及构造演化.岩石学报, 26(4):1024-1044. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004004.htm [41] 吴才来, 姚尚志, 杨经绥, 等, 2006.北祁连洋早古生代双向俯冲的花岗岩证据.中国地质, 33(6):1197-1208. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200606003.htm [42] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [43] 夏林圻, 夏祖春, 徐学义, 1998.北祁连山早古生代洋脊-洋岛和弧后盆地火山作用.地质学报, 72(4):301-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199804001.htm [44] 熊子良, 张宏飞, 张杰.2012.北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的岩石成因及其构造意义.地学前缘, 19(3):214-227. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203023.htm [45] 杨高学, 李永军, 司国辉, 等, 2010.东准库布苏南岩体和包体的LA-ICP-MS锆石U-Pb测年及地质意义.地球科学, 35(4):597-610. http://earth-science.net/WebPage/Article.aspx?id=2003 [46] 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://earth-science.net/WebPage/Article.aspx?id=3205 [47] 雍拥, 肖文交, 袁超, 等, 2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报, 24(4):855-866. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804025.htm [48] 张旗, 周国庆, 王焰, 2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报, 19(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301000.htm [49] 赵辛敏, 张作衡, 刘敏, 等, 2014.北祁连西段小柳沟矿区花岗质岩石锆石U-Pb年代学、地球化学及成因研究.岩石学报, 30(1):16-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401002.htm [50] 左国朝, 吴汉泉, 1997.北祁连中段早古生代双向俯冲-碰撞造山模式剖析.地球科学进展, 12(4):315-323. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.003.htm