Achievements, Issues and Prospects in Study of Martian Paleolakes
-
摘要: 火星表面的古湖泊地貌能够反映火星古气候和古环境的特征及变化,对于研究火星是否曾经存在宜居环境具有重要意义.随着中国火星探测计划的提出和实施,详细了解火星古湖泊的研究进展尤为重要.总结了火星古湖泊的研究现状,重点阐述了当前对火星古湖泊的沉积地貌、矿物成分、形成年龄、分布特征等方面的研究进展.在综合分析前人研究成果的基础上,提出火星古湖泊研究中存在的主要问题,认为未来应着重在古湖泊的详细调查与地质填图、古湖泊的后期改造作用、其他类型古湖泊的识别分析以及火星与地球古湖泊的对比等方面开展研究.Abstract: Paleolakes on Martian surface have attracted great interests of researchers as they contain information on ancient aqueous environment of Mars and are important for the detection of habitable environment on Mars. With the implementing of Chinese Mars exploration program, it's of great significances to review the achievements in Martian paleolake study. We summarize the sedimentary geomorphology, mineral compositions, activity periods and global distribution of the paleolakes. On this basis, we discussed the unresolved questions in paleolake study and proposed that future studies should focus on the detailed investigation and geologic mapping of paleolakes, post-lacustrine modification processes, identification of other paleolake types and the comparative study of Martian and terrestrial paleolakes.
-
Key words:
- Mars /
- paleolake /
- remote sensing /
- geomorphology /
- sediments /
- planetary geology
-
图 1 火星全球古湖泊分布
标有AT和XT的白色虚线范围内分别为第1类封闭系统古湖泊高度集中的阿拉伯高地(Arabia Terra)和赞西高地(Xanthe Terra).底图为火星轨道器激光高度计(mars orbiter laser altimeter,MOLA)高程图;据Goudge et al.(2015)
Fig. 1. Global distribution of martian paleolakes
图 2 耶泽洛撞击坑及与之相连的峡谷(a)和耶泽洛撞击坑内的湖相三角洲(b)
图a底图为MOLA高程图像叠加在热辐射成像系统(thermal emission imaging system,THEMIS)日间影像上,黑色箭头指示的两条峡谷为水流入的通道,白色箭头指示的峡谷为水流出的通道;图b底图为背景相机(context camera,CTX)影像,编号为D14_032794_1989_XN_18N282W
Fig. 2. Jezero crater and its inlet and outlet valleys (a) and lacustrine delta in Jezero crater (b)
图 4 古湖泊的模式年龄图(a)及年龄分布(b)
图a据Fassett and Head(2008b),模式年龄单位为Ga,图中白点指示古湖泊,黄色区域指示开展了撞击坑统计的河谷系统
Fig. 4. Model ages (Ga)(a) and age distribution (b) of some paleolakes
-
[1] Allen, P., Collinson, J., 1986.Lakes.In:Reading, H.G., ed., Sedimentary Environments and Facies.Blackwell Publishing, Oxford, 63-94. [2] Ansan, V., Loizeau, D., Mangold, N., et al., 2011.Stratigraphy, Mineralogy, and Origin of Layered Deposits inside Terby Crater, Mars.Icarus, 211(1):273-304.doi: 10.1016/j.icarus.2010.09.011 [3] Arvidson, R.E., Ruff, S.W., Morris, R.V., et al., 2008.Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater:Mission Overview and Selected Results from the Cumberland Ridge to Home Plate.Journal of Geophysical Research:Planets, 113(E12):E12S33.doi: 10.1029/2008je003183 [4] Arvidson, R.E., Squyres, S.W., Bell, J.F., et al., 2014.Ancient Aqueous Environments at Endeavour Crater, Mars.Science, 343(6169):1248097.doi: 10.1126/science.1248097 [5] Baker, V.R., 2001.Tharsis Superplume (3):Implications on the Role of Water, Environmental Change, and Life.Report 178.GSA Annual Meeting 2001, Boston. [6] Baker, V.R., 2006.Geomorphological Evidence for Water on Mars.Elements, 2(3):139-143.doi: 10.2113/gselements.2.3.139 [7] Baker, V.R., Strom, R.G., Gulick, V.C., et al., 1991.Ancient Oceans, Ice Sheets and the Hydrological Cycle on Mars.Nature, 352(6336):589-594.doi: 10.1038/352589a0 [8] Bibring, J.P., Langevin, Y., Poulet, F., et al., 2004.Perennial Water Ice Identified in the South Polar Cap of Mars.Nature, 428(6983):627-630.doi: 10.1038/nature02461 [9] Cabrol, N.A., Grin, E.A., 1999.Distribution, Classification, and Ages of Martian Impact Crater Lakes.Icarus, 142(1):160-172.doi: 10.1006/icar.2000.6530 [10] Cabrol, N.A., Grin, E.A., 2001.The Evolution of Lacustrine Environments on Mars:Is Mars only Hydrologically Dormant? Icarus, 149(2):291-328.doi: 10.1006/icar.2000.6530 [11] Cabrol, N.A., Grin, E.A., 2003.Overview on the Formation of Paleolakes and Ponds on Mars.Global and Planetary Change, 35(3-4):199-219.doi: 10.1016/s0921-8181(02)00127-3 [12] Carr, M., 2006.The Surface of Mars.Cambridge University Press, Cambridge. [13] Christensen, P., Wyatt, M., Glotch, T., et al., 2004.Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover.Science, 306(5702):1733-1739. doi: 10.1126/science.1104909 [14] Clifford, S.M., 1993.A Model for the Hydrologic and Climatic Behavior of Water on Mars.Journal of Geophysical Research:Planets, 98(E6):10973-11016. doi: 10.1029/93JE00225 [15] Clifford, S.M., Parker, T.J., 2001.The Evolution of the Martian Hydrosphere:Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains.Icarus, 154(1):40-79.doi: 10.1006/icar.2001.6671 [16] de Hon, R., 1992.Martian Lake Basins and Lacustrine Plains.Earth, Moon, and Planets, 56(2):95-122.doi: 10.1007/BF00056352 [17] Dehouck, E., Mangold, N., Le Mouélic, S., et al., 2010.Ismenius Cavus, Mars:A Deep Paleolake with Phyllosilicate Deposits.Planetary and Space Science, 58(6):941-946.doi: 10.1016/j.pss.2010.02.005 [18] Dou, H.S., Wang, S.M., Jiang, J.H., et al., 1996.On the Principles, Scale Division and Procedures of Comprehensive Classification of Chinese Lakes.Journal of Lake Sciences, 8(2):173-178 (in Chinese with English abstract). doi: 10.18307/1996.0214 [19] Ehlmann, B.L., Buz, J., 2015.Mineralogy and Fluvial History of the Watersheds of Gale, Knobel, and Sharp Craters:A Regional Context for the Mars Science Laboratory Curiosity's Exploration.Geophysical Research Letters, 42(2):264-273.doi: 10.1002/2014gl062553 [20] Ehlmann, B.L., Mustard, J.F., Swayze, G., et al., 2008a.Phyllosilicates, Zeolites, and Carbonate near Nili Fossae, Mars:Evidence for Distinct Environments of Aqueous Alteration.LPI Contributions, 1441:33-34. http://adsabs.harvard.edu/abs/2008LPICo1441...33E [21] Ehlmann, B.L., Mustard, J.F., Fassett, C.I., et al., 2008b.Clay Minerals in Delta Deposits and Organic Preservation Potential on Mars.Nature Geoscience, 1(6):355-358.doi: 10.1038/ngeo207 [22] Fassett, C.I., Head, J.W., 2008a.The Timing of Martian Valley Network Activity:Constraints from Buffered Crater Counting.Icarus, 195(1):61-89.doi: 10.1016/j.icarus.2007.12.009 [23] Fassett, C.I., Head, J.W., 2008b.Valley Network-Fed, Open-Basin Lakes on Mars:Distribution and Implications for Noachian Surface and Subsurface Hydrology.Icarus, 198(1):37-56. doi: 10.1016/j.icarus.2008.06.016 [24] Forsythe, R.D., Blackwelder, C.R., 1998.Closed Drainage Crater Basins of the Martian Highlands:Constraints on the Early Martian Hydrologic Cycle.Journal of Geophysical Research:Planets, 103(E13):31421-31431.doi: 10.1029/98je01966 [25] Forsythe, R.D., Zimbelman, J.R., 1995.A Case for Ancient Evaporite Basins on Mars.Journal of Geophysical Research:Planets, 100(E3):5553-5563.doi: 10.1029/95JE00325 [26] Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al., 2013.A Hematite-Bearing Layer in Gale Crater, Mars:Mapping and Implications for Past Aqueous Conditions.Geology, 41(10):1103-1106.doi: 10.1130/g34613.1 [27] Glotch, T.D., Bandfield, J.L., Christensen, P.R., et al., 2006.Mineralogy of the Light-Toned Outcrop at Meridiani Planum as Seen by the Miniature Thermal Emission Spectrometer and Implications for Its Formation.Journal of Geophysical Research, 111(E12):E12S03.doi: 10.1029/2005je002672 [28] Goldspiel, J.M., Squyres, S.W., 1991.Ancient Aqueous Sedimentation on Mars.Icarus, 89(2):392-410.doi: 10.1016/0019-1035(91)90186-w [29] Golombek, M., Grant, J., Kipp, D., et al., 2012.Selection of the Mars Science Laboratory Landing Site.Space Science Reviews, 170(1-4):641-737.doi: 10.1007/s11214-012-9916-y [30] Golombek, M.P., Grant, J.A., Parker, T.J., et al., 2003.Selection of the Mars Exploration Rover Landing Sites.Journal of Geophysical Research:Planets, 108(E12):13.doi: 10.1029/2003je002074 [31] Goudge, T.A., Aureli, K.L., Head, J.W., et al., 2015.Classification and Analysis of Candidate Impact Crater-Hosted Closed-Basin Lakes on Mars.Icarus, 260:346-367.doi: 10.1016/j.icarus.2015.07.026 [32] Goudge, T.A., Head, J.W., Mustard, J.F., et al., 2012a.An Analysis of Open-Basin Lake Deposits on Mars:Evidence for the Nature of Associated Lacustrine Deposits and Post-Lacustrine Modification Processes.Icarus, 219(1):211-229.doi: 10.1016/j.icarus.2012.02.027 [33] Goudge, T.A., Mustard, J.F., Head, J.W., et al., 2012b.Constraints on the History of Open-Basin Lakes on Mars from the Composition and Timing of Volcanic Resurfacing.Journal of Geophysical Research:Planets, 117(E12):E00J21.doi: 10.1029/2012je004115 [34] Greeley, R., Guest, J., 1987.Geologic Map of the Eastern Equatorial Region of Mars.US Geological Survey, Reston. [35] Grin, E.A., Cabrol, N.A., 1997.Limnologic Analysis of Gusev Crater Paleolake, Mars.Icarus, 130(2):461-474.doi: 10.1006/icar.1997.5817 [36] Grotzinger, J.P., Gupta, S., Malin, M.C., et al., 2015.Deposition, Exhumation, and Paleoclimate of an Ancient Lake Deposit, Gale Crater, Mars.Science, 350(6257):aac7575.doi: 10.1126/science.aac7575 [37] Grotzinger, J.P., Sumner, D.Y., Kah, L.C., et al., 2014.A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars.Science, 343(6169):1242777.doi: 10.1126/science.1242777 [38] Gulick, V.C., 1998.Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars.Journal of Geophysical Research:Planet, 103(E8):19365-19387.doi: 10.1029/98JE01321 [39] Haberle, R.M., Jakosky, B.M., 1990.Sublimation and Transport of Water from the North Residual Polar Cap on Mars.Journal of Geophysical Research:Solid Earth, 95(B2):1423-1437.doi: 10.1029/JB095iB02p01423 [40] Hanna, J.C., Phillips, R.J., 2005.Hydrological Modeling of the Martian Crust with Application to the Pressurization of Aquifers.Journal of Geophysical Research:Planets, 110(E1):E01004.doi: 10.1029/2004JE002330 [41] Head, J.W., Kreslavsky, M.A., Pratt, S., 2002.Northern Lowlands of Mars:Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period.Journal of Geophysical Research:Planets, 107(E1):3.doi: 10.1029/2000JE001445 [42] Howard, A.D., Moore, J.M., Irwin, R.P., 2005.An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars:1.Valley Network Incision and Associated Deposits.Journal of Geophysical Research, 110(E12):E12S14. doi: 10.1029/2005je002459 [43] Hu, R., Kass, D.M., Ehlmann, B.L., et al., 2015.Tracing the Fate of Carbon and the Atmospheric Evolution of Mars.Nature Communications, 6:1-9.doi: 10.1038/ncomms10003 [44] Irwin, R.P., Howard, A.D., Craddock, R.A., et al., 2005.An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars:2.Increased Runoff and Paleolake Development.Journal of Geophysical Research, 110(E12):E12S15. doi: 10.1029/2005je002460 [45] Jiang, J.H., Wang, S.M., 1998.Study on the Classified System of Chinese Lakes.Advances in Water Science, 9(2):170-175 (in Chinese with English abstract). [46] Johnsson, A., Reiss, D., Hauber, E., et al., 2014.Evidence for very Recent Melt-Water and Debris Flow Activity in Gullies in a Young Mid-Latitude Crater on Mars.Icarus, 235:37-54.doi: 10.1016/j.icarus.2014.03.005 [47] Kieffer, H.H., Chase, J.R., Martin, T.Z., et al., 1976.Martian North Pole Summer Temperatures:Dirty Water Ice.Science, 194(4271):1341-1344.doi: 10.1126/science.194.4271.1341 [48] Kleinhans, M., 2005.Flow Discharge and Sediment Transport Models for Estimating a Minimum Timescale of Hydrological Activity and Channel and Delta Formation on Mars.Journal of Geophysical Research:Planets, 110(E12):E12003.doi: 10.1029/2005JE002521 [49] Leverington, D.W., Maxwell, T.A., 2004.An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars.Journal of Geophysical Research:Planets, 109(E6):E06006. doi: 10.1029/2004JE002237 [50] Li, Z.Z., Wang, D.M., Liu, D.C., et al., 2015.Hyperspectral Remote Sensing Technology and Its Progress in Resources Exploration.Earth Science, 40(8):1287-1294 (in Chinese with English abstract). https://www.researchgate.net/publication/283232061_Hyperspectral_remote_sensing_technology_and_its_progress_in_resources_exploration [51] Malin, M.C., Edgett, K.S., 2000.Evidence for Recent Groundwater Seepage and Surface Runoff on Mars.Science, 288(5475):2330-2335.doi: 10.1126/science.288.5475.2330 [52] Malin, M.C., Edgett, K.S., 2003.Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars.Science, 302(5652):1931-1934. doi: 10.1126/science.1090544 [53] Martín-Torres, F.J., Zorzano, M.P., Valentín-Serrano, P., et al., 2015.Transient Liquid Water and Water Activity at Gale Crater on Mars.Nature Geoscience, 8:357-361.doi: 10.1038/ngeo2412 [54] McEwen, A.S., Hansen, C.J., Delamere, W.A., et al., 2007.A Closer Look at Water-Related Geologic Activity on Mars.Science, 317(5845):1706-1709.doi: 10.1126/science.1143987 [55] McKay, C.P., Davis, W.L., 1991.Duration of Liquid Water Habitats on Early Mars.Icarus, 90(2):214-221.doi: 10.1016/0019-1035(91)90102-Y [56] McSween, H.Y., 2006.Water on Mars.Elements, 2(3):135-137.doi: 10.2113/gselements.2.3.135 [57] Milliken, R.E., Grotzinger, J.P., Thomson, B.J., 2010.Paleoclimate of Mars as Captured by the Stratigraphic Record in Gale Crater.Geophysical Research Letters, 37(4):L04201.doi: 10.1029/2009gl041870 [58] Mischna, M.A., Richardson, M.I., Wilson, R.J., et al., 2003.On the Orbital Forcing of Martian Water and CO2 Cycles:A General Circulation Model Study with Simplified Volatile Schemes.Journal of Geophysical Research:Planets, 108(E6):16.doi: 10.1029/2003JE002051 [59] Moore, J.M., Howard, A.D., 2005.Large Alluvial Fans on Mars.Journal of Geophysical Research:Planets, 110(E4):225-243.doi: 10.1029/2004JE002352 [60] Moore, J.M., Wilhelms, D.E., 2001.Hellas as a Possible Site of Ancient Ice-Covered Lakes on Mars.Icarus, 154(2):258-276.doi: 10.1006/icar.2001.6736 [61] Moore, J.M., Howard, A.D., Dietrich, W.E., et al., 2003.Martian Layered Fluvial Deposits:Implications for Noachian Climate Scenarios.Geophysical Research Letters, 30(24):PLA 6.doi: 10.1029/2003GL019002 [62] Morris, R.V., Klingelhöfer, G., Schröder, C., et al., 2008.Iron Mineralogy and Aqueous Alteration from Husband Hill through Home Plate at Gusev Crater, Mars:Results from the Mössbauer Instrument on the Spirit Mars Exploration Rover.Journal of Geophysical Research, 113(E12):E12S42. doi: 10.1029/2008je003201 [63] Mustard, J.F., Murchie, S.L., Pelkey, S.M., et al., 2008.Hydrated Silicate Minerals on Mars Observed by the Mars Reconnaissance Orbiter CRISM Instrument.Nature, 454(7202):305-309.doi: 10.1038/nature07097 [64] Noe Dobrea, E., Poulet, F., Malin, M., 2006.Omega Analysis of Light-Toned Outcrops in the Chaotic Terrain of the Eastern Valles Marineris Region.LPI Contributions, 37:2068. https://www.researchgate.net/publication/253177786_Omega_Analysis_of_Light-Toned_Outcrops_in_the_Chaotic_Terrain_of_the_Eastern_Valles_Marineris_Region [65] Ojha, L., Wilhelm, M.B., Murchie, S.L., et al., 2015.Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars.Nature Geoscience, 8(11):829-832.doi: 10.1038/ngeo2546 [66] Pajola, M., Carter, J., Rossato, S., et al., 2014.Eridania Paleolakes Basin Floor:A New Landing Site for the Next Mars 2020 Rover.LPI Contributions, 1791:1213. http://adsabs.harvard.edu/abs/2014LPICo1791.1213P [67] Russell, P.S., Head, J.W., 2003.Elysium-Utopia Flows as Mega-Lahars:A Model of Dike Intrusion, Cryosphere Cracking, and Water-Sediment Release.Journal of Geophysical Research:Planets, 108(E6):18. doi: 10.1029/2002JE001995 [68] Sagan, C., Mullen, G., 1972.Earth and Mars:Evolution of Atmospheres and Surface Temperatures.Science, 177(4043):52-56.doi: 10.1126/science.177.4043.52 [69] Sagan, C., Toon, O.B., Gierasch, P.J., 1973.Climatic Change on Mars.Science, 181(4104):1045-1049.doi: 10.1126/science.181.4104.1045 [70] Scott, D.H., Tanaka, K.L., 1986.Geologic Map of the Western Equatorial Region of Mars.US Geological Survey, Reston. [71] Segura, T.L., Toon, O.B., Colaprete, A., et al., 2002.Environmental Effects of Large Impacts on Mars.Science, 298(5600):1977-1980. doi: 10.1126/science.1073586 [72] Solomon, S.C., Aharonson, O., Aurnou, J.M., et al., 2005.New Perspectives on Ancient Mars.Science, 307(5713):1214-1220.doi: 10.1126/science.1101812 [73] Squyres, S.W., Arvidson, R.E., Bollen, D., et al., 2006.Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum:Eagle Crater to Purgatory Ripple.Journal of Geophysical Research, 111(E12):E12S12. doi: 10.1029/2006je002771 [74] Thomson, B.J., Bridges, N.T., Milliken, R., et al., 2011.Constraints on the Origin and Evolution of the Layered Mound in Gale Crater, Mars Using Mars Reconnaissance Orbiter Data.Icarus, 214(2):413-432.doi: 10.1016/j.icarus.2011.05.002 [75] Tian, F., Claire, M.W., Haqq-Misra, J.D., et al., 2010.Photochemical and Climate Consequences of Sulfur Outgassing on Early Mars.Earth and Planetary Science Letters, 295(3-4):412-418.doi: 10.1016/j.epsl.2010.04.016 [76] Tian, F., Kasting, J.F., Solomon, S.C., 2009.Thermal Escape of Carbon from the Early Martian Atmosphere.Geophysical Research Letters, 36(2):L02205.doi: 10.1029/2008gl036513 [77] Titus, T.N., Kieffer, H.H., Christensen, P.R., 2003.Exposed Water Ice Discovered near the South Pole of Mars.Science, 299(5609):1048-1051.doi: 10.1126/science.1080497 [78] Tokano, T., 2005.Water on Mars and Life.Springer, Berlin. [79] Toon, O.B., Pollack, J.B., Ward, W., et al., 1980.The Astronomical Theory of Climatic Change on Mars.Icarus, 44(3):552-607.doi: 10.1016/0019-1035(80)90130-x [80] Vaniman, D.T., Bish, D.L., Ming, D.W., et al., 2014.Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars.Science, 343(6169):1243480.doi: 10.1126/science.1243480 [81] Xiao, L., 2013.Planetary Geology.Geological Publishing House, Beijing (in Chinese). [82] Zhao, J.N., Huang, J., Xiao, L., et al., 2013.Crater Size-Frequency Distribution Measurements and Age Determination of Sinus Iridum.Earth Science, 38(2):351-361 (in Chinese with English abstract). https://www.researchgate.net/publication/286369488_Crater_size-frequency_distribution_measurements_and_age_determination_of_Sinus_Iridum [83] 窦鸿身, 王苏民, 姜加虎, 等, 1996.中国湖泊综合分类原则, 级别划分及分类程序之初探.湖泊科学, 8(2): 173-178. doi: 10.18307/1996.0214 [84] 姜加虎, 王苏民, 1998.中国湖泊分类系统研究.水科学进展, 9(2): 170-175. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ802.010.htm [85] 李志忠, 汪大明, 刘德长, 等, 2015.高光谱遥感技术及资源勘查应用进展.地球科学, 40(8): 1287-1294. http://www.earth-science.net/WebPage/Article.aspx?id=3130 [86] 肖龙, 2013.行星地质学.北京:地质出版社. [87] 赵健楠, 黄俊, 肖龙, 等, 2013.撞击坑统计定年法及对月球虹湾地区的定年结果.地球科学, 38(2): 351-361. http://www.earth-science.net/WebPage/Article.aspx?id=2372