Genetic Type and Sedimentary Geological Significance of Cretaceous Glauconite in Oriente Basin, Ecuador
-
摘要: 厄瓜多尔奥连特盆地白垩系Napo组UT段发育一套分布广泛的富含海绿石的硅质碎屑岩,针对海绿石的岩相、矿物学、地球化学及时空属性进行分析,可以揭示海绿石的组分、成熟度、形成及成因类型,结合地质约束有助于理解其形成的沉积地质意义.利用偏光显微镜、X射线衍射、电子探针及Qemscan对海绿石矿物的岩相、矿物组成和主量元素进行系统地分析.暗绿色、呈弯曲玫瑰花状的海绿石具有高的K2O含量(平均值为8%,质量百分比),是形成于海相低沉积速率环境的高演化成熟型海绿石云母矿物或狭义范畴的海绿石.化学组分和时空属性揭示研究层段的海绿石经历了一定程度风暴流和/或潮汐流作用的搬运改造,属于层内准原地海绿石.UT段海绿石含量向上的增大趋势和成熟度的变化,以及横向上从盆地东部斜坡区埋深2~3 km到西部盆缘露头区相距约120 km的海绿石在形态和化学成分上具有相似性,指示其主要是层内准原地海绿石的特点.UT段垂向上海绿石含量增大的趋势同时反映外陆棚物源区原地海绿石向岸方向的短距离迁移,反映了相对海平面持续上升的海进过程;而且同时期海绿石平面上的广泛分布指示沉积时期的环境属于构造稳定的陆表海.Abstract: Glauconitic sandstones in Napo UT Member of Cretaceous developed widely in the Oriente Basin, Ecuador. Petrographic, mineralogical, geochemical, and spatial and temporal investigations of glauconite can reveal its composition, maturity, formation and genetic types, which, together with geological constraints, can better the understanding of the significance of sedimentary geology. Using the microscopy, X-ray diffraction (XRD), electron probe microanalyzer (EPMA) and Qemscan, petrography, mineral composition and major elements were analyzed systematically. Glauconite in UT Member shows dark green and curved rosette-like nanostructure and has high K2O content (8 wt%), indicating it evolved to highly evolved and formed at low sedimentation rate in marine environment. Chemical composition and spatial and temporal attributes of glauconite reveal its characteristics of intrasequential (parautochthonous) glaucony, and indicate as well that it has undergone transport of storm surges and/or tidal currents processes. All evidences, including upward increasement of glauconite content, maturity variation, and similarity of morphology and chemical composition between samples from the outcrop and within the basin, indicate characteristics of parautochthonous glaucony. Upward increasement of glauconite content also suggests that the parautochthonous glauconite formed in the outer shelf shifted landward, indicating the relative sea-level rise during the marine transgressive setting. Widespread distribution of contemporaneous/para-contemporaneous glauconites usually represents the epeiric sea environment with stable tectonic setting.
-
Key words:
- glauconite /
- mineralogy /
- geochemistry /
- sedimentary geology /
- Oriente basin
-
图 6 单颗海绿石不同部位电子探针(EPMA)测试位置及结果
a、b分别为单偏光显微照片和背散射电子像照片原始图;c、b指示测试点位置,后者进一步标注了不同点的K2O测试结果及Odin(1988)估计的不同成熟度海绿石对应的演化时限
Fig. 6. Results of single glauconite with different test locations using electron probe micro-analyzer (EPMA)
表 1 海绿石化过程成因模式汇总
Table 1. Interpretation models of glauconitization
参考文献 Galliher(1935) Takahashi(1939) Burst(1958)Hower(1961) Odin and Matter(1981)Odin(1988) Казаков(1982) 海绿石化成因过程 黑云母或铁云母作为母体衍生而来 胶状二氧化硅沉淀后,经二氧化硅的水化作用和碱的后续吸收作用而形成 提出一种退化的层状格架矿物吸收钾和铁的层状晶格理论(layer lattice theory) 原始物质包括碳酸盐颗粒、泥质粪粒、有孔虫介壳充填物、各类矿物颗粒与岩屑, 海绿石化作用是通过底层孔隙中的自形雏晶重新自生长并伴随底层的逐渐蚀变和交代完成的, 即绿色化(verdissement)模式 在海洋沉积作用中,尤其是在成岩作用中,于有利的地化环境下,形成铁、铝、硅、钾金属有机络合物和水合络合物,大体上决定了海绿石的形成 表 2 海绿石颗粒X射线衍射(XRD)矿物测成分试结果
Table 2. Results of clay mineral components of glauconite using X-ray diffraction (XRD)
样品编号 粘土含量 相对粘土含量 蒙皂石 伊蒙混层(I/S) 伊利石与云母 高岭石 绿泥石 I/S膨胀性 蒙皂石 伊蒙混层(I/S) 伊利石与云母 高岭石 绿泥石 1-4 0 9 21 0 1 40 0 29 69 0 2 2-1 0 4 8 0 0 30 0 34 66 0 0 2-12 0 6 10 0 0 35 0 36 64 0 0 表 3 海绿石颗粒电子探针(EPMA)元素定量分析结果(质量百分比)
Table 3. Analytical results of glauconite using electron probe micro-analyzer (EPMA)
样品编号 M09 SJ01 MN01 露头区 GS1-1 GS1-2 GS1-3 GS1-4 GS1-5 GS2-1 GS2-2 GS2-3 GS3-1 GS3-2 OT-1 OT-2 SiO2 48.96 46.01 47.46 45.88 45.83 46.26 46.40 45.79 47.16 46.04 43.01 45.84 TiO2 0.26 0.30 0.22 0.25 0.26 0.25 0.23 0.25 0.28 0.26 0.21 0.22 Al2O3 16.87 16.07 15.45 15.78 18.10 16.68 17.25 16.38 17.68 19.82 16.10 15.47 Fe2O3* 23.20 24.27 25.29 25.42 24.52 23.84 24.50 25.32 24.39 22.38 27.07 24.80 MgO 3.55 3.56 3.91 3.43 3.48 3.81 3.81 4.14 3.46 3.35 4.08 4.08 CaO 0.44 0.48 0.32 0.26 0.57 0.39 0.42 0.47 0.28 0.32 0.87 0.39 Na2O 0.52 0.38 K2O 6.72 9.09 7.47 8.71 7.24 8.76 7.40 7.66 6.74 7.84 8.67 9.20 Si apfu 3.27 3.16 3.22 3.16 3.11 3.16 3.15 3.13 3.18 3.11 3.00 3.16 Ti 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ⅣAl 0.73 0.84 0.78 0.84 0.89 0.84 0.85 0.87 0.82 0.89 1.00 0.84 Fe* 1.17 1.26 1.29 1.32 1.25 1.23 1.25 1.30 1.24 1.14 1.42 1.29 Mg 0.35 0.36 0.40 0.35 0.35 0.39 0.39 0.42 0.35 0.34 0.42 0.42 ⅥAl 0.61 0.46 0.46 0.43 0.56 0.50 0.53 0.45 0.58 0.68 0.32 0.41 ΣⅥM 2.13 2.08 2.15 2.10 2.16 2.12 2.16 2.17 2.16 2.15 2.16 2.12 Ca 0.03 0.04 0.02 0.02 0.04 0.03 0.03 0.03 0.02 0.02 0.06 0.03 Na 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.57 0.79 0.65 0.76 0.63 0.77 0.64 0.67 0.58 0.67 0.77 0.81 ΣⅫA 0.61 0.85 0.67 0.82 0.67 0.79 0.67 0.70 0.60 0.70 0.84 0.84 -
[1] Amorosi, A., 1995.Glaucony and Sequence Stratigraphy:A Conceptual Framework of Distribution in Siliciclastic Sequences.Journal of Sedimentary Research, B65(4):419-425.doi: 10.1306/D4268275-2B26-11D7-8648000102C1865D [2] Amorosi, A., 1997.Detecting Compositional, Spatial, and Temporal Attributes of Glaucony:A Tool for Provenance Research.Sedimentary Geology, 109(1):135-153.doi: 10.1016/S0037-0738(96)00042-5 [3] Amorosi, A., Sammartino, I., Tateo, F., 2007.Evolution Patterns of Glaucony Maturity:A Mineralogical and Geochemical Approach.Deep Sea Research Part Ⅱ, 54(11):1364-1374.doi: 10.1016/j.dsr2.2007.04.006 [4] Anthony, J.W., Bideaux, R.A., Bladh, K.W., et al., 2006.Handbook of Mineralogy.Mineralogical Society of America:1-4129. https://hiniquvez.files.wordpress.com/2014/08/handbook-of-mineralogy-halides-hydroxides-oxides.pdf [5] Baby, P., Rivadeneira, M., Barragan, R., et al., 2013.Thick-skinned Tectonics in the Oriente Foreland Basin of Ecuador.In:Nemcok, M., Mora, A., Cosgrove, J.W., eds., Thick-Skin-Dominated Orogens:From Initial inversion to Full Accretion.Geological Society, Special Publications, London, 377:59-76.doi: 10.1144/SP377.1 [6] Baioumy, H., Boulis, S., 2012.Glauconites From the Bahariya Oasis:An Evidence for Cenomanian Marine Transgression in Egypt.Journal of African Earth Sciences, 70:1-7.doi: 10.1016/j.jafrearsci.2012.05.001 [7] Banerjee, S., Chattoraj, S.L., Saraswati, P., et al., 2012.Substrate Control on Formation and Maturation of Glauconites in the Middle Eocene Harudi Formation, Western Kutch, India.Marine and Petroleum Geology, 30(1):144-160.doi: 10.1016/j.marpetgeo.2011.10.008 [8] Berg-Madsen, V., 1983.High-Alumina Glaucony From the Middle Cambrian of Oeland and Bornholm, Southern Baltoscandia.Journal of Sedimentary Research, 53(3):875-893.doi: 10.1306/212F82DD-2B24-11D7-8648000102C1865D [9] Chang, L., Chen, M., Jin, W., et al., 2006.Identification Manual of Transparent minerals.Geological Publishing House, Beijing (in Chinese). [10] Chen, S., Li, Y., Hu, Z.et al., 2014.Genesis, Disgnostic Role and Age Significant of Glauconites.Acta Petrologica et Mineralogica, 33(5):971-979 (in Chinese with English abstract). [11] Dashwood, M.F., Abbotts I.L., 1990.Aspects of the Petroleum Geology of the Oriente Basin, Ecuador.In:Tankard, A.J., Suarez Soruco, R., Welsink, H.J., eds., Classic Petroleum Provinces.Geological Society, Special Publications, London, 50:89-117.doi: 10.1144/GSL.SP.1990.050.01.06 [12] Ding, Z., Chen, W., Xiong, L., et al., 2010.Tectonic Evolution in Oriente Basin of Ecuador.Xinjiang Petroleum Geology, 31(2):211-215 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201002034.htm [13] Estupiñan, J., Marfil, R., Scherer, M., et al., 2010.Reservoir Sandstones of the Cretaceous Napo Formation U and T Members in the Oriente Basin, Ecuador:Links Between Diagenesis and Sequence Stratigraphy.Journal of Petroleum Geology, 33(3):221-245.doi: 10.1111/j.1747-5457.2010.00475.x [14] Feininger, T., 1975.Origin of Petroleum in the Oriente of Ecuador.AAPG Bulletin, 59(7):1166-1175. http://archives.datapages.com/data/bulletns/1974-76/data/pg/0059/0007/1150/1166.htm?q=%2BtextStrip%3Ala+textStrip%3Aluna+textStrip%3Aformation+textStrip%3Amiddle+textStrip%3Amagdalena+textStrip%3Abasin+textStrip%3Acolombia [15] Haldar, S.K., Tisljar, J., 2014.Introduction to Mineralogy and Petrology.Elsevier Inc., New York, 1-338. [16] Hesselbo, S., Huggett, J., 2001.Glaucony in Ocean-Margin Sequence Stratigraphy (Oligocene-Pliocene, Offshore New Jersey, USA; ODP Leg 174A).Journal of Sedimentary Research, 71(4):598-606.doi: 10.1306/112800710599 [17] Higley, D.K., 2001.The Putumayo-Oriente-Maranon Province of Colombia, Ecuador and Peru-Petroleum Systems.U.S.Geological Survey, Denver, 1-31. https://pubs.er.usgs.gov/publication/ds63 [18] Huggett, J.M., Gale, A S., 1997.Petrology and Palaeoenvironmental Significance of Glaucony in the Eocene Succession at Whitecliff Bay, Hampshire Basin, UK.Journal of the Geological Society, London, 154(5):897-912.doi: 10.1144/gsjgs.154.5.0897 [19] Jaillard, E., 1996.Sedimentary Model for the Oriente Basin of Ecuador during the Cretaceous.Third ISAG, France, 395-398. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers4/010008607.pdf [20] Jaillard, E., Carlier G., Sempere T., et al., 1995.The role of Tethys in the evolution of the northern Andes between late Permian and late Eocene times.In:Naim, A.ed., The Ocean Basins and Margins, Volume 8:The Tethys Ocean.New York:Plenum Press:463-492. [21] Казаков, Г.А., Wang, Y., 1984.Глаукониты, как, Геохимические, Показатели, Фациальных, условий седиментогенеза.Geology-Geochemistry, 12(4):19-24. [22] Lee, Y.I., Paik, I.S., 1997.High Alumina Glaucony From the Early Ordovician Mungok Formation, Korea.Geosciences Journal, 1(2):108-114.doi: 10.1007/BF02910482 [23] Li, C., Su, J.S., Xu, F., et al., 2011.The Analytical Development of Low-Temperature Particulate Fe Speciation.Earth Science, 38(3):454-460 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303004.htm [24] Li, X., Cai, Y., Hu, X., et al., 2011.The Mineralogical Characteristics of Cretaceous Albian Glauconite in Zanda, Southwestern Xizang (Tibet) of China and Its Geological Implications.Geological Review, 57(1):63-72 (in Chinese with English abstract). [25] Macellari, C., 1988.Cretaceous Paleogeography and Depositional Cycles of Western South America.Journal of South American Earth Sciences, 1(4):373-418.doi: 10.1016/0895-9811(88)90024-7 [26] Mei, M., Yang, F., Gao, J., et al., 2008.Glauconites Formed in the High-Energy Shallow-Marine Environment of the Late Mesoproterozoic:Case Study From Tieling Formation at Jixian Section in Tianjin, North China.Earth Science Frontiers, 15(4):146-158.doi: 10.1016/S1872-5791(08)60048-2 [27] Meunier, A., Albani, A.E., 2007.The Glauconite-Fe-illite-Fe-Smectite Problem:A Critical Review.Terra Nova, 19(2):95-104.doi: 10.1111/j.1365-3121.2006.00719.x [28] Meunier, A., Velde, B., 1989.Solid Solutions in I/S Mixed Layer Minerals and Illite.American Mineralogist, 74(1):1106-1112. http://ammin.geoscienceworld.org/content/74/9-10/1106 [29] Nesse, W.D., 1991.Introduction of Optical Mineralogy.Oxford University Press, Oxford. [30] Odin, G.S., Matter, A., 1981.De Glauconiarum Origine.Sedimentology, 28(5):611-641.doi: 10.1111/j.1365-3091.1981.tb01925.x [31] Odin, G.S., 1988.Green Marine Clays.Elsevier, New York. [32] Rieder, M., Cavazzini, G., D'yakonov, Y.S., et al., 1998.Nomenclature of the Micas.Mineralogical Magazine, 63(2):267-279.doi: 10.1180/002646199548385 [33] Sánchez-Navas, A., Martín-Algarra, A., Eder, V., et al., 2008.Color, Mineralogy and Composition of Upper Jurassic West Siberian Glauconite:Useful Indicators of Paleoenvironment.The Canadian Mineralogist, 46(5):1249-1268.doi: 10.3749/canmin.46.5.1249 [34] Selley, R.C., Cocks L.R.M., Plimer I.R., 2005.Encyclopedia of Geology.Elsevier Inc., Oxford. [35] Shanmugam, G., Poffenberger, M., ToroÁlava, J., 2000.Tide-Dominated Estuarine Facies in the Hollin and Napo ("T" and "U") Formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador.AAPG Bulletin, 84(5):652-682.doi: 10.1306/C9EBCE7D-1735-11D7-8645000102C1865D [36] Singh, B.P., Mohan K., Singh C.K., 2013.Facies-Dependent Occurrence of Shrinkage Cracks in the Glauconitic Sandstone, Semri Group, Vindhyan Supergroup.Proceedings of the National Academy of Sciences, India Section A:Physical Sciences, 83(4):389-395.doi: 10.1007/s40010-013-0088-2 [37] Smith, L., 1989.Regional Variations in Formation Water Salinity, Hollin and Napo Formations (Cretaceous), Oriente Basin, Ecuador.AAPG Bulletin, 73(6):757-776. http://archives.datapages.com/data/bulletns/1988-89/data/pg/0073/0006/0750/0757.htm?q=%2ByearSort%3A%5B1989+TO+1989%5D [38] Thompson, G.R., Hower, J., 1975.The Mineralogy of Glauconite.Clays and Clay Minerals, 23(4):289-300.doi: 10.1346/CCMN.1975.0230405 [39] White, H.J., Skopec, R.A., Ramirez, F.A., et al., 1995.Reservoir Characterization of the Hollin and Napo Formations, Western Oriente Basin Ecuador.In:Tankard, A.J., Suárez, S., Welsink, H.J., eds., Petroleum Basins of South America.AAPG Memoir, 62:573-596. [40] Xie, Y., Cheng, J., Su, Y., et al., 2010.Petroleum Geology and Exploration Potential of Oriente-Maranon Basin.Petroleum Exploration and Development, 37(1):51-56.doi: 10.1016/S1876-3804(10)60014-6 [41] Xie, Y., Ma, Z., Liu, Y., et al., 2012.Petroleum Geology and Exploration in Foreland Basin of South America.Petroleum Industry Press, Beijing (in Chinese). [42] Xie, Y., Ma, Z., Liu, Y., et al., 2014.South America Conventional Oil and Gas Resource Assessment and Exploration Direction.Earth Science Frontiers, 21(3):101-11 (in Chinese with English abstract). https://pubs.usgs.gov/dds/dds-069/dds-069-gg/REPORTS/69_GG_CH_6.pdf [43] Xu, Y., Zhao T., Chen, W., 2010.The Discovery and Geological Significance of Glauconites from the Palaeoproterozoic Xiong'er Group in the Southern Part of the North China Craton.Acta Sedimentologica Sinica, 28(4):671-675 (in Chinese with English abstract). https://pubs.usgs.gov/dds/dds-069/dds-069-gg/REPORTS/69_GG_CH_6.pdf [44] 常丽华, 陈曼云, 金巍, 等, 2006.透明矿物薄片鉴定手册.北京:地质出版社. [45] 陈淑慧, 李云, 胡作维, 等, 2014.海绿石的成因、指相作用及其年龄意义.岩石矿物学杂志, 33(5):971-979. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201405015.htm [46] 丁增勇, 陈文学, 熊丽萍, 等, 2010.厄瓜多尔奥连特盆地构造演化特征.新疆石油地质, 31(2):211-215. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201002034.htm [47] Казаков, Г. А. , 王义(译), 1984. 海绿石——沉积作用相环境的地球化学标志. 地质地球化学, 12(4): 19-24. [48] 李超, 舒劲松, 许斐, 等, 2013.沉积物中铁的化学相态分析进展.地球科学, 38(3):454-460. http://earth-science.net/WebPage/Article.aspx?id=2709 [49] 李响, 蔡元峰, 胡修棉, 等, 2011.藏西南札达白垩纪Albian期海绿石的矿物学特征及地质意义.地质论评, 57(1):63-72. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201101009.htm [50] 梅冥相, 杨锋杰, 高金汉, 等, 2008.中元古代晚期浅海高能沉积环境中的海绿石:以天津蓟县剖面铁岭组为例.地学前缘, 15(4):146-158. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200804021.htm [51] 谢寅符, 马中振, 刘亚明, 等, 2012.南美洲前陆盆地油气地质与勘探.北京:石油工业出版社. [52] 谢寅符, 马中振, 刘亚明, 等, 2014.南美洲常规油气资源评价及勘探方向.地学前缘, 21(3):101-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403015.htm [53] 徐勇航, 赵太平, 陈伟, 2010.华北克拉通南部古元古界熊耳群中海绿石的发现及其地质意义.沉积学报, 28(4):671-675. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201004002.htm