• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南极洲普里兹湾岩石圈各向异性:海底地震仪观测

    牛雄伟 高金耀 吴招才 阮爱国 卫小冬 刘晨光 李天光 沈中延 潘少军 罗孝文

    牛雄伟, 高金耀, 吴招才, 阮爱国, 卫小冬, 刘晨光, 李天光, 沈中延, 潘少军, 罗孝文, 2016. 南极洲普里兹湾岩石圈各向异性:海底地震仪观测. 地球科学, 41(11): 1950-1958. doi: 10.3799/dqkx.2016.135
    引用本文: 牛雄伟, 高金耀, 吴招才, 阮爱国, 卫小冬, 刘晨光, 李天光, 沈中延, 潘少军, 罗孝文, 2016. 南极洲普里兹湾岩石圈各向异性:海底地震仪观测. 地球科学, 41(11): 1950-1958. doi: 10.3799/dqkx.2016.135
    Niu Xiongwei, Gao Jinyao, Wu Zhaocai, Ruan Aiguo, Wei Xiaodong, Liu Chenguang, Li Tianguang, Shen Zhongyan, Pan Shaojun, Luo Xiaowen, 2016. Lithosphere Anisotropy of Prydz Bay, Antarctica: From Ocean Bottom Seismometer Long Term Observation. Earth Science, 41(11): 1950-1958. doi: 10.3799/dqkx.2016.135
    Citation: Niu Xiongwei, Gao Jinyao, Wu Zhaocai, Ruan Aiguo, Wei Xiaodong, Liu Chenguang, Li Tianguang, Shen Zhongyan, Pan Shaojun, Luo Xiaowen, 2016. Lithosphere Anisotropy of Prydz Bay, Antarctica: From Ocean Bottom Seismometer Long Term Observation. Earth Science, 41(11): 1950-1958. doi: 10.3799/dqkx.2016.135

    南极洲普里兹湾岩石圈各向异性:海底地震仪观测

    doi: 10.3799/dqkx.2016.135
    基金项目: 

    极地海洋环境监测网系统研发及示范项目 201305035

    南极周边海洋地球物理考察项目 CHARE2015-01-03

    南极环境综合分析与评价项目 CHARE2015-04-01

    西南印度洋洋中脊热液成矿过程与硫化物矿区预测下属课题 2012CB417301

    国家海洋局第二海洋研究所基本科研业务费专项资金 SZ1518

    国际海域资源调查与开发“十二五”前沿性课题 DY125-22-QY-03

    国家海洋局极地考察办公室对外合作支持项目 201610

    国家自然科学基金重大研究计划重点支持项目 91228205

    详细信息
      作者简介:

      牛雄伟(1986-),助理研究员,研究方向为洋中脊和大陆边缘海底地震仪探测.E-mail: xwniu@sio.org.cn

      通讯作者:

      高金耀, E-mail: jygao@mail.hz.zj.cn

    • 中图分类号: P315.2

    Lithosphere Anisotropy of Prydz Bay, Antarctica: From Ocean Bottom Seismometer Long Term Observation

    • 摘要: 为了研究南极普里兹湾岩石圈深部应力场及其动力学,采用S波分裂旋转相关法,对中国第31次南极科学考察成功回收的3个站位海底地震仪数据(5个远震记录)进行了反演,获得了普里兹湾洋陆过渡带岩石圈各向异性特征.结果表明,台站所在区域各向异性显著,在较小的范围内存在明显的空间差异,快S波偏振方向变化范围是N40°E ~ N60°E,快慢波时间延迟变化范围为0.2~1.3 s.洋盆的各向异性主要取决于海底扩张地幔流作用,大陆及附近的各向异性主要受上地幔顶部残留构造的影响,而中间过渡带各向异性层厚度较小集中在地壳内,它可能受海底扩张地幔流和残留构造共同作用.

       

    • 图  1  (a)研究区在全球的位置和地震震中分布,(b)OBS站位分布

      SEIR的扩张方向为NE-SW向(Baran et al., 2005)

      Fig.  1.  (a) The location of study area and the positions of earthquake hypocenters, (b) positions of OBSs for long term earthquake observation

      图  2  OBS2站位事件2的波形

      Fig.  2.  The waveform of earthquake No. 2 recorded by OBS2

      图  3  OBS1站位事件2的S波分裂反演结果及分析

      a.旋转相关计算前的快慢波波形;b.旋转相关计算后的快慢波波形;c.旋转相关计算前的质点运动轨迹;d.旋转相关计算后的质点运动轨迹;e.反演结果,横轴δt为时间延迟,纵轴φ为偏振方向,两个极值点分别代表快波(δt>0) 和慢波(δt<0) 的结果,极值点对应的纵轴值分别为快波和慢波的偏振方向,横轴值分别为快慢波的时间延迟.如e图中快慢波的时间延迟为0.9 s,快波方向为N42°E,慢波方向为N138°E

      Fig.  3.  S wave splitting inversion results and analysis for earthquake No. 2 recorded by OBS1

      图  4  OBS1站位事件3的S波分裂反演结果及分析

      相关说明同图 3;e图中的快慢波时间延迟为0.8 s,快S波偏振方向为N40°E

      Fig.  4.  S wave splitting inversion results and analysis for earthquake No. 3 recorded by OBS1

      图  5  OBS2站位事件2的S波分裂反演结果及分析

      相关说明同图 3;e图中的快慢波时间延迟为0.4 s,快S波偏振方向为N44°E

      Fig.  5.  S wave splitting inversion results and analysis for earthquake No. 2 recorded by OBS2

      图  6  OBS5站位事件2的S波分裂反演结果及分析

      相关说明同图 3;e图中的快慢波时间延迟为0.2 s,快S波偏振方向为N56°E

      Fig.  6.  S wave splitting inversion results and analysis for earthquake No. 2 recorded by OBS5

      图  7  普里兹湾区域S波分裂反演得到的快波方向和时间延迟

      陆地台站的信息来源于Reading and Heintz(2008)

      Fig.  7.  S wave splitting inversion results of fast wave polarization directions and the times delay between fast and slow waves at Prydz bay

      表  1  地震事件与S波分裂反演结果

      Table  1.   Earthquake events and S wave splitting inversion results

      地震事件编号 发震时间
      (格林威治时间)
      纬度(°) 经度(°) 震源深度(km) 地震震级(Ms) OBS1 OBS2 OBS5
      d1 φ1 t1 d2 φ2 t2 d5 φ5 t5
      1 2013-04-06
      T04:42:35.860Z
      -3.517 138.476 66.0 7.0 77.314 - - 77.200 44 0.2 77.795 52 0.5
      2 2013-05-23
      T17:19:04.750Z
      -23.009 -177.232 173.7 7.4 76.884 42 0.9 76.683 44 0.4 76.046 56 0.2
      3 2013-06-05
      T04:47:26.240Z
      -11.401 166.299 39.0 6.1 81.023 40 0.8 80.989 - - 80.840 - -
      4 2013-06-16
      T02:51:35.750Z
      -56.280 -27.443 91.2 5.5 44.287 40 1.3 43.947 - - 42.998 - -
      5 2013-07-15
      T14:03:39.880Z
      -60.857 -25.070 11.0 7.3 39.879 - - 39.521 - - 38.522 60 0.8
        注:d1,d2,d5分别代表OBS1,OBS2和OBS5对某一地震事件的震中距,单位为°;φ1,φ2,φ5分别代表OBS1,OBS2和OBS5对某一地震事件的快波方位角,单位为°;t1,t2,t5分别代表OBS1,OBS2和OBS5对某一地震事件的快慢波时间延迟,单位为s;“-”为未记录或未得到结果.
      下载: 导出CSV
    • [1] Baran, J.M., Cochran, J.R., Carbotte, S.M., et al., 2005.Variations in Upper Crustal Structure due to Variable Mantle Temperature along the Southeast Indian Ridge.Geochemistry Geophysics Geosystems, 6(11):292-309.doi: 10.1029/2005GC000943
      [2] Boger, S.D., Wilson, C.J.L., 2003.Brittle Faulting in the Prince Charles Mountains, East Antarctica:Cretaceous Transtensional Tectonics Related to the Break-up of Gondwana.Tectonophysics, 367:173-186. doi: 10.1016/S0040-1951(03)00125-2
      [3] Bowman, J.R., Ando, M., 1987.Shear-Wave Splitting in the Upper-Mantle Wedge above the Tonga Subduction Zone.Geophysical Journal International, 88(1):25-41.doi: 10.1111/j.1365-246x.1987.tb01367.x
      [4] Chen, T.Y., Shen, Y.B., Zhao, Y., et al., 2008.Geological Development of Antarctica and Evolution of Gondwanaland.The Commercial Press, Beijing (in Chinese).
      [5] Christensen, N.L., 1984.The Magnitude, Symmetry and Origin of Upper Mantle Anisotropy Based on Fabric Analyses of Ultramafic Tectonites.Geophysical Journal International, 76(1):89-111.doi: 10.1111/j.1365-246x.1984.tb05025.x
      [6] Conrad, C.P., Behn, M.D., Silver, P.G., 2007.Global Mantle Flow and the Development of Seismic Anisotropy:Differences between the Oceanic and Continental upper Mantle.J.Geophys.Res., 112:B07317.doi: 10.1029/2006JB004608
      [7] Crampin, S., 1977.A Review of the Effects of Anisotropic Layering on the Propagation of Seismic Waves.Geophysical Journal International, 49(1):9-27.doi: 10.1111/j.1365-246x.1977.tb03698.x
      [8] Cui, P., Wang, J.H., Li, B., 2010.Research of Design Method for Ocean Bottom Seismometer Based on the Coupling Theory.Ship Science and Technology, 32(4):89-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JCKX201004027.htm
      [9] Debayle, E., Kennett, B.L.N., 2000.Anisotropy in the Australasian Upper Mantle from Love and Rayleigh Waveform Inversion.Earth and Planetary Science Letters, 184(1):339-351.doi: 10.1016/s0012-821x(00)00314-9
      [10] Ding, W.W., Dong, C.Z., Cheng, Z.H., 2013.Sedimentary Characteristics and Hydrocarbon Potential in the Prydz Bay, East Antarctica.Earth Science, 38(1):103-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2013S1013.htm
      [11] Dong, C.Z., Ding, W.W., Li, J.B., et al., 2013.The Gravity and Magnetic Anomally and Crustal Structure of Prydz Bay, East Antarctica.Chinese Journal of Geophysics, 56(10):3346-3360(in Chinese with English abstract).doi: 10.6038/cjg20131011
      [12] Fouch, M.J., Rondenay, S., 2006.Seismic Anisotropy beneath Stable Continental Interiors.Physics of the Earth and Planetary Interiors, 158(2-4):292-320.doi: 10.1016/j.pepi.2006.03.024
      [13] Huang, Z.C., 2011.A Seismological Study of Structure and Dynamics in the Earth:Mainland China and Northeast Japan as Examples(Dissertation).Nanjing University, Nanjing (in Chinese with English abstract).
      [14] Keith, C.M., Crampin, S., 1977.Seismic Body Waves in Anisotropic Media:Synthetic Seismograms.Geophysical Journal International, 49(1):225-243.doi: 10.1111/j.1365-246x.1977.tb03710.x
      [15] Kubo, A., Hiramatsu, Y., Kanao, M., et al., 1995.An Analysis of the SKS Splitting at Syowa Station in Antarctica Geosciences.Proc.NIPR Symp.Antarct.Geosci., 8:25-34. http://ci.nii.ac.jp/naid/110001071775
      [16] Kubo, A., Kanao, M., 1997.Crust-Mantle Decoupling Revealed by Seismic Velocity Anisotropy beneath Syowa Station, Antarctica.Antarctic Record, 41(2):497-512 (in Japanese). http://ci.nii.ac.jp/naid/110000206101
      [17] Long, M.D., Becker, T.W., 2010.Mantle Dynamics and Seismic Anisotropy.Earth & Planetary Science Letters, 297(3):341-354. http://www.sciencedirect.com/science/article/pii/S0012821X10004115
      [18] Müller, C., 2001.Upper Mantle Seismic Anisotropy beneath Antarctica and the Scotia Sea Region.Geophysical Journal International, 147(1):105-122. doi: 10.1046/j.1365-246X.2001.00517.x
      [19] Raitt, R.W., Shor, G.G., Francis, T.J.G., et al., 1969.Anisotropy of the Pacific Upper Mantle.Journal of Geophysical Research, 74(12):3095-3109.doi: 10.1029/jb074i012p03095
      [20] Reading, A.M., Heintz, M., 2008.Seismic Anisotropy of East Antarctica from Shear-Wave Splitting:Spatially Varying Contributions from Lithospheric Structural Fabric and Mantle Flow? Earth & Planetary Science Letters, 268(3-4):433-443. http://www.sciencedirect.com/science/article/pii/S0012821X08000678
      [21] Ruan, A.G., Li, J.B., Chen, Y.S., et al., 2010.The Experiment of Broad Band Ⅰ-4C Type OBS in the Southwest Indian Ridge.Chinese Journal of Geophysics, 53(4):1015-1018 (in Chinese with English abstract).doi: 10.3969/j.issn.0001-5733.2010.04.026
      [22] Ruan, A.G., Li, J.B., Lee, C.S., et al., 2012.Passive Seismic Experiment and ScS Wave Splitting in the Southwestern Sub-Basin of South China Sea.Chinese Science Bulletin, 57(25):3381-3390.doi: 10.1007/s11434.012.5132.0
      [23] Silver, P.G., Chan, W.W., 1991.Shear Wave Splitting and Subcontinental Mantle Deformation.Journal of Geophysical Research Atmospheres, 96(B10):16429-16454. doi: 10.1029/91JB00899
      [24] Stagg, H.M.J., 1985.The Structure and Origin of Prydz Bay and the Mac.Robertson Shelf, East Antarctica.Tectonophysics, 114:315-340. doi: 10.1016/0040-1951(85)90019-8
      [25] Stagg, H.M.J., Colwel, J.B., Direen, N.G., et al., 2004.Geology of the Continental Margin of Enderby and Mac.Robertson Lands, East Antarctica:Insights from a Regional Data Set.Marine Geophysical Researches, 25:183-219. doi: 10.1007/s11001-005-1316-1
      [26] Steven, D.B., 2011.Antarctica-before and after Gondwana.Gondwana Research, 19:335-371. doi: 10.1016/j.gr.2010.09.003
      [27] Tian, B.F., Yang, J.S., Liu, S., et al., 2012.Progress of Seismological Research in Antarctica Region.Acta Seismologica Sinica, 34(2):267-279 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201202013.htm
      [28] Zhang, L., Zhao, M.H., Wang, J., et al., 2013.Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea.Earth Science, 38(1):33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301008.htm
      [29] Zhao, Y., Liu, X.C., Song, B., et al., 1995.Constraints on the Stratigraphic Age of Metasedimentary Rocks of the Larsemann Hills, East Antarctica:Possible Implication for Neo-Pro-Terozoic Tectonics.Precambrian Research, 75:175-188. doi: 10.1016/0301-9268(95)80005-3
      [30] 陈廷愚, 沈炎彬, 赵越, 等, 2008. 南极洲地质发展与冈瓦纳古陆演化. 北京: 商务印书馆.
      [31] 崔培, 王纪会, 李彪, 2010.基于耦合理论的海底地震仪设计方法研究.舰船科学技术, 32(4):89-92. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201004027.htm
      [32] 丁巍伟, 董崇志, 程子华, 2013.南极洲东部普里兹湾区沉积特征及油气资源潜力.地球科学, 38(1):103-112. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx2013s1013&dbname=CJFD&dbcode=CJFQ
      [33] 董崇志, 丁巍伟, 李家彪, 等, 2013.南极洲东部普里兹湾海域重磁场特征及地壳结构.地球物理学报, 56(10):3346-3360. doi: 10.6038/cjg20131011
      [34] 黄周传, 2011. 利用天然地震研究地球内部结构与动力学: 以中国大陆和东北日本为例(博士学位论文). 南京: 南京大学. http://cdmd.cnki.com.cn/Article/CDMD-10284-1011127128.htm
      [35] 阮爱国, 李家彪, 陈永顺, 等, 2010.国产Ⅰ-4C型OBS在西南印度洋中脊的试验.地球物理学报, 53(4):1015-1018. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004027.htm
      [36] 田宝峰, 杨建思, 刘莎, 等, 2012.南极地震学研究进展.地震学报, 34(2):267-279. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201202013.htm
      [37] 张莉, 赵明辉, 王建, 等, 2013.南海中央次海盆OBS位置校正及三维地震探测新进展.地球科学, 38(1):33-42. http://earth-science.net/WebPage/Article.aspx?id=2342
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  5272
    • HTML全文浏览量:  1805
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-03-23
    • 刊出日期:  2016-11-15

    目录

      /

      返回文章
      返回