• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义

    罗婷 陈帅 廖群安 陈继平 胡朝斌 王富明 田健 吴魏伟

    罗婷, 陈帅, 廖群安, 陈继平, 胡朝斌, 王富明, 田健, 吴魏伟, 2016. 东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义. 地球科学, 41(11): 1845-1862. doi: 10.3799/dqkx.2016.128
    引用本文: 罗婷, 陈帅, 廖群安, 陈继平, 胡朝斌, 王富明, 田健, 吴魏伟, 2016. 东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义. 地球科学, 41(11): 1845-1862. doi: 10.3799/dqkx.2016.128
    Luo Ting, Chen Shuai, Liao Qun'an, Chen Jiping, Hu Chaobin, Wang Fuming, Tian Jian, Wu Weiwei, 2016. Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar. Earth Science, 41(11): 1845-1862. doi: 10.3799/dqkx.2016.128
    Citation: Luo Ting, Chen Shuai, Liao Qun'an, Chen Jiping, Hu Chaobin, Wang Fuming, Tian Jian, Wu Weiwei, 2016. Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar. Earth Science, 41(11): 1845-1862. doi: 10.3799/dqkx.2016.128

    东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义

    doi: 10.3799/dqkx.2016.128
    基金项目: 

    中国地质调查局计划项目 12120114042801

    详细信息
      作者简介:

      罗婷(1987-),女,博士,从事岩浆岩及其相关矿产研究工作.E-mail:179175768@qq.com

    • 中图分类号: P581

    Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar

    • 摘要: 新疆东准噶尔卡拉麦里造山带晚石炭世双峰式火山岩很好地记录了中亚造山带晚古生代时期洋陆转换阶段复杂的岩浆作用过程,对该过程的详细剖析能更好地理解中亚造山带的地质历史.通过该区域晚石炭世巴塔玛依内山组火山岩详细的岩石学、地球化学、锆石U-Pb年代学和Sr-Nd-Pb同位素组成的研究,并结合区域上已有的研究成果,获得了如下认识:(1) 该套火山岩组合形成于晚石炭世早期320.2±4.2 Ma,为晚石炭世早期陆相喷发的产物.火山岩具明显的双峰式组合的特征,基性端元由碱性系列和拉斑系列的玄武岩、玄武质粗面安山岩组成;酸性端元由粗面岩和流纹岩组成,成分上相当于A型花岗岩;(2) 岩石地球化学和同位素特征显示,该套双峰式火山岩来源于不同的岩浆源区,基性岩来自于亏损的地幔源区,在岩浆上升过程中发生橄榄石及单斜辉石的分离结晶作用并遭受了地壳混染,而酸性岩来自于下地壳的部分熔融;(3) 该套双峰式火山岩产出于后碰撞末期的构造环境,由于洋壳的拆沉作用而引发软流圈上涌,使得上覆的地幔发生部分熔融产生岩浆,同时由于底侵作用导致地壳下部发生部分熔融,喷发出地表形成该双峰式火山岩套,这套双峰式火山岩的出现,标志着东准噶尔卡拉麦里地区造山作用进入尾声.

       

    • 图  1  中亚及邻区构造简图(a)、新疆北部及其邻区构造简图(b)和东准噶尔卡拉麦里火山岩分布简图(c)

      图b据Xiao et al.(2010);图c修改自中国地质大学(武汉)地质调查研究院,2014.新疆东准噶尔卡拉麦利1: 5万等5幅区调

      Fig.  1.  (a) Tectonic sketch of Central Asia and adjacent regions, (b) tectonic sketch that shows the terranes, (c) the distribution of Late Paleozoic volcanic rocks in the study area, which is the southern part of the eastern Junggar terrane

      图  2  东准噶尔卡拉麦里地区晚石炭世巴塔玛依内山组典型地质实测剖面

      Fig.  2.  The typical geological sections for volcanic rocks from the Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  3  东准噶尔卡拉麦里地区晚石炭世巴塔玛依内山组双峰式火山岩火山岩野外照片(a, d)和显微照片(b, c, e, f)

      a.碱性玄武岩及歪长石斑晶;b.碱性玄武岩碱性长石斑晶;c.拉斑玄武岩斜长石斑晶和钛铁氧化为微粒;d.流纹岩石泡构造;e.流纹岩基质球粒结构;f.流纹岩流纹构造;Pl.斜长石;Kfs.钾长石;Cpx.单斜辉石

      Fig.  3.  Field photos (a, d) and Photomicrographs (b, c, e, f; cross-polarized light) of volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  4  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩锆石LA-ICP-MS U-Pb谐和年龄图(a, b)和锆石阴极发光照片(c, d)

      Fig.  4.  LA-ICP-MS zircon U-Pb age concordia diagrams, weighted mean ages (a, b) and representative CL images (c, d) of zircons from the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  5  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩TAS图解(a)和AFM图解(b)

      图a, b据Irvine and Baragar(1971)

      Fig.  5.  TAS diagram (a) and AFM diagram (b) for the classification of the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  6  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩SiO2-K2O图

      底图据Peccerillo and Taylor(1976)

      Fig.  6.  SiO2 vs. K2O diagram for the classification of the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  7  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩微量元素标准化蛛网图(a,c)和稀土元素球粒陨石标准化配分型式(b,d)

      标准化值据Sun and McDonough(1989)

      Fig.  7.  Primitive mantle normalized multi-element patterns (a, c) and chondrite-normalized rare earth element (REE) patterns (b, d)of the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  8  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩初始Sr-Nd-Pb图

      a. (87Sr/86Sr)i-εNd(t)图解(MORB、OIB、EM1和EM2据Zimmer et al., 1995);b和d.206Pb/204Pb-207Pb/204Pb-207Pb/204Pb图解(DMM、EMI和EMII据Zindler and Hart, 1986;MORB和NHRL据White et al., 1987);c.TDM1Nd-tTDM2Nd-t图解;图例同图 5

      Fig.  8.  Initial Sr-Nd-Pb isotope data for the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  9  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩Mg#、CaO、TiO2、TFeO、Cr、Ni与SiO2协变

      Fig.  9.  Variations in Mg#, CaO, TiO2, TFeO, Cr, Ni, P* and Nb* vs. SiO2 for the volcanic rocks from Late Carboniferous Batamayineishan Formation, eastern Junggar

      图  10  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩Th/Yb-Ta/Yb图解(a)和Ba/Nb-La/Nb图解(b)

      a.据Pearce et al.(1990);b.据Jahn et al.(1999);MORB,OIB,原始地幔据Sun and McDonough(1989);地壳平均值据Taylor and McLennan(1985)Condie(1993);沉积物平均值据Condie(1993);图例同图 5

      Fig.  10.  Th/Yb vs. Ta/Yb diagram (a) and Ba/Nb vs. La/Nb diagram (b) for the Middle Devonian to Late Carboniferous volcanic rocks from Batamayineishan Formation, eastern Junggar

      图  11  东准噶尔卡拉麦里地区巴塔玛依内山组双峰式火山岩(a)基性岩Hf/3-Th-Ta构造判别图解和(b)酸性岩Rb-Y+Nb构造判别图解

      a,b.据Pearce et al.(1984)Pearce and Peate(1995);A.N型大洋中脊玄武岩;B.E型大洋中脊玄武岩和板内玄武岩;C.板内碱性玄武岩;D.钙碱性玄武岩;E.岛弧拉斑玄武岩.ORG.大洋中脊花岗岩;Syn-COLG.同碰撞花岗岩;Post-COLG.后碰撞;VAG.岛弧花岗岩;WPG.板内花岗岩;图例同图 5

      Fig.  11.  Tectonic discrimination diagrams of Hf/3-Th-Ta (a) and Rb vs. Y+Nb (b) for Late Carboniferous volcanic rocks from Batamayineishan Formation, eastern Junggar

      表  1  东准卡拉麦里地区粗面岩(008-15) 及流纹斑岩(056-5) 锆石U-Pb同位素分析

      Table  1.   Analysis results of zircon U-Pb age from the volcanic rocks from Late Carboniferous Batamayineishan Formation

      分析号 Pb
      (10-6)
      Th
      (10-6)
      U
      (10-6)
      Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄(Ma) 谐和度(%)
      206Pb/238U 1σ
      008-15-01 77.50 523.84 627.56 0.83 0.056 7 0.002 9 0.387 4 0.019 8 0.049 8 0.000 7 313 5 94
      008-15-04 55.97 248.55 404.88 0.61 0.072 3 0.003 6 0.527 5 0.025 9 0.053 8 0.000 9 338 5 75
      008-15-05 56.88 313.75 501.29 0.63 0.064 0 0.003 6 0.452 2 0.025 8 0.051 6 0.000 7 324 4 84
      008-15-07 59.59 331.23 471.80 0.70 0.067 7 0.002 9 0.489 9 0.022 1 0.052 7 0.000 9 331 5 80
      008-15-09 66.93 391.50 568.74 0.69 0.053 3 0.002 6 0.377 3 0.018 4 0.052 0 0.000 8 327 5 99
      008-15-10 50.59 272.93 467.88 0.58 0.065 0 0.003 2 0.443 8 0.021 4 0.050 4 0.000 8 317 5 83
      008-15-12 47.76 279.99 470.04 0.60 0.051 7 0.002 9 0.344 6 0.018 5 0.049 4 0.000 7 311 4 96
      008-15-13 45.28 219.78 448.15 0.49 0.059 5 0.003 6 0.422 6 0.024 1 0.052 7 0.000 8 331 5 89
      008-15-15 53.08 286.30 473.99 0.60 0.058 0 0.002 9 0.413 5 0.022 0 0.051 3 0.000 7 322 5 91
      008-15-16 61.01 325.89 534.84 0.61 0.058 8 0.003 6 0.415 2 0.026 7 0.051 0 0.000 8 320 5 90
      008-15-17 57.52 277.21 478.41 0.58 0.062 5 0.003 0 0.472 0 0.022 1 0.054 9 0.000 8 344 5 86
      008-15-19 70.24 402.97 615.56 0.65 0.057 2 0.002 9 0.407 6 0.020 9 0.051 5 0.000 7 324 4 92
      008-15-20 58.34 344.04 541.75 0.64 0.053 3 0.002 5 0.373 2 0.017 7 0.051 0 0.000 8 321 5 99
      008-15-21 81.44 314.65 515.80 0.61 0.099 1 0.007 6 0.794 0 0.077 9 0.054 3 0.001 1 341 7 45
      008-15-22 63.83 354.64 478.92 0.74 0.058 5 0.003 0 0.434 7 0.022 5 0.054 6 0.000 8 343 5 89
      008-15-23 123.03 767.30 791.64 0.97 0.051 1 0.002 5 0.365 0 0.016 9 0.052 1 0.000 7 327 4 96
      008-15-24 70.90 372.11 613.15 0.61 0.054 2 0.002 7 0.384 9 0.019 7 0.051 3 0.000 7 323 4 97
      008-15-25 39.19 207.95 369.18 0.56 0.054 9 0.003 4 0.396 5 0.024 5 0.052 1 0.000 8 327 5 96
      056-5-1-01 6.88 58.09 121.76 0.48 0.056 3 0.003 5 0.379 7 0.022 2 0.049 3 0.000 7 310 4 94
      056-5-1-02 5.73 48.47 99.76 0.49 0.058 3 0.003 5 0.398 5 0.023 9 0.050 1 0.000 8 315 5 92
      056-5-1-03 8.62 86.65 148.57 0.58 0.053 4 0.003 1 0.361 8 0.021 1 0.049 5 0.000 8 311 5 99
      056-5-1-04 9.29 87.91 164.37 0.53 0.055 0 0.002 7 0.365 4 0.018 2 0.047 9 0.000 7 302 4 95
      056-5-1-05 7.43 67.58 131.48 0.51 0.056 9 0.003 8 0.371 2 0.020 3 0.048 8 0.000 8 307 5 95
      056-5-1-06 10.01 103.89 151.70 0.68 0.073 4 0.004 2 0.521 7 0.029 5 0.051 5 0.000 9 324 5 72
      056-5-1-07 14.20 197.65 221.96 0.89 0.056 9 0.002 3 0.387 8 0.014 8 0.049 3 0.000 7 310 4 93
      056-5-1-08 7.65 83.64 133.57 0.63 0.055 0 0.003 0 0.363 5 0.020 7 0.047 8 0.000 8 301 5 95
      056-5-1-09 16.15 239.69 261.80 0.92 0.053 0 0.002 3 0.351 9 0.015 7 0.047 6 0.000 6 300 4 97
      056-5-1-11 13.28 132.84 218.82 0.61 0.064 2 0.003 2 0.447 0 0.023 4 0.049 5 0.000 7 311 4 81
      056-5-1-12 7.89 69.50 129.09 0.54 0.060 1 0.004 3 0.429 9 0.031 1 0.052 1 0.000 9 327 6 89
      056-5-1-13 9.22 103.47 155.38 0.67 0.055 2 0.003 3 0.371 4 0.021 1 0.048 5 0.000 8 305 5 95
      056-5-1-16 10.29 103.71 178.21 0.58 0.053 5 0.002 1 0.361 6 0.014 4 0.048 6 0.000 7 306 4 97
      056-5-1-17 7.50 62.58 131.81 0.47 0.053 8 0.003 2 0.371 8 0.021 0 0.050 3 0.000 8 316 5 98
      056-5-1-18 9.56 117.22 151.51 0.77 0.053 1 0.002 8 0.358 8 0.017 2 0.050 6 0.000 9 318 6 97
      056-5-1-19 7.59 82.02 132.14 0.62 0.053 3 0.003 1 0.353 2 0.019 9 0.048 8 0.000 8 307 5 99
      056-5-1-20 8.53 87.84 141.99 0.62 0.052 1 0.002 8 0.362 7 0.019 8 0.050 4 0.000 7 317 4 99
      056-5-1-21 9.69 106.91 161.13 0.66 0.054 4 0.002 9 0.372 7 0.019 3 0.050 5 0.000 8 318 5 98
      056-5-1-22 6.44 52.75 108.69 0.49 0.072 9 0.004 7 0.485 8 0.030 6 0.049 2 0.000 8 310 5 74
      056-5-1-24 5.56 44.85 97.32 0.46 0.055 9 0.002 9 0.371 0 0.018 5 0.049 0 0.000 9 308 5 96
      056-5-1-26 11.38 127.88 185.60 0.69 0.056 9 0.002 6 0.375 4 0.016 6 0.048 8 0.000 7 307 4 94
      下载: 导出CSV

      表  2  巴塔玛依内山组火山岩主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Analysis results of major elements (%) and trace elements (10-6) from the volcanic rocks of Late Carboniferous Batamayineishan Formation

      样品 玄武岩 玄武粗安岩 酸性岩
      008-7 008-9 008-17 008-19 008-31 008-35 008-36 008-37 008-67 008-67-2 008-69 008-72 008-73 008-74 008-75 008-85 060-49 060-52 008-15 008-25 008-52 008-56 008-59 008-65 008-15 008-4 008-20 060-59 060-85
      SiO2 50.80 48.50 46.80 45.50 51.50 42.90 46.90 45.10 49.50 51.30 44.40 47.60 45.70 45.90 47.90 52.00 46.07 47.78 51.50 560.00 53.40 53.40 53.20 54.90 67.50 75.50 70.20 75.61 76.91
      TiO2 2.08 1.92 3.03 2.01 3.10 2.62 2.02 1.74 1.78 3.06 2.28 2.59 2.13 1.73 1.90 2.44 1.65 2.78 1.22 1.55 2.41 2.15 2.18 2.04 0.68 0.17 0.37 0.09 0.17
      Al2O3 17.30 17.70 13.80 18.25 14.35 17.10 17.05 15.70 15.90 14.25 16.35 17.40 16.45 16.55 16.80 14.50 15.81 16.72 16.45 16.10 14.45 14.20 14.30 14.65 15.25 11.7 13.75 12.47 12.42
      Fe2O3 8.68 3.82 4.15 4.19 5.99 5.27 5.70 2.89 2.67 4.48 3.53 5.48 5.17 4.32 3.74 3.58 1.50 8.73 4.40 4.36 3.81 4.17 4.40 4.18 2.07 1.73 2.27 1.52 0.21
      FeO 2.04 4.64 7.51 4.94 6.08 7.00 4.77 7.12 5.53 6.23 7.49 6.18 6.33 5.07 6.44 7.04 7.98 4.18 2.27 4.48 6.20 5.83 5.40 5.60 0.72 0.57 2.73 0.55 0.58
      MnO 0.16 0.21 0.27 0.26 0.16 0.29 0.17 0.18 0.14 0.19 0.24 0.14 0.17 0.13 0.15 0.17 0.17 0.20 0.12 0.15 0.31 0.20 0.18 0.18 0.04 0.02 0.13 0.01 0.01
      MgO 1.34 3.20 2.96 3.62 3.71 2.78 2.90 4.59 4.20 2.19 3.18 2.58 2.85 3.86 5.13 3.03 3.54 4.00 2.88 1.55 2.86 2.72 3.19 2.61 0.15 0.04 0.31 0.2 0.13
      CaO 6.82 8.14 6.56 9.76 4.23 10.60 9.72 9.61 8.52 7.08 10.65 7.07 9.44 10.75 9.00 4.98 11.19 7.91 5.94 4.41 4.83 4.94 4.15 3.51 0.73 0.11 0.32 0.25 0.19
      Na2O 4.95 5.86 4.46 3.84 4.99 3.01 3.10 3.44 2.69 3.43 2.99 4.13 3.21 2.69 3.35 3.91 2.17 3.66 6.59 4.25 5.43 3.91 5.21 4.37 4.49 4.12 4.4 3.27 3.13
      K2O 0.63 0.49 0.87 0.25 0.25 0.29 0.55 0.65 0.45 0.70 0.31 0.64 0.27 0.22 0.74 0.69 0.18 0.85 1.27 1.60 0.14 1.58 1.12 1.88 5.91 4.59 2.77 5.15 5.15
      P2O5 0.51 0.46 0.79 0.39 0.78 0.53 0.50 0.44 0.49 0.56 0.59 0.77 0.57 0.46 0.58 0.65 0.40 0.62 0.39 0.67 1.10 0.93 1.02 0.88 0.15 0.02 0.04 0.02 0.03
      LOI 3.79 3.89 6.97 5.72 3.95 6.77 5.58 7.34 6.85 5.35 6.81 4.54 6.61 7.45 2.98 5.47 8.22 2.23 5.55 3.66 3.86 4.44 4.36 4.07 1.29 0.31 1.52 0.48 0.78
      Total 99.70 99.60 99.24 99.46 99.99 100.10 99.70 99.81 99.51 99.69 99.87 100.00 99.78 99.88 99.59 100.20 99.80 99.80 99.23 99.51 99.63 99.54 99.66 99.74 99.66 99.10 99.33 99.77 99.79
      La 19.70 16.50 25.20 18.80 24.70 18.40 15.50 14.50 23.10 18.10 17.60 30.50 17.20 14.90 18.00 23.50 14.00 20.92 23.10 33.60 29.00 29.20 27.80 29.10 22.30 46.90 43.90 21.99 38.90
      Ce 43.60 40.50 60.40 40.90 59.60 44.70 37.50 35.30 55.00 44.30 44.90 71.80 43.00 37.00 44.50 57.10 32.57 51.63 53.80 79.80 71.60 71.70 69.70 71.10 51.60 105.00 100.00 48.32 70.83
      Pr 5.52 5.42 8.32 5.57 7.94 6.06 5.09 5.04 7.24 6.18 6.30 9.19 5.76 5.09 6.07 7.64 4.76 7.52 6.66 10.30 9.87 9.58 9.45 9.55 6.71 13.80 12.90 6.24 9.77
      Nd 22.60 22.90 35.00 22.40 33.00 26.00 21.50 21.20 29.60 25.60 26.50 37.00 23.90 21.60 25.70 31.90 20.46 32.33 26.10 41.60 42.20 41.30 40.10 39.20 26.60 53.00 48.70 25.04 35.66
      Sm 5.48 5.87 8.70 5.51 8.39 6.59 5.40 5.49 7.15 6.69 6.69 8.55 5.87 5.35 6.26 8.06 5.65 8.68 6.05 10.05 10.65 10.40 10.05 9.82 6.39 13.70 11.35 6.39 7.40
      Eu 2.10 2.21 3.09 2.11 3.19 2.51 2.06 2.03 2.58 2.64 2.45 3.01 2.28 2.06 2.37 2.98 1.76 2.63 1.98 3.67 4.17 4.27 3.63 3.57 2.04 2.43 3.16 0.18 0.36
      Gd 6.53 7.33 10.65 6.95 10.30 7.98 6.37 6.61 8.69 8.13 8.37 9.91 6.91 6.54 7.30 9.75 5.61 8.60 7.04 11.80 13.20 12.65 12.55 12.05 7.31 18.8 13.15 5.93 6.70
      Tb 1.03 1.11 1.64 1.07 1.56 1.27 0.96 1.04 1.30 1.28 1.29 1.48 1.04 1.01 1.14 1.55 0.92 1.39 1.06 1.77 1.98 1.94 1.91 1.84 1.14 3.77 2.22 1.09 1.30
      Dy 5.52 6.11 8.80 5.67 8.55 6.78 5.44 5.55 7.08 7.18 6.91 7.86 5.72 5.41 6.22 8.27 5.31 8.21 5.66 9.51 10.70 10.40 10.15 10.00 6.13 23.9 12.55 6.71 8.49
      Ho 1.22 1.32 1.90 1.23 1.90 1.47 1.18 1.21 1.58 1.60 1.51 1.70 1.25 1.20 1.36 1.84 1.05 1.57 1.23 2.11 2.32 2.29 2.20 2.19 1.30 6.04 2.89 1.55 1.81
      Er 3.54 3.85 5.41 3.58 5.51 4.29 3.37 3.46 4.54 4.68 4.39 4.91 3.59 3.50 3.89 5.28 3.11 4.65 3.63 6.23 6.63 6.54 6.28 6.26 3.68 19.00 8.86 4.28 6.05
      Tm 0.50 0.52 0.72 0.49 0.74 0.57 0.47 0.48 0.63 0.63 0.59 0.67 0.49 0.47 0.54 0.74 0.43 0.66 0.49 0.88 0.89 0.90 0.84 0.85 0.49 2.57 1.30 0.67 0.99
      Yb 3.24 3.28 4.72 3.04 4.72 3.66 2.89 3.06 3.99 4.02 3.71 4.41 3.15 2.97 3.42 4.80 3.00 4.44 3.18 5.65 5.50 5.63 5.41 5.47 3.26 15.2 8.48 4.81 7.13
      Lu 0.46 0.46 0.67 0.43 0.67 0.51 0.41 0.43 0.57 0.57 0.53 0.61 0.44 0.43 0.49 0.68 0.44 0.65 0.46 0.82 0.78 0.80 0.76 0.77 0.48 2.09 1.25 0.69 1.06
      ΣREE 121.00 117.00 175.00 118.00 171.00 131.00 108.00 105.00 153.00 132.00 132.00 192.00 121.00 107.00 127.00 164.00 99.00 153.00 140.00 218.00 209.00 208.00 201.00 202.00 139.00 327.00 271.00 134.00 196.00
      Eu* 33.80 37.00 54.34 34.92 52.48 40.95 33.15 34.02 44.51 41.64 42.23 52.05 36.00 33.40 38.22 50.06 32.10 49.30 36.90 61.55 66.92 64.77 63.38 61.41 38.67 90.5 69.09 35.3 40.49
      Eu/Eu* 1.07 1.03 0.98 1.04 1.05 1.06 1.07 1.03 1.00 1.09 1.00 1.00 1.09 1.06 1.07 1.03 0.94 0.92 0.93 1.03 1.07 1.14 0.99 1.00 0.91 0.46 0.79 0.09 0.15
      (La/Yb)N 4.36 3.61 3.83 4.44 3.75 3.61 3.85 3.40 4.15 3.23 3.40 4.96 3.92 3.60 3.78 3.51 3.35 3.38 5.21 4.27 3.78 3.72 3.69 3.82 4.91 2.21 3.71 3.28 3.91
      (La/Sm)N 2.32 1.81 1.87 2.20 1.90 1.80 1.85 1.71 2.09 1.75 1.70 2.30 1.89 1.80 1.86 1.88 1.60 1.56 2.46 2.16 1.76 1.81 1.79 1.91 2.25 2.21 2.50 2.22 3.39
      (Gd/Yb)N 1.67 1.85 1.87 1.89 1.81 1.80 1.82 1.79 1.80 1.67 1.87 1.86 1.81 1.82 1.77 1.68 1.55 1.60 1.83 1.73 1.99 1.86 1.92 1.82 1.85 1.02 1.28 1.02 0.78
      Cr 98.00 106.00 1.00 69.00 1.00 60.00 53.00 188.00 52.00 20.00 56.00 1.00 63.00 160.00 110.00 1.00 169.10 35.60 92.00 10.00 2.00 2.00 1.00 1.00 4.00 15.00 2.00 8.35 3.58
      Ni 50.60 81.00 0.60 54.10 1.30 60.20 46.70 92.40 32.40 13.80 33.00 13.20 55.80 91.80 86.70 0.60 88.69 29.76 39.90 6.40 1.30 1.00 0.70 0.30 1.10 4.90 2.10 3.40 1.38
      Co 17.90 35.40 18.50 34.30 16.60 44.80 33.20 34.70 28.80 27.80 36.40 34.60 39.40 35.80 38.70 19.60 41.13 45.47 25.90 14.30 17.30 13.30 14.60 11.40 0.70 0.60 0.60 0.97 0.33
      Rb 5.90 7.70 19.50 1.10 5.60 0.80 4.60 6.60 4.90 8.00 2.20 5.50 1.50 0.60 4.20 9.60 2.28 9.64 17.30 18.80 2.20 28.10 16.80 36.40 85.80 118.00 54.50 161.00 148.60
      Cs 1.26 21.30 0.61 1.08 0.57 1.22 0.37 0.20 0.87 0.55 0.15 0.18 0.27 0.42 0.41 0.32 0.79 0.53 1.42 2.32 0.20 0.88 0.25 0.57 1.34 2.86 1.63 1.91 2.95
      Sr 426.00 644.00 293.00 583.00 534.00 547.00 591.00 599.00 647.00 420.00 622.00 665.00 607.00 637.00 584.00 474.00 482.60 462.50 332.00 271.00 309.00 778.00 213.00 536.00 192.50 25.00 120.50 52.47 68.30
      Ba 210.00 180.00 430.00 80.00 210.00 120.00 140.00 190.00 170.00 280.00 120.00 390.00 110.00 100.00 190.00 280.00 105.70 193.20 280.00 290.00 70.00 550.00 250.00 410.00 450.00 410.00 530.00 41.49 151.30
      V 310.00 259.00 284.00 246.00 284.00 306.00 230.00 217.00 213.00 352.00 293.00 264.00 210.00 218.00 231.00 162.00 183.20 295.80 154.00 84.00 143.00 112.00 116.00 97.00 8.00 4.00 2.00 5.31 3.62
      Sc 30.20 34.10 43.10 31.40 43.00 28.10 25.60 24.60 29.90 36.00 30.40 23.00 22.90 24.80 23.60 24.80 24.44 29.06 24.70 19.00 32.80 35.20 29.00 27.00 19.30 2.30 20.40 4.24 2.23
      Nb 9.00 8.00 12.10 8.40 12.60 10.00 7.80 5.80 10.70 9.50 8.50 14.90 9.80 6.90 9.00 12.30 4.61 7.77 9.20 15.20 13.00 13.60 12.40 15.20 12.20 25.10 21.00 15.98 21.18
      Ta 0.53 0.46 0.75 0.52 0.77 0.60 0.46 0.35 0.66 0.60 0.49 0.87 0.60 0.41 0.54 0.80 0.32 0.47 0.52 0.89 0.83 0.84 0.78 0.91 0.65 1.63 1.27 1.44 1.78
      Zr 222.00 200.00 271.00 201.00 287.00 234.00 183.50 196.00 292.00 239.00 236.00 357.00 212.00 192.00 221.00 293.00 170.50 255.70 230.00 600.00 281.00 301.00 250.00 334.00 352.00 689.00 518.00 143.20 274.00
      Hf 5.00 4.70 6.50 4.50 6.80 5.10 4.10 3.80 6.70 5.30 5.00 7.20 4.50 4.20 4.80 6.80 3.78 5.98 5.20 14.60 6.60 7.20 6.10 7.90 7.50 18.80 14.10 6.36 10.55
      U 0.40 0.20 1.00 0.30 0.80 0.20 0.30 0.20 0.80 0.80 0.30 0.70 0.30 0.30 0.40 0.90 0.44 0.48 1.00 1.10 3.80 1.20 1.00 1.50 1.00 4.40 2.70 2.51 3.77
      Th 0.80 0.80 2.30 0.80 2.40 0.60 0.80 0.80 2.50 1.90 0.60 1.60 0.70 0.90 0.70 2.80 1.16 1.42 2.00 2.80 2.50 2.90 2.40 3.10 2.40 10.60 7.40 13.84 16.68
      Pb 5.00 2.60 5.50 2.20 4.90 3.30 2.90 3.00 6.50 4.50 3.30 5.40 4.10 3.00 4.10 6.50 2.68 4.13 6.50 9.80 6.20 6.70 5.90 7.10 6.90 20.80 24.80 13.46 12.72
      Y 28.10 36.80 51.00 31.30 50.70 34.60 30.40 29.80 43.10 35.80 36.40 39.70 30.70 31.20 30.70 45.20 27.50 41.15 31.40 41.10 58.00 56.70 53.20 57.40 30.80 170.00 77.40 34.93 54.17
      下载: 导出CSV

      表  3  巴塔玛依内山组火山岩Sr、Nd、Pb同位素数据

      Table  3.   Analysis results of Sr-Nd-Pb isotopes from the volcanic rocks of Late Carboniferous Batamayineishan Formation

      样品 玄武岩 流纹岩
      008-9 008-17 008-25 008-35 008-37 008-75 008-85 060-59 060-85
      T(Ma) 320/巴塔玛依内山组
      87Rb/86Sr 0.034 622 0.192 715 0.206 164 0.004 235 0.031 906 0.020 825 0.058 646 8.896 372 6.300 169
      87Sr/86Sr 0.705 644 0.704 772 0.705 982 0.703 593 0.703 420 0.703 555 0.704 254 0.747 910 0.738 425
      (87Sr/86Sr)i 0.705 486 0.703 894 0.705 043 0.703 574 0.703 275 0.703 460 0.703 987 0.707 393 0.709 732
      (87Sr/86Sr)CHUR(t) 0.704 123 0.704 123 0.704 123 0.704 123 0.704 123 0.704 123 0.704 123 0.704 123 0.704 123
      147Sm/144Nd 0.155 505 0.150 797 0.153 102 0.153 764 0.157 101 0.147 769 0.153 281 0.154 838 0.125 959
      143Nd/144Nd 0.512 869 0.512 850 0.512 779 0.512 796 0.512 907 0.512 866 0.512 873 0.512 852 0.512 827
      εNd(t) 6.194 582 6.016 204 4.535 855 4.840 648 6.871 176 6.452 420 6.363 665 5.896 829 6.588 943
      TDM1Nd(Ga) 0.736 544 0.727 514 0.933 274 0.900 447 0.655 073 0.657 231 0.699 409 0.771 252 0.561 331
      TDM2Nd(Ga) 0.573 208 0.587 788 0.708 216 0.683 415 0.518 090 0.552 286 0.559 465 0.597 457 0.541 290
      (206Pb/204Pb)i 17.87 255 17.953 01 18.005 13 18.071 10 17.825 96 17.812 44 17.910 67 18.022 33 17.866 80
      (207Pb/204Pb)i 15.50 278 15.517 04 15.519 94 15.516 68 15.480 08 15.474 87 15.491 01 15.625 87 15.571 65
      (208Pb/204Pb)i 37.66 050 37.863 59 37.852 12 37.851 32 37.597 60 37.636 03 37.683 07 37.741 55 37.663 80
      注:误差为2σ.同位素校正公式:(87Sr/86Sr)i=(87Sr/86Sr)样品+(87Rb/86Sr)(eλt-1), λRb=1.42×10-11a-1; εNd(t)=[(143Nd/144Nd)样品/(143Nd/144Nd)CHUR(t)-1]×104, (143Nd/144Nd)CHUR(t)=0.512638-0.1967×(eλt-1), λSm=6.54×10-12a-1; 亏损地幔的Sm-Nd同位素组成采用(143Nd/144Nd)CHUR(t)=0.51315, (147Sm/144Nd)CHUR=0.2137.
      下载: 导出CSV
    • [1] Brewer, T.S., Ahall, K.I., Menuge, J.F., et al., 2004.Mesoproterozoic Bimodal Volcanism in SW Norway, Evidence for Recurring Pre-Sveconorwegian Continental Margin Tectonism.Precambrian Research, 134(3-4):249-273.doi: 10.1016/j.precamres.2004.06.003
      [2] Chen, B., Jahn, B.M., 2004.Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence.Journal of Asian Earth Sciences, 23(5):691-703.doi: 10.1016/s1367-9120(03)00118-4
      [3] Chen, B., Arakawa, Y., 2005.Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth.Geochimica et Cosmochimica Acta, 69(5):1307-1320.doi: 10.1016/j.gca.2004.09.019
      [4] Civetta, L., D'Antonio, M., Orsi, G., et al., 1998.The Geochemistry of Volcanic Rocks from Pantelleria Island, Sicily Channel:Petrogenesis and Characteristics of the Mantle Source Region.Journal of Petroleum, 39(8):1453-1491.doi: 10.1093/petroj/39.8.1453
      [5] Condie, K.C., 1993.Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales.Chemical Geology, 104(1-4):1-37.doi: 10.1016/0009-2541(93)90140-e
      [6] Coulon, C., Megartsi, M., Fourcade, S., et al., 2002.Post-Collisional Transition from Calc-Alkaline to Alkaline Volcanism during the Neogene in Oranie (Algeria):Magmatic Expression of a Slab Breakoff.Lithos, 62(3-4):87-110.doi: 10.1016/s0024-4937(02)00109-3
      [7] Davies, G.R., Macdonald, R., 1987.Crustal Influences in the Petrogenesis of the Naivasha Basalt-Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints.Journal of Petroleum, 28(6):1009-1031.doi: 10.1093/petrology/28.6.1009
      [8] Davies, J.H., von Blanckenburg, F., 1995.Slab Break Off:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens.Earth and Planetary Science Letters, 129(1-4):85-102.doi: 10.1016/0012-821x(94)00237-s
      [9] Donnelly, T.W., Rogers, J.J.W., 1980.Igneous Series in Islandarcs:The Northeastern Caribbean Compared with Worldwide Island-Arc Assemblages.Bulletin of Volcanology, 43(2):347-382.doi: 10.1007/bf02598038
      [10] Fountain, D.M., Christensen, N.I., 1989.Composition of the Continental Crust and Upper Mantle:A Review.Memoir of the Geological Society of America, 172:711-742.doi: 10.1130/mem172-p711
      [11] Frisch, W., Dunkl, I., Kuhlemann J., 2000.Post-Collisional Orogen-Parallel Large-Scale Extension in the Eastern Alps.Tectonophysics, 327(3-4):239-265.doi: 10.1016/s0040-1951(00)00204-3
      [12] Geist, H.L., 1995.The Generation of Oceanic Rhyolites by Crystal Fractionation:The Basalt-Rhyolite Association at Volcan Alcedo, Galapagos-Archipelago.Journal of Petrology, 36(4):965-982. doi: 10.1093/petrology/36.4.965
      [13] Geng, H.Y., Sun, M., Yuan, C., et al., 2009.Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang:Implications for Ridge Subduction? Chemical Geology, 266(3-4):364-389.doi: 10.1016/j.chemgeo.2009.07.001
      [14] Han, B.F., Ji, J.Q., Song, B., et al., 2006.Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part Ⅰ):Timing of Post-Collisional Plutonism.Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm
      [15] Han, Y.J., Tang, H.F., Gan, L., 2012.Zircon U-Pb Ages and Geochemical Characteristics of the Laoyaquan A-Type Granites in East Junggar, North Xinjiang, China.Acta Mineralogy Sinica, 32(2):193-199 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201202004.htm
      [16] Hochstaedter, A.G., Gill, J.B., Kusakabe, M., 2013.Volcanism in the Sumisu Rift.I.Element, Volatile and Stable Geochemistry.Earth and Planetary Science Letters, 100(1-3):179-194.doi: 10.1016/0012-821x(90)90184-y
      [17] Hu, C.B., Liao, Q.A., Tian, J., et al., 2014.The Discovery and Tectonic Implication of MOR-Type Ophiolites from the Dishuiquan in Eastern Junggar.Chinese Science Bulletin, 59(22):2213-2224 (in Chinese with English abstract). doi: 10.1360/N972013-00021
      [18] Huppert, H.E., Sparks, R.S.J., 1988.The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust.Journal of Petrology, 29(3):599-624.doi: 10.1093/petrology/29.3.599
      [19] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Science, 8:523-528. doi: 10.1139/e71-055
      [20] Jahn, B.M., Wu, F., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1-2):119-146.doi: 10.1016/s0009-2541(98)00197-1
      [21] Jian, P., Liu, D.Y., Zhang, Q., et al., 2003.SHRIMP Dating of Ophiolite and Leucocratic Rocks within Ophiolite.Earth Science Frontiers, 10(4):439-456 (in Chinese with English abstract). https://www.researchgate.net/publication/281201195_SHRIMP_dating_of_ophiolite_and_leucocratic_rocks_within_ophiolite
      [22] Jiang, Y., Xiao, L., Zhou, P., et al., 2015.Geological, Geochemical Characteristics of Hongshan Pluton:Constraint for Lower Crust of West Junggar, Xinjiang.Earth Science, 40(7):1129-1147 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507003.htm
      [23] Liégeois, J.P., Navez, J., Hertogen, J., et al., 1998.Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids.The Use of Sliding Normalization.Lithos, 45(1-4):1-28.doi: 10.1016/s0024-4937(98)00023-1
      [24] Li, Y.J., Yang, G.X., Wu, H.E., et al., 2009.The Determination of Beilekuduke Aluminous A-Type Granites in East Junggar, Xinjiang.Acta Petrologica et Mineralogica, 28(1):17-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200901002.htm
      [25] Li, D., He, D.F., Fan, C., et al., 2012.Geochemical Characteristics and Tectonic Significance of Carboniferous Basalt in the Karamaili Gas Field of Junggar Basin.Acta Petrologica Sinica, 28(3):981-992 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201203027.htm
      [26] Li, J.Y., Xiao, X.C., Tang, Y.Q., et al., 1990.Main Characteristics of Late Paleozoic Plate Tectonic in the Southern Part of East Junggar, Xinjiang.Geological Review, 36(4):305-316 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199004002.htm
      [27] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004
      [28] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [29] Liu, W., Liu, X.J., Liu, L.J., et al., 2013.Underplating Generated A-and I-Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma:Insights from Integrated Zircon U-Pb Ages, Petrography, Geochemistry and Nd-Sr-Hf Isotopes.Lithos, 179:293-319.doi: 10.1016/j.lithos.2013.08.009
      [30] Ludwig, K.R., 2003.Users Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, California. https://www.researchgate.net/publication/284758218_ISOPLOT_30_A_Geochronological_Toolkit_for_Microsoft_Excel_Berkeley_Geochronology_Center_Special_Publication
      [31] MacDonald, R., Sparks, R.S.J., Sigurdsson, H., et al., 1987.The 1875 Eruption of Askja Volcano Lceland:Combined Fractional Crystallization and Selective Contamination in the Generation of Rhyolitic Magma.Mineralogical Magazine, 51:183-202. doi: 10.1180/minmag
      [32] Mungall, J.E., Martin, R.F., 1995.Petrogenesis of Basalt-Comendite and Basalt Pantellerite Suites, Terceira, Azores, and some Implications for the Origin of Oceanic Rhyolites.Contributions to Mineralogy and Petrology, 119(1):43-55.doi: 10.1007/bf00310716
      [33] Ngounounoa, I., Déruelle, B., Demaiffe, D., 2000.Petrology of the Bimodal Cenozoic Volcanism of the Kapsiki Plateau (Northernmost Cameroon, Central Africa).Journal of Volcanology and Geothermal Research, 102(1-2):21-44.doi: 10.1016/s0377-0273(00)00180-3
      [34] Pami, J., Belak, M., Bullen, T.D., et al., 2000.Geochemistry and Geodynamics of a Late Cretaceous Bimodal Volcanic Association from the Southern Part of the Pannonian Basin in Slavonija (Northern Croatia).Mineralogy and Petrology, 68(4):271-296.doi: 10.1007/s007100050013
      [35] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [36] Pearce, J.A., Bender, J.F., de Long, S.E., et al., 1990.Genesis of Collision Volcanism in Eastern Anatolia Turkey.Journal of Volcanology and Geothermal Research, 44(1-2):189-229.doi: 10.1016/0377-0273(90)90018-b
      [37] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic Arc Magmas.Annual Review of Earth and Planetary Sciences, 23(1):251-286.doi: 10.1146/annurev.ea.23.050195.001343
      [38] Peccerillo, A., Barberio, M.R., Yirgu, G., et al., 2003.Relationship between Mafic and Peralkaline Felsic Magmatism in Continental Rift Settings:A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift.Journal of Petroleum, 44(11):2003-2032.doi: 10.1093/petrology/egg068
      [39] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):130-143.doi: 10.1007/bf00384745
      [40] Sage, R.P., Lightfoot, P.C., Doherty, W., 1996.Bimodal Cyclical Archean Basalts and Rhyolites from the Michipicoten (Wawa) Greenstone Belt, Ontario:Geochemical Evidence for Magma Contributions from the Asthenospheric Mantle and Ancient Continental Lithosphere near the Southern Margin of the Superior Province.Precambrian Research, 76(3-4):119-153.doi: 10.1016/0301-9268(95)00020-8
      [41] Shinjo, R., Kato, Y., 2000.Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin.Lithos, 54(3-4), 117-137.doi: 10.1016/s0024-4937(00)00034-7
      [42] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society London Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [43] Su, Y.P., Tang, H.F., Cong, F., et al., 2008.Zircon U-Pb Age and Petrogenesis of the Huangyangshan Alkal Negranite Body in East Junggar Xinjiang.Acta Mineralogy Sinica, 28(2):117-126 (in Chinese with English abstract). https://www.researchgate.net/publication/284982590_Zircon_U-Pb_age_and_petrogenesis_of_the_Huangyangshan_alkaline_granite_body_in_East_Junggar_Xinjiang
      [44] Su, Y.P., Tang, H.F., Liu, C.Q., et al., 2006.The Determination and a Preliminary Study of Sujiquan Aluminous a Type Granites in East Junggar, Xinjiang.Acta Petrologica et Mineralogica, 25(3):175-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200603001.htm
      [45] Su, Y.P., Zheng, J.P., Griffin W.L., et al., 2010.Zircon U-Pb and Hf Isotopes of Volcanic Rocks from the Batamayineishan Formation in the Eastern Junggar Basin.Chinese Science Bulletin, 55(30):2931-2943 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw201036012&dbname=CJFD&dbcode=CJFQ
      [46] Su, Y.P., Tang, H.F., Sylvester, P.J., et al., 2007.Petrogenesis of Karamaili Alkaline A-Type Granites from East Junggar, Xinjiang (NW China) and Their Relationship with Tin Mineralization.Geochemical Journal, 41(5):341-357.doi: 10.2343/geochemj.41.341
      [47] Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2012.Geochemistry and Geochronology of Carboniferous Volcanic Rocks in the Eastern Junggar Terrane, NW China:Implication for a Tectonic Transition.Gondwana Research, 22(3-4):1009-1029.doi: 10.1016/j.gr.2012.01.004
      [48] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust, Its Composition and Evolution.Blackwell, Oxford.
      [49] Tan, J.Y., Wu, R.J., Zhang, Y.Y., et al., 2009.Characteristics and Geochronology of Volcanic Rocks of Batamayineishan Formation in Kalamaily, Eastern Junggar, Xinjiang.Acta Petrologica Sinica, 25(3):539-546 (in Chinese with English abstract). http://www.oalib.com/paper/1472593
      [50] Tang, H.F., Su, Y.P., Liu, C.Q., et al., 2007.Zircon U-Pb Age of the Plagiogranite in Kalamaili Belt, Northern Xinjiang and Its Tectonic Implications.Geotectonica et Metallogenia, 31(1):110-117 (in Chinese with English abstract). https://www.researchgate.net/publication/284264155_Zircon_U-Pb_age_of_the_plagiogranite_in_Kalamaili_belt_northern_Xinjiang_and_its_tectonic_implications
      [51] Tian, W., Campbell, I.H., Allen, C.M., et al., 2010.The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis.Contributions to Mineralogy and Petrology, 160(3):407-425.doi: 10.1007/s00410-009-0485-3
      [52] Tian, J., Liao, Q.A., Fan, G.M., et al., 2015.The Discovery and Tectonic Implication of Early Carboniferous Post-Collisional I-Type Granites from the South of Karamaili in Eastern Junngar.Acta Petrologica Sinica, 31(5):1471-1484 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201505021.htm
      [53] Trua, T., Deniel, C., Mazzuoli, R., 1998.Crustal Control in the Genesis of Plio-Quaternary Bimodal Magmatism of the Main Ethiopian Rift (MER):Geochemical and Isotopic Evidence.Chemical Geology, 155(3-4):201-231.doi: 10.1016/s0009-2541(98)00174-0
      [54] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179.doi: 10.1016/0024-4937(92)90029-x
      [55] van Wagoner, N.A., Leybourne, M.I., Dadd, K.A., et al., 2002.Late Silurian Bimodal Volcanism of Southwestern New Brunswick, Canada:Products of Continental Extension.Geological Society of America Bulletin, 114(4):400-418.doi:10.1130/0016-7606(2002)114<0400:lsbvos>2.0.co;2
      [56] Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404.doi: 10.1007/s004100050492
      [57] Wang, F.M., Liao, Q.A., Fan, G.M., et al., 2014.Geological Implications of Unconformity between Upper and Middle Devonian, and 346.8 Ma Post-Collision Volcanic Rocks in Karamaili, Xinjiang.Earth Science, 39(9):1243-1257 (in Chinese with English abstract). https://www.researchgate.net/publication/286008533_Geological_implications_of_unconformity_between_Upper_and_Middle_Devonian_and_3468_Ma_post-collision_volcanic_rocks_in_Karamaili_Xinjiang
      [58] Wang, J.B., Xu, X., 2006.Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China.Acta Geologica Sinica, 80(1):23-31 (in Chinese with English abstract). https://www.researchgate.net/publication/279622123_Post-collisional_tectonic_evolution_and_metallogenesis_in_Northern_Xinjiang_China
      [59] Wareham, C.D., Stump, E., Storey, B.C., et al., 2001.Petrogenesis of the Cambrian Liv Group, a Bimodal Volcanic Rock Suite from the Ross Orogen, Transantarctic Mountains.Geological Society of America Bulletin, 113(3):360-372.doi:10.1130/0016-7606(2001)113<0360:potclg>2.0.co;2
      [60] White, W.M., Hofmann, A.W., Puchel, H., 1987.Isotopic Geochemistry of Pacific Midocean Ridge Basalt.Journal of Geophysics Research, 92:4881-4893. doi: 10.1029/JB092iB06p04881
      [61] Wu, R.J., Zhang, Y.Y., Tan, J.Y., et al.2009.The Characteristics of Different Structure Layers and Tectonic Implications since Late Paleozoic in Kalamaily Area, Xinjiang.Earth Science Frontiers, 16(3):102-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200903011.htm
      [62] Xiao, W.J., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-177.doi: 10.1016/j.jseaes.2007.10.008
      [63] Xiao, W., Huang, B., Han, C., et al., 2010.A Review of the Western Part of the Altaids:A Key to Understanding the Architecture of Accretionary Orogens.Gondwana Research, 18:253-273. doi: 10.1016/j.gr.2010.01.007
      [64] Xu, X.W., Jiang, N., Li, X.H., et al., 2013.Tectonic Evolution of the East Junggar Terrane:Evidence from the Taheir Tectonic Window, Xinjiang, China.Gondwana Research, 24(2):578-600.doi: 10.1016/j.gr.2012.11.007
      [65] Zhang, Y., Pe-Piper, G., Piper, D.J., 2013.Early Carboniferous Collision of the Kalamaili Orogenic Belt, North Xinjiang, and Its Implications:Evidence from Molasse Deposits.Geological Society of America Bulletin, 125(5-6):932-944.doi: 10.1130/b30779.1
      [66] Zhang, Z.C., Zhou, G., Kusky, T.M., et al., 2009.Late Paleozoic Volcanic Record of the Eastern Junggar Terrane, Xinjiang, Northwestern China:Major and Trace Element Characteristics, Sr-Nd Isotopic Systematics and Implications for Tectonic Evolution.Gondwana Research, 16(2):201-215.doi: 10.1016/j.gr.2009.03.004
      [67] Zhang, Y.Y., Chen, S., Guo, Z.J., et al., 2009.Zircon SHRIMP U-Pb Dating of the Latest Paleozoic Volcanic Rocks in Zhabahe Area, Eastern Junggar and Its Geological Implications.Acta Petrologica Sinica, 25(3):506-514 (in Chinese with English abstract). http://www.oalib.com/paper/1472529
      [68] Zeck, H.P., 1996.Betic-Rif Orogeny:Subduction of Mesozoic Tethys Lithosphere under Eastward Drifting Iberia, Slab Detachment Shortly before 22 Ma, and Subsequent Uplift and Extensional Tectonics.Tectonophysics, 254(1-2):1-16.doi: 10.1016/0040-1951(95)00206-5
      [69] Zhou, T.F., Yuan, F., Fan, Y., et al., 2008.Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China:Geochronological and Geochemical Characteristics and Their Geodynamic Significance.Lithos, 106(3-4):191-206.doi: 10.1016/j.lithos.2008.06.014
      [70] Zhu, Z.X., Li, S.Z., Li, S.L., 2005.The Characteristics of Sedimentary System-Continetal Facies Volcano in Later Carboniferous Batamayineishan Group, Zhifang Region, East Junggar.Xinjiang Geology, 23(1):14-18 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xjdi200501003.htm
      [71] Zimmer, M., Kroner, A., Jochum, K.P., et al., 1995.The Gabal Gerf Complex:A Precambrian N-MORB Ophiolite in the Nubian Shield, NE Africa.Chemical Geology, 123:29-51. doi: 10.1016/0009-2541(95)00018-H
      [72] Zindler, A., Hart, S.R., 1986.Chemical Geodynamics.Annual Review of Earth Planetary Sciences, 14:493-571. doi: 10.1146/annurev.ea.14.050186.002425
      [73] 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
      [74] 韩宇捷, 唐红峰, 甘林, 2012.新疆东准噶尔老鸦泉岩体的锆石U-Pb年龄和地球化学组成.矿物学报, 32(2):193-199. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201202004.htm
      [75] 胡朝斌, 廖群安, 樊光明, 等, 2014.东准噶尔滴水泉地区发现洋中脊型蛇绿岩.科学通报, 59(22):2213-2224. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201422010.htm
      [76] 简平, 刘敦一, 张旗, 等, 2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘, 59(22):439-456. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002036.htm
      [77] 姜芸, 肖龙, 周佩, 等, 2015.新疆西准噶尔红山岩体地质地球化学特征及对下地壳性质的启示.地球科学, 40(7):1129-1147. http://earth-science.net/WebPage/Article.aspx?id=3115
      [78] 李永军, 杨高学, 吴宏恩, 等, 2009.东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义.岩石矿物学杂志, 28(1):17-25. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200901002.htm
      [79] 李涤, 何登发, 樊春, 等, 2012.准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义.岩石学报, 28(3): 981-992. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203027.htm
      [80] 李锦轶, 肖序常, 汤耀庆, 等, 1990.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征.地质论评, 36(4):305-316. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199004002.htm
      [81] 苏玉平, 唐红峰, 丛峰, 2008.新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因.矿物学报, 28(2):117-126. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200802003.htm
      [82] 苏玉平, 唐红峰, 刘丛强, 等, 2006.新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究.岩石矿物学杂志, 25(3):175-184. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200603001.htm
      [83] 苏玉平, 郑建平, Griffin, W.L., 等, 2010.东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究.科学通报, 55(30):2931-2943. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201030009.htm
      [84] 谭佳奕, 吴润江, 张元元, 等, 2009.东准噶尔卡拉麦里地区巴塔玛依内山组火山岩特征和年代确定.岩石学报, 25(3):539-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903007.htm
      [85] 唐红峰, 苏玉平, 刘丛强, 等, 2007.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义.大地构造与成矿学, 31(1):110-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200701014.htm
      [86] 田健, 廖群安, 樊光明, 等, 2015.东准噶尔卡拉麦里断裂以南早石炭世后碰撞花岗岩的发现及其地质意义.岩石学报, 31(5):1471-1484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505021.htm
      [87] 王富民, 廖群安, 樊光明, 等, 2014.新疆卡拉麦里上—中泥盆统间角度不整合和346.8Ma后碰撞火山岩的意义.地球科学, 39(9):1243-1257. http://earth-science.net/WebPage/Article.aspx?id=2936
      [88] 王京彬, 徐新, 2006.新疆北部后碰撞构造演化与成矿.地质学报, 80(1):23-31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm
      [89] 吴润江, 张元元, 谭佳奕, 等, 2009.新疆卡拉麦里地区晚古生代以来不同构造层特征及大地构造意义.地学前缘, 16(3):102-109. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903011.htm
      [90] 张元元, 陈石, 郭召杰, 等, 2009.东准噶尔扎河坝地区古生代晚期火山岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 25(3):506-514. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903004.htm
      [91] 朱志新, 李少贞, 李嵩龄, 2005.东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山-沉积体系特征.新疆地质, 23(1):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200501003.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  4151
    • HTML全文浏览量:  1732
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-03-10
    • 刊出日期:  2016-11-15

    目录

      /

      返回文章
      返回