Sedimentary Geochemical Response to Gas Hydrate Episodic Release on the Northeastern Slope of the South China Sea
-
摘要: 南海地区天然气水合物资源丰富,针对其分解方式的研究有助于资源的开采.对南海东北部天然气水合物钻探区GMGS08站位岩心沉积物开展沉积学、地球化学分析研究.结果表明:该站位自上而下分布11层含自生碳酸盐岩和双壳碎屑层(其中6层呈粥状沉积)以及2层自生碳酸盐岩灰岩层;各层自生碳酸盐岩除一个样品δ13C值稍高(-38.85×10-3)外,其他的δ13C值介于-41.36×10-3~-56.74×10-3,均低于-40.00×10-3,δ18O值介于2.94×10-3~5.37×10-3,明显偏重,表明其为天然气水合物分解的产物,形成于微生物对甲烷的缺氧氧化作用,甲烷主要源自生物成因;各层自生碳酸盐岩层中的有机质碳同位素负偏明显,最低达-82.44×10-3,可能与微生物活动有关;根据自生碳酸盐岩的分布推断该站位至少发生过6次天然气水合物分解释放,每期次自生碳酸盐岩的差异说明其甲烷通量强弱不同.
-
关键词:
- 粥状沉积 /
- 自生碳酸盐岩 /
- 碳同位素 /
- 天然气水合物多期次分解 /
- 海洋地质
Abstract: The resource of gas hydrate in South China Sea is plentiful. It redound to resource development by investigating how the gas hydrate decompose. A sedimentology and geochemistry study has been done in gas-hydrate-bearing borehole sediment collected at site GMGS08 within the gas hydrate drilling area in the northeastern South China Sea. Results show that 11 layers of authigenic carbonate and bivalve bioclast, and 2 layers of carbonate limestone are distributed from top to bottom in hole GMGS08. Authigenic carbonate and bivalve bioclast primarily occurred in soupy structure sediments with high water content. The δ13C values of authigenic carbonate ranged from -41.36×10-3 to -56.74×10-3 except one sample with a higher δ13C value of -38.85×10-3, and the δ18O values were apparently heavy ranging from 2.94×10-3 to 5.37×10-3, suggesting they were attributed to gas hydrate dissociation via microbial anaerobic oxidation of methane, which was predominantly biogenic gas. The δ13C values of organic carbon varied from -21.33×10-3 to -82.44×10-3, in which the δ13C negative excursion intervals corresponded to authigenic carbonate layers. According to the distribution of authigenic carbonate, it is concluded that at least 6 episodes of gas hydrate release existed in geologic record, and the varying sizes of authigenic carbonate among the layers indicated the intensity of methane flux in each episode was different.-
Key words:
- soupy structure /
- authigenic carbonate /
- carbon isotope /
- gas hydrate episodic release /
- marine geology
-
图 1 南海东北部天然气水合物钻探区地理位置和研究站位位置
据张光学等(2014)修改
Fig. 1. The geography location and sites location on the gas hydrate-drilling area of the northeastern slope of the South China Sea
表 1 GMGS08站位各层位自生碳酸盐岩的碳氧同位素值
Table 1. The δ13C and δ18O values of autigenic carbonates in site GMGS08
岩心管号 深度(cm) δ13C δ18O 自生碳酸盐岩层 08B-1H-1a 65~70 -49.27 3.69 第1层 08B-1H-1a 75~80 -43.28 3.17 08B-1H-1a 115~120 -45.14 3.58 08B-1H-2a 170~175 -41.36 2.96 08B-1H-2a 205~210 -48.77 3.79 08B-1H-3a 325~330 -49.31 3.76 08B-1H-3a 340~345 -50.32 3.96 08B-1H-3a 355~360 -51.90 3.94 08B-1H-3a 370~375 -50.41 3.48 08B-1H-CC 535~540 -56.09 4.02 08C-1H-1a 215~220 -43.23 3.03 08C-1H-1a 310~315 -52.01 3.85 08C-1H-2a 375~380 -56.74 4.04 08C-1H-3a 540~545 -55.47 4.07 08C-1H-3a 565~570 -56.35 3.94 08C-1H-3a 620~625 -52.22 4.06 08C-2A-1 1 000~1 006 -43.84 2.94 第2层 08C-2A-1 1 030~1 035 -53.75 3.77 08C-2A-1 1 080~1 085 -55.18 3.70 08C-2A-2a 1 100~1 105 -54.73 3.97 08C-2A-2a 1 140~1 145 -49.05 3.37 08C-2A-3 1 245~1 250 -55.27 4.18 08C-2A-3 1 300~1 305 -44.92 3.11 08C-3M-1a 1 370~1 375 -51.09 3.76 08C-3M-1b 1 440~1 445 -49.92 3.54 第2层 08C-3M-1b 1 485~1 490 -50.50 3.70 第2层 08C-5C-CC 2 153~2 163 -38.85 3.73 第3层 08F-1M-1a 5 800~5 815 -48.32 4.05 第4层 08E-1C-CC 5 881~5 897 -45.59 4.31 第4层 08F-2M-1 6 100~6 115 -50.02 3.71 第6层 08E-3C-1a 6 110~6 115 -49.66 5.66 第6层 08F-2M-1 6 147~6 152 -43.05 2.97 第6层 08F-2M-1 6 147~6 152 -51.35 4.68 第6层 08F-2M-1 6 147~6 152 -43.67 3.76 第6层 08E-3C-CC 6 161~6 177 -50.50 5.37 第7层 08F-2M-CC 6 255~6 270 -47.71 4.19 第8层 08E-5M-1 6 580~6 590 -49.83 4.87 第9层 08E-5M-1 6 640~6 654 -48.10 5.13 第9层 08E-5M-1 6 715~6 730 -56.19 3.71 第9层 08E-5M-2a 6 780~6 790 -51.79 4.97 第9层 08F-8M-1a 8 120~8 130 -46.36 3.14 第10层 08F-8M-1a 8 175~8 183 -49.77 3.69 第10层 08F-8M-1a 8 200~8 205 -45.27 3.62 第10层 08F-8M-1a 8 400~8 415 -48.67 3.84 第11层 08F-9M-1a 8 455~8 463 -48.91 3.66 第11层 08F-9M-1b 8 500~8 510 -48.77 3.64 第11层 08F-11H-1a 9 330~9 340 -49.92 3.87 第12层 -
[1] Campbell, K.A., 2006.Hydrocarbon Seep and Hydrothermal Vent Paleoenvironments and Paleontology:Past Developments and Future Research Directions. Palaeogeograph Palaeoclimaologyt Palaeoecology, 232(2-4):362-407.doi: 10.1016/j.palaeo.2005.06.018 [2] Chen, F., Zhuang, C., Zhang, G.X., et al., 2014.Abnormal Sedimentary Events of Gas Hydrates Dissociation in Dongsha Area of the South China Sea during the Last Glacial Period. Earth Science, 39(11):1517-1526(in Chinese with English abstract). [3] Chen, F., Zhuang, C., Zhou, Y., et al., Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates. Earth Science, in press(in Chinese with English abstract). [4] Feng, D., Chen, D.F., Su, Z., et al., 2005.Characteristics of Cold Seep Carbonates and Microbial Processes in Gas Seep System. Geoscience, 19(1):26-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200501003.htm [5] Feng, D., Chen, D.F., Su, Z., et al., 2006.Anaerobicxidation of Methane and Seep Carbonate Precipitation Kinetics at Seafloor. Marine Geology and Quaternary Geology, 26(3):125-131 (in Chinese with English abstract). [6] Feng, D., Chen, D., 2015.Authigenic Carbonates from an Active Cold Seep of the Northern South China Sea:New Insights into Fluid Sources and Past Seepage Activity. Deep-Sea Res. Ⅱ 122, 74-83.doi: 10.1016/j.dsr2.2015.02.003 [7] Gong, J.M., Cheng, H.Y., 2008.The Impact of Methane Flux on Authigenic Carbonate and Saturation of Gas Hydrates. Marine Geology Letters, 24(11):10-12(in Chinese). [8] Hensen, C., Wallmann, K., Schmidt, M., et al., 2004.Fluid Expulsion Related to Mud Extrusion off Costa Rica—A Window to the Subducting Slab. Geology, 32:201-204.doi: 10.1130/G20119.1 [9] Han, X.Q., Yang, K.H., Huang, Y.Y., 2013.Origin and Nature of Cold Seep in Northeastern Dongsha Area, the South China Sea:Evidence from Chimney-Like Seep Carbonates. China Science Bulletin, 58(19):1865-1873 (in Chinese). http://www.cqvip.com/QK/86894X/201330/47200268.html [10] Jiang, G.Q., Shi, X.Y., Zhang, S.H., 2006.Methane Seepage Structure, Gas Hydrate Dissociation and Neoproterozoic Postglacial Cap Carbonates. Chinese Science Bulletin, 50(10):1121-1138(in Chinese). doi: 10.1007/s11434-006-1152-y [11] Jing, C.S., Wang, J.Y., Wang, Y.X., et al., 2004.Geothermal Field Characteristics in the Area of Gas Hydrates Distribution. Chinese Journal of Geology, 39(3):416-423(in Chinese with English abstract). https://www.researchgate.net/publication/290005571_Geothermal_field_characteristics_in_the_areas_of_gas_hydrates_distribution [12] Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2000.Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463):128-132.doi: 10.1126/science.288.5463.128 [13] Kvenvolden, K.A., 1993.Gas Hydrates-Geological Perspective and Global Change. Reviews of Geophysics, 31(2):173-187.doi: 10.1029/93RG00268 [14] Matsumoto, R., Borowski, W.S., 2000.Gas Hydrate Estimates from Newly Determined Oxygen Isotopic Fractionation (αGH-IW) and δ 18O Anomalies of the Interstitial Waters:Leg 164, Blake Ridge.Proced ODP Sci Results, 164:59-66. http://www-odp.tamu.edu/publications/164_SR/VOLUME/CHAPTERS/SR164_06.PDF [15] Paull, C.K., Ussler, Ⅲ.W., Dillon, W.P., 1991.Is the Extent of Glaciation Limited by Marine Gas Hydrates. Geophys.Res.Lett., 18(3):432-434.doi: 10.1029/91GL00351 [16] Paull, C.K., Ussler, Ⅲ.W., Dillon, W.P., 2000.Potential Role of Gas Hydrate Decomposition in Generating Submarine Slope Failures.In:Max, M.D., ed., Natural Gas Hydrate in Oceanic and Permafrost Environments.Kluwer Acad.Publ., Dordrecht, 149-156. [17] Paul, C.K., Matsumotom, R., 2000.Leg 164 Overview.Proceedings of the Ocean Drilling Program, Scientific Results, 164:3-10. [18] Suess E.2010.Marine Cold Seeps.In:Timmis, K.N., ed., Handbook of Hydrocarbon and Lipid Microbiology.Springer, Heidelberg, 187-203. [19] Tréhu, A.M., Bohrmann, G., Rack, F.R., et al., 2003.Proceedings of the Ocean Drilling Program, Initial Reports, 204.College Station.Texas A & M University, Texas. [20] Tong, H.P., Feng, D., Chen, D.F., 2012.Progresses on Petrology, Mineralogy and Geochemistry of Cold Seep Carbonates in the Northern South China Sea. Journal of Tropical Oceanography, 31(5):45-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201205008.htm [21] Wang, J.S., Suess, E., 2002.Carbon and Oxygen Stable Isotopic Tracer of Sediments Associated with Gas Hydrates. Chinese Science Bulletin, 47(15):1172-1176(in Chinese). [22] Wang, Q.X., Chen, D.F., 2010.Geological and Geochemical Evidence for Massive Dissociation of Gas Hydrate in the Geological History. Geoscience, 24(3):552-559(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201003020.htm [23] Zhang, H.Q., Yang, S.X., Wu, N.Y., et al., 2007.China's First Gas Hydrate Expedition Successful."Fire in the Ice", the Methane Hydrate Newsletter of the U.S.Department of Energy, Spring/Summer 5:1 [24] Zhang, G.X., Yang, S.X., Zhang, M., et al., 2014.GMGS2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea."Fire in the Ice", the Methane Hydrate Newsletter of the U.S.Department of Energy, 14(1):1-5. [25] Zhang, G.X., Liang, J.Q., Lu, J.A., et al, 2014.Characteristics of Natural Gas Hydrate Reservoirs on the Northeastern Slope of the South China Sea. Natural Gas Industry, 34(11):1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201411001.htm [26] 陈芳, 庄畅, 张光学, 等, 2014.南海东沙海域末次冰期异常沉积事件与水合物分解.地球科学, 39(11):1517-1526. http://earth-science.net/WebPage/Article.aspx?id=2964 [27] 陈芳, 庄畅, 周洋, 等, 2016.南海东北部陆坡天然气水合物钻探区生物地层与沉积速率.地球科学, 41(3):416-424. http://earth-science.net/WebPage/Article.aspx?id=3260 [28] 冯东, 陈多福, 苏正, 等, 2005.海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征.现代地质, 19(1):26-32. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200501003.htm [29] 冯东, 陈多福, 苏正, 等, 2006.海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展.海洋地质与第四纪地质, 26(3):125-131. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603020.htm [30] 龚建明, 成海燕, 2008.甲烷通量对自生碳酸盐岩和水合物饱和度的影响.海洋地质动态, 24(11):10-12. doi: 10.3969/j.issn.1009-2722.2008.11.002 [31] 韩喜球, 杨克红, 黄永样, 2013.南海东沙东北冷泉流体的来源和性质:来自烟囱状冷泉碳酸盐岩的证据.科学通报, 58(19):1865-1873. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201319011.htm [32] 蒋干清, 史晓颖, 张世红, 2006.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩.科学通报, 50(10):1121-1138. doi: 10.3321/j.issn:0023-074X.2006.10.001 [33] 金春爽, 汪集旸, 王永新, 等, 2004.天然气水合物地热场分布特征.地质科学, 39(3):416-423. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200403011.htm [34] 佟宏鹏, 冯东, 陈多福, 2012.南海北部冷泉碳酸盐岩的矿物、岩石及地球化学研究进展.热带海洋学报, 31(5):45-56. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201205008.htm [35] 王家生, Suess E., 2002.天然气水合物伴生的沉积物碳氧稳定同位素示踪.科学通报, 47(15):1172-1176. doi: 10.3321/j.issn:0023-074X.2002.15.012 [36] 王钦贤, 陈多福, 2010.地质历史时期天然气水合物分解释放的地质地球化学证据.现代地质, 24(3):552-559. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201003020.htm