• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    文象花岗岩的成分、结构和成因机制

    徐海军 张超 武云 陶明

    徐海军, 张超, 武云, 陶明, 2016. 文象花岗岩的成分、结构和成因机制. 地球科学, 41(9): 1511-1525. doi: 10.3799/dqkx.2016.115
    引用本文: 徐海军, 张超, 武云, 陶明, 2016. 文象花岗岩的成分、结构和成因机制. 地球科学, 41(9): 1511-1525. doi: 10.3799/dqkx.2016.115
    Xu Haijun, Zhang Chao, Wu Yun, Tao Ming, 2016. Compositions, Texture and Formation Mechanism of Graphic Granites. Earth Science, 41(9): 1511-1525. doi: 10.3799/dqkx.2016.115
    Citation: Xu Haijun, Zhang Chao, Wu Yun, Tao Ming, 2016. Compositions, Texture and Formation Mechanism of Graphic Granites. Earth Science, 41(9): 1511-1525. doi: 10.3799/dqkx.2016.115

    文象花岗岩的成分、结构和成因机制

    doi: 10.3799/dqkx.2016.115
    基金项目: 

    国家自然科学基金项目 41172070

    国家自然科学基金项目 41272080

    详细信息
      作者简介:

      徐海军(1978-),男,副教授,博士,主要从事显微构造和大陆深部构造研究. E-mail:hj_xu@sina.com

    • 中图分类号: P581; P583

    Compositions, Texture and Formation Mechanism of Graphic Granites

    • 摘要: 文象花岗岩具有特殊文象结构,研究其三维拓扑结构和形成过程有助于了解花岗质岩石的结晶作用.以北京周口店房山岩体和湖北罗田蕙兰山的文象花岗岩为研究对象,综合利用光学显微镜、扫描电镜、电子探针和电子背散射衍射等技术方法,对岩石矿物组成、结晶学取向和拓扑结构进行了系统研究.结果表明:(1) 文象花岗岩的矿物组成与其形成地质环境有关,石英和长石的含量变化范围很大,其中石英含量通常在20%~45%,但是相同地区同期形成的文象花岗岩具有相对稳定的矿物组成;(2) 长石作为寄主矿物通常呈半自形-自形粗大晶体,可以是碱性长石或斜长石,其端元组分以钾长石和钠长石为主,低温下常分解为条纹长石;(3) 石英在长石寄主矿物中规则穿插生长,在三维空间通常呈近似平行板状、长条状/柱状或非连通枝杈状,并只在特定岩石断面形似象形文字;(4) 正交偏光显微镜下,石英可以具有多种消光位,但是通常在一定范围内同时消光;(5) 石英普遍发育道芬双晶,偶见日本双晶;(6) 条纹长石中钾长石与钠长石对应(100)、(010)、(001) 面和[001]轴近似平行;(7) 多数石英颗粒与寄主长石之间具有密切结晶学取向关系,即石英[1123]轴近似平行长石c[001]轴.该研究证实文象花岗岩是石英和长石同时生长的结果,而长石作为寄主矿物影响并控制着石英的成核与生长方向.

       

    • 图  1  文象花岗岩不同方向切面的石英拓扑结构素描

      a~c.切面与钾长石a(100) 面小角度斜交;d, e.切面近似平行钾长石b(010) 面;f.切面近似平行钾长石c(001) 面.样品编号说明:HLS.湖北罗田蕙兰山,FS.北京周口店房山岩体,08和14分别代表采样时间为2008年和2014年,破折号之后的数字代表手标本顺序号

      Fig.  1.  Sketch showing two dimensional morphologies of quartz in graphic granites

      图  2  文象花岗岩在正交偏光显微镜下的图像

      Ab.钠长石;Kfs.钾长石;Qz.石英

      Fig.  2.  Thin section photographs of graphic granites captured under cross-polarized light

      图  3  文象花岗岩背散射电子扫描图像(a~e)和取向衬度图像(f)

      a, c, d.样品FS08-2,切面近似平行钾长石b(010) 面;b, e.样品FS08-1,切面近似平行钾长石c(001) 面;f.样品FS08-5;图b改自Xu et al.(2015a);Ab.钠长石;Kfs.钾长石;Ms.白云母;Qz.石英

      Fig.  3.  Backscattered electron images and orientation contrast image of graphic granites

      图  4  文象花岗岩化学组成归一化三角图解

      a.石英-斜长石-钾长石三角图解;b.钙长石-钠长石-奥长石三角图解

      Fig.  4.  Normative triangular diagram of graphic granites

      图  5  文象花岗岩中钠长石与钾长石的结晶学取向关系

      a.EBSD测量采用人机交互模式,测量点的位置及其编号标记在电子背散射图像上;b.钾长石电子背散射衍射花样及其标定结果;c.钠长石电子背散射衍射花样及其标定结果;d.正长石结晶学取向数据散点图,上半球等角度投影;e.钠长石结晶学取向数据散点图,上半球等角度投影

      Fig.  5.  Crystallographic relationships between albite and potassium feldspar in graphic granites

      图  6  北京周口店房山岩体文象花岗岩中石英与钾长石的结晶学取向关系

      为方便对比石英和钾长石的结晶学取向关系,所有文象花岗岩样品中的钾长石均旋转到同一取向,石英颗粒的结晶学取向作协同旋转.其中,长石晶体[001]轴和(100)、(010)、(001) 面极点分别用实心原点标识,并展示在第1张极图中.N.石英颗粒数.上半球等角度投影

      Fig.  6.  Crystallographic topotactic relationships between quartz and potassium feldspar in graphic granites from the Fangshan pluton

      图  7  湖北蕙兰山文象花岗岩中石英与钾长石的结晶学取向关系

      Fig.  7.  Crystallographic topotactic relationships between quartz and potassium feldspar in graphic granites from Huilanshan

      图  8  文象花岗岩中石英相邻点之间方位差角相对频率直方图

      Fig.  8.  Correlated misorientation angle distribution of quartz in graphic granites

      图  9  费氏台测试数据显示文象花岗岩中石英与长石的结晶学取向关系

      a.据Fersman(1928)及其总结的前人文献资料,作者提出石英c轴主要分布在与长石c轴成42°15′的小圆环带上,可以细分为A、±B、±C、±D、Rose几种亚型;b.据Drescher-Kaden(1948),16组测量数据分布范围很大,石英c轴与长石c轴在42°和64°的小圆环带上较为集中.文象石英的结晶学数据均在长石坐标系中展示,其中长石晶体[001]轴和(100)、(010)、(001) 面极点分别用实心原点标识

      Fig.  9.  Summary diagrams showing the relative orientation of quartz grains referred to feldspar axes measured by U-stage

      图  10  EBSD测量数据显示文象花岗岩中石英与长石的结晶学取向关系

      a~c.石英结晶学取向散点图,上半球等角度投影;d~f.石英结晶学优选方位极点密度图,上半球等角度投影,半宽5°.本文利用EBSD自动测量了10块文象花岗岩样品,其中北京周口店房山岩体6块,湖北罗田蕙兰山4块,累计获得3 980组石英颗粒数据.绝大部分石英c轴集中分布在与长石c轴成42°的小圆环带上,并且石英 <1123>轴近似平行长石c[001]轴.为获得统计性分析数据,每个文象花岗岩样品的长石均旋转到一致取向,其中长石晶体[001]轴和(100)、(010)、(001) 面极点分别用实心原点标识.石英颗粒的结晶学数据与其寄主长石一起作协同旋转,并集成展示在长石坐标系中

      Fig.  10.  Diagnostic crystallographic topotactic relationships between quartz and feldspar in graphic granites measured by EBSD

      图  11  文象石英与长石在熔体中结晶生长过程示意图

      a.长石在熔体中优先成核并快速生长,消耗体积熔体中的铝,并造成硅和水在局部富集;b.长石快速生长过程中形成粗糙颗粒边界,熔体成分出现不平衡,靠近长石颗粒边界处的熔体具有较高的水逸度和二氧化硅活度;c.靠近长石粗糙颗粒边界处,二氧化硅首先达到过饱和,石英快速成核并附生在长石晶体之上,石英平直颗粒边界处熔体二氧化硅活度降低,并开始有利于长石生长;据Lentz and Fowler(1992)

      Fig.  11.  Possible formation model of graphic quartz and feldspar in felsic melt

    • [1] Augustithis, S.S., 1962.Non-Eutectic, Graphic, Micrographic and Graphic-Like "Myrmekitic" Structures and Textures.Beiträge zur Mineralogie and Petrographie, 8(6):491-498.doi: 10.1007/BF01082097
      [2] Baker, D.R., Freda, C., 2001.Eutectic Crystallization in the Undercooled Orthoclase-Quartz-H2O System:Experiments and Simulations.European Journal of Mineralogy, 13(3):453-466.doi: 10.1127/0935-1221/2001/0013-0453
      [3] Baker, D.R., Freda, C., 1999.Ising Models of Undercooled Binary System Crystallization:Comparison with Experimental and Pegmatite Textures.The American Mineralogist, 84(5-6):725-732. doi: 10.2138/am-1999-5-604
      [4] Bakumenko, I.T., 1966.Regular Quartz-Feldspar Intergrowths in Pegmatites and Their Genesis.Nauka, Moscow, 172(in Russian). doi: 10.1007/BF00404729
      [5] Barker, D.S., 1970.Compositions of Granophyre, Myrmekite, and Graphic Granite.Geological Society of America Bulletin, 81(11):3339-3350.doi:10.1130/0016-7606(1970)81 2.0.CO; 2
      [6] Černý, P., 1971.Graphic Intergrowths of Feldspars and Quartz in Some Czechoslovak Pegmatites.Contributions to Mineralogy and Petrology, 30(4):343-355.doi: 10.1007/BF00404729
      [7] Drescher-Kaden, F.K., 1948.Die Feldspat-Quarz-Reaktionsgefüge der Granite and Gneise.Springer, Berlin(in German). http://www.springer.com/gp/book/9783540013365
      [8] Fenn, P.M., 1986.On the Origin of Graphic Granite.American Mineralogist, 71(3-4):325-330. http://www.sciencedirect.com/science/article/pii/S0024493716301001
      [9] Fersman, A.E., 1928.Die Schriftstruktur der Granitpegmatite and Ihre Entstehung.Zeitschrift Fiir Kristallogaphie, 69:77-104(in German). doi: 10.1007/978-3-7091-3616-4_4
      [10] Fleet, M.E., 1982.Orientation of Phase and Domain Boundaries in Crystalline Solids.The American Mineralogist, 67(9-10):926-936. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.496.9418
      [11] Frandel, C., 1945.Secondary Dauphiné Twinning in Quartz.The American Mineralogist, 30:447-461. https://www.researchgate.net/profile/Gerard_Dolino/publication/45656533_Dauphine_twin_observation_in_quartz_using_piezo_or_electro-optic_effects/links/5632127e08ae506cea68db7f.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
      [12] Heritsch, H., 1953.Röntgenuntersuchungen an Schriftgraniten.Tschermaks Mineralogische and Petrographische Mitteilungen, 3(2):126-141(in German).doi: 10.1007/BF01120707
      [13] Heritsch, H., Höller, H., 1960.Untersuchungen an Stengeligem Quarz Eines Schriftgranites von Zwiesel, Bayern.Tschermaks Mineralogische and Petrographische Mitteilungen, 7(3):200-203(in German).doi: 10.1007/BF01127910
      [14] Heritsch, H., Paulitsch, P., Holier, H., 1962.Vber Schriftgranitquarze.Tschermaks Mineralogische and Petrographische Mitteilungen, 8(1):152-165(in German).doi: 10.1007/BF01128396
      [15] Ikeda, S., Nakano, T., Nakashima, Y., 2000.Three-Dimensional Study on the Interconnection and Shape of Crystals in a Graphic Granite by X-Ray CT and Image Analysis.Mineralogical Magazine, 64(5):945-959. doi: 10.1180/002646100549760
      [16] Lentz, D.R., Fowler, A.D., 1992.A Dynamic Model for Graphic Quartz-Feldspar Intergrowths in Granitic Pegmatites in the Southwestern Grenville Province.The Canadian Mineralogist, 30(3):571-585. https://www.researchgate.net/publication/273831305_A_dynamic_model_for_graphic_quartz-feldspar_intergrowths_in_granitic_pegmatites_in_the_Southwestern_Grenville_Province
      [17] Li, J.K., 2012.Research Developments of Crystallization Dynamics for Pegmatitic Texture.Earth Science Frontiers, 19(4):165-172(in Chinese with English abstract). http://www.adsabs.harvard.edu/abs/1985ESRv...22....1E
      [18] Lofgren, G., 1971.Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass.Geological Society of America Bulletin, 82(1):111-124.doi:10.1130/0016-7606(1971)82 2.0.CO; 2
      [19] London, D., 2009.The Origin of Primary Textures in Granitic Pegmatites.The Canadian Mineralogist, 47(4):697-724.doi: 10.3749/canmin.47.4.697
      [20] London, D., Morgan, G.B, Hervig, R.L., 1989.Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites.Contributions to Mineralogy and Petrology, 102(1):1-17.doi: 10.1007/BF01160186
      [21] Menegon, L., Piazolo, S., Pennacchioni, G., 2011.The Effect of Dauphiné Twinning on Plastic Strain in Quartz.Contributions to Mineralogy and Petrology, 161(4):635-652.doi: 10.1007/s00410-010-0554-7
      [22] Piazolo, S., Prior, D.J., Holness, M.D., 2005.The Use of Combined Cathodoluminescence and EBSD Analysis:A Case Study Investigating Grain Boundary Migration Mechanisms in Quartz.Journal of Microscopy, 217(2):152-161.doi: 10.1111/j.1365-2818.2005.01423.x
      [23] Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.The American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204
      [24] Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7
      [25] Schloemers, V.H., 1962a.Hydrothermal-Synthetische Gemeinsame Kristallisation von Orthoklas and Quarz, Ⅰ.Radex Rundschau, 3:133-156. doi: 10.1007/BF00371426
      [26] Schloemer, V.H., 1962b.Hydrothermal-Synthetische Gemeinsame Kristallisation von Orthoklas and Quarz, Ⅱ.Radex Rundschau, 4:157-173. doi: 10.1007/BF00371426
      [27] Seclaman, M., Constantinescu, E., 1972.Metasomatic Origin of Some Micrographic Intergrowths.The American Mineralogist, 57:932-940. https://www.researchgate.net/publication/259503167_A_study_of_intergrowth_textures_and_their_possible_origins_in_the_Alvand_plutonic_complex_Hamadan_Iran
      [28] Simpson, D.R., 1962.Graphic Granite from the Ramona Pegmatite District, California.The American Mineralogist, 47:1123-1138. http://thesis.library.caltech.edu/3660/
      [29] Smith, J.V., 1974.Intergrowths of Feldspars with Other Minerals.In:Smith, J.V., ed., Feldspar Minerals:2 Chemical and Textural Properties.Springer, Heidelberg, Berlin, 553-647.doi: 10.1007/978-3-642-65743-6_8
      [30] Stel, H., 1992.Diagnostic Microstructures for Primary and Deformational Quartz Rods in Graphic Granite.The American Mineralogist, 77:329-335. https://www.researchgate.net/publication/289117782_Diagnostic_microstructures_for_primary_and_deformational_quartz_rods_in_graphic_granite
      [31] Sunagawa, I., Imai, H., Takada, M., et al., 2004.Morphogenesis of Quartz Crystals Twinned after Japan Law.European Journal of Mineralogy, 16(1):91-97.doi: 10.1127/0935-1221/2004/0016-0091
      [32] Tullis, J., 1970.Quartz:Preferred Orientation in Rocks Produced by Dauphiné Twinning.Science, 168(3937):1342-1344.doi: 10.1126/science.168.3937.1342
      [33] Tullis, J., 2002.Deformation of Granitic Rocks:Experimental Studies and Natural Examples.Reviews in Mineralogy and Geochemistry, 51(1):51-95.doi: 10.2138/gsrmg.51.1.51
      [34] Wahlstrom, E.E., 1939.Graphic Granite.The American Mineralogist, 24:681-698. http://stoneplus.cst.cmich.edu/graphic.htm
      [35] Wenk, H.R., Lonardelli, I., Vogel, S.C., et al., 2005.Dauphiné Twinning as Evidence for an Impact Origin of Preferred Orientation in Quartzite:An Example from Vredefort, South Africa.Geology, 33(4):273-276.doi: 10.1130/G21163.1
      [36] Wenk, H.R., Rybacki, E., Dresen, G., et al., 2006.Dauphiné Twinning and Texture Memory in Polycrystalline Quartz, Part 1:Experimental Deformation of Novaculite.Physics and Chemistry of Minerals, 33(10):667-676.doi: 10.1007/s00269-006-0115-9
      [37] Wenk, H.R., Barton, N., Bortolotti, M., et al., 2009.Dauphiné Twinning and Texture Memory in Polycrystalline Quartz, Part 3:Texture Memory during Phase Transformation.Physics and Chemistry of Minerals, 36(10):567-583.doi: 10.1007/s00269-009-0302-6
      [38] Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm
      [39] Xu, H.J., Zhang, J.F., Yu, T., et al., 2015a.Crystallographic Evidence for Simultaneous Growth in Graphic Granite.Gondwana Research, 27(4):1550-1559.doi: 10.1016/j.gr.2014.01.013
      [40] Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015b.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010
      [41] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x
      [42] Zhao, S.R., Bian, Q.J., Ling, Q.C., 2004.Crystallography and Mineralogy. Higher Education Press, Beijing, 396 (in Chinese). http://pubs.rsc.org/en/Content/ArticleLanding/AR/1922/AR9221900234#!divAbstract
      [43] Zhao, S.R., Wang, Q.Y., Xiao, P., et al., 2012.Complication on the Twinning of Quartz.Geological Science and Technology Information, 31(5):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205004.htm
      [44] 李建康, 2012.花岗伟晶岩结构结晶动力学的研究进展.地学前缘, 19(4): 165-172. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204019.htm
      [45] 徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm
      [46] 赵珊茸, 边秋娟, 凌其聪, 2004.结晶学及矿物学.北京:高等教育出版社, 396. http://www.cnki.com.cn/Article/CJFDTOTAL-FYJY201507075.htm
      [47] 赵珊茸, 王勤燕, 肖平, 等, 2012.论石英双晶的复杂性.地质科技情报, 31(5): 8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205004.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  4556
    • HTML全文浏览量:  2321
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-11-21
    • 刊出日期:  2016-09-15

    目录

      /

      返回文章
      返回