Compositions, Texture and Formation Mechanism of Graphic Granites
-
摘要: 文象花岗岩具有特殊文象结构,研究其三维拓扑结构和形成过程有助于了解花岗质岩石的结晶作用.以北京周口店房山岩体和湖北罗田蕙兰山的文象花岗岩为研究对象,综合利用光学显微镜、扫描电镜、电子探针和电子背散射衍射等技术方法,对岩石矿物组成、结晶学取向和拓扑结构进行了系统研究.结果表明:(1) 文象花岗岩的矿物组成与其形成地质环境有关,石英和长石的含量变化范围很大,其中石英含量通常在20%~45%,但是相同地区同期形成的文象花岗岩具有相对稳定的矿物组成;(2) 长石作为寄主矿物通常呈半自形-自形粗大晶体,可以是碱性长石或斜长石,其端元组分以钾长石和钠长石为主,低温下常分解为条纹长石;(3) 石英在长石寄主矿物中规则穿插生长,在三维空间通常呈近似平行板状、长条状/柱状或非连通枝杈状,并只在特定岩石断面形似象形文字;(4) 正交偏光显微镜下,石英可以具有多种消光位,但是通常在一定范围内同时消光;(5) 石英普遍发育道芬双晶,偶见日本双晶;(6) 条纹长石中钾长石与钠长石对应(100)、(010)、(001) 面和[001]轴近似平行;(7) 多数石英颗粒与寄主长石之间具有密切结晶学取向关系,即石英[1123]轴近似平行长石c[001]轴.该研究证实文象花岗岩是石英和长石同时生长的结果,而长石作为寄主矿物影响并控制着石英的成核与生长方向.Abstract: Graphic granite, found predominantly in granitic pegmatite, is a leucocratic granitic rock consisting of an intimate intergrowth of alkali feldspar and quartz with a distinctive texture as ancient cuneiform writing when viewed in certain cross sections. Deciphering the graphic texture is important for understanding its origin and the crystallization process of granitic rocks. In this paper, we present investigations on petrology, mineral compositions, crystallographic relationship and topotaxy of quartz and alkali feldspar in graphic granites from the Fangshan pluton, North China and Huilanshan, Central China. The results indicate follows (1) The volume content of quartz usually ranges from 20% to 45%, and the composition of feldspar in graphic granites depends greatly on the formation conditions. However, the quartz-feldspar ratio and the composition of feldspar in graphic granites are relatively stable in coeval graphic granites in the same area. (2) The euhedral to subhedral coarse-grained feldspar host in graphic granites can be alkali feldspar or plagioclase. Microscopically, the feldspar host is usually a perthite, which is decomposed into irregular intergrowth of sodic and potassic feldspar. (3) The majority of the quartz grains undergrown with host feldspar are in the form of sub-parallel tabular, long rods and unconnected dendritic crystals, which only show a distinctive graphic texture in certain cross sections. (4) Under cross polarized light microscopy, multiple domains of quartz grains exhibit a nearly simultaneous extinction within a single crystal of feldspar. (5) Dauphiné twin of quartz, occasionally accompanied by Japan twin, is commonly developed in graphic granites. (6) Intergrowth of sodic and potassic feldspar, resulted from sub-solidus exsolution of precursor host feldspar solid solution, has almost the same orientations of (100), (010) and (001) planes and [001] axis. (7) A definite crystallographic orientation relationship between the majority of quartz grains and the feldspar host is identified in that[1123]Quartz//[001]Feldspar. These results suggest that the nucleation and growth of quartz are controlled by the host feldspar, which supports the simultaneous growth model of quartz and feldspar in graphic granites.
-
Key words:
- graphic granite /
- graphic texture /
- electron backscatter diffraction /
- Dauphiné twin /
- topotaxy /
- crystallographic optics /
- mineralogy
-
图 3 文象花岗岩背散射电子扫描图像(a~e)和取向衬度图像(f)
a, c, d.样品FS08-2,切面近似平行钾长石b(010) 面;b, e.样品FS08-1,切面近似平行钾长石c(001) 面;f.样品FS08-5;图b改自Xu et al.(2015a);Ab.钠长石;Kfs.钾长石;Ms.白云母;Qz.石英
Fig. 3. Backscattered electron images and orientation contrast image of graphic granites
图 9 费氏台测试数据显示文象花岗岩中石英与长石的结晶学取向关系
a.据Fersman(1928)及其总结的前人文献资料,作者提出石英c轴主要分布在与长石c轴成42°15′的小圆环带上,可以细分为A、±B、±C、±D、Rose几种亚型;b.据Drescher-Kaden(1948),16组测量数据分布范围很大,石英c轴与长石c轴在42°和64°的小圆环带上较为集中.文象石英的结晶学数据均在长石坐标系中展示,其中长石晶体[001]轴和(100)、(010)、(001) 面极点分别用实心原点标识
Fig. 9. Summary diagrams showing the relative orientation of quartz grains referred to feldspar axes measured by U-stage
图 10 EBSD测量数据显示文象花岗岩中石英与长石的结晶学取向关系
a~c.石英结晶学取向散点图,上半球等角度投影;d~f.石英结晶学优选方位极点密度图,上半球等角度投影,半宽5°.本文利用EBSD自动测量了10块文象花岗岩样品,其中北京周口店房山岩体6块,湖北罗田蕙兰山4块,累计获得3 980组石英颗粒数据.绝大部分石英c轴集中分布在与长石c轴成42°的小圆环带上,并且石英 <1123>轴近似平行长石c[001]轴.为获得统计性分析数据,每个文象花岗岩样品的长石均旋转到一致取向,其中长石晶体[001]轴和(100)、(010)、(001) 面极点分别用实心原点标识.石英颗粒的结晶学数据与其寄主长石一起作协同旋转,并集成展示在长石坐标系中
Fig. 10. Diagnostic crystallographic topotactic relationships between quartz and feldspar in graphic granites measured by EBSD
图 11 文象石英与长石在熔体中结晶生长过程示意图
a.长石在熔体中优先成核并快速生长,消耗体积熔体中的铝,并造成硅和水在局部富集;b.长石快速生长过程中形成粗糙颗粒边界,熔体成分出现不平衡,靠近长石颗粒边界处的熔体具有较高的水逸度和二氧化硅活度;c.靠近长石粗糙颗粒边界处,二氧化硅首先达到过饱和,石英快速成核并附生在长石晶体之上,石英平直颗粒边界处熔体二氧化硅活度降低,并开始有利于长石生长;据Lentz and Fowler(1992)
Fig. 11. Possible formation model of graphic quartz and feldspar in felsic melt
-
[1] Augustithis, S.S., 1962.Non-Eutectic, Graphic, Micrographic and Graphic-Like "Myrmekitic" Structures and Textures.Beiträge zur Mineralogie and Petrographie, 8(6):491-498.doi: 10.1007/BF01082097 [2] Baker, D.R., Freda, C., 2001.Eutectic Crystallization in the Undercooled Orthoclase-Quartz-H2O System:Experiments and Simulations.European Journal of Mineralogy, 13(3):453-466.doi: 10.1127/0935-1221/2001/0013-0453 [3] Baker, D.R., Freda, C., 1999.Ising Models of Undercooled Binary System Crystallization:Comparison with Experimental and Pegmatite Textures.The American Mineralogist, 84(5-6):725-732. doi: 10.2138/am-1999-5-604 [4] Bakumenko, I.T., 1966.Regular Quartz-Feldspar Intergrowths in Pegmatites and Their Genesis.Nauka, Moscow, 172(in Russian). doi: 10.1007/BF00404729 [5] Barker, D.S., 1970.Compositions of Granophyre, Myrmekite, and Graphic Granite.Geological Society of America Bulletin, 81(11):3339-3350.doi:10.1130/0016-7606(1970)81 2.0.CO; 2 [6] Černý, P., 1971.Graphic Intergrowths of Feldspars and Quartz in Some Czechoslovak Pegmatites.Contributions to Mineralogy and Petrology, 30(4):343-355.doi: 10.1007/BF00404729 [7] Drescher-Kaden, F.K., 1948.Die Feldspat-Quarz-Reaktionsgefüge der Granite and Gneise.Springer, Berlin(in German). http://www.springer.com/gp/book/9783540013365 [8] Fenn, P.M., 1986.On the Origin of Graphic Granite.American Mineralogist, 71(3-4):325-330. http://www.sciencedirect.com/science/article/pii/S0024493716301001 [9] Fersman, A.E., 1928.Die Schriftstruktur der Granitpegmatite and Ihre Entstehung.Zeitschrift Fiir Kristallogaphie, 69:77-104(in German). doi: 10.1007/978-3-7091-3616-4_4 [10] Fleet, M.E., 1982.Orientation of Phase and Domain Boundaries in Crystalline Solids.The American Mineralogist, 67(9-10):926-936. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.496.9418 [11] Frandel, C., 1945.Secondary Dauphiné Twinning in Quartz.The American Mineralogist, 30:447-461. https://www.researchgate.net/profile/Gerard_Dolino/publication/45656533_Dauphine_twin_observation_in_quartz_using_piezo_or_electro-optic_effects/links/5632127e08ae506cea68db7f.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [12] Heritsch, H., 1953.Röntgenuntersuchungen an Schriftgraniten.Tschermaks Mineralogische and Petrographische Mitteilungen, 3(2):126-141(in German).doi: 10.1007/BF01120707 [13] Heritsch, H., Höller, H., 1960.Untersuchungen an Stengeligem Quarz Eines Schriftgranites von Zwiesel, Bayern.Tschermaks Mineralogische and Petrographische Mitteilungen, 7(3):200-203(in German).doi: 10.1007/BF01127910 [14] Heritsch, H., Paulitsch, P., Holier, H., 1962.Vber Schriftgranitquarze.Tschermaks Mineralogische and Petrographische Mitteilungen, 8(1):152-165(in German).doi: 10.1007/BF01128396 [15] Ikeda, S., Nakano, T., Nakashima, Y., 2000.Three-Dimensional Study on the Interconnection and Shape of Crystals in a Graphic Granite by X-Ray CT and Image Analysis.Mineralogical Magazine, 64(5):945-959. doi: 10.1180/002646100549760 [16] Lentz, D.R., Fowler, A.D., 1992.A Dynamic Model for Graphic Quartz-Feldspar Intergrowths in Granitic Pegmatites in the Southwestern Grenville Province.The Canadian Mineralogist, 30(3):571-585. https://www.researchgate.net/publication/273831305_A_dynamic_model_for_graphic_quartz-feldspar_intergrowths_in_granitic_pegmatites_in_the_Southwestern_Grenville_Province [17] Li, J.K., 2012.Research Developments of Crystallization Dynamics for Pegmatitic Texture.Earth Science Frontiers, 19(4):165-172(in Chinese with English abstract). http://www.adsabs.harvard.edu/abs/1985ESRv...22....1E [18] Lofgren, G., 1971.Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass.Geological Society of America Bulletin, 82(1):111-124.doi:10.1130/0016-7606(1971)82 2.0.CO; 2 [19] London, D., 2009.The Origin of Primary Textures in Granitic Pegmatites.The Canadian Mineralogist, 47(4):697-724.doi: 10.3749/canmin.47.4.697 [20] London, D., Morgan, G.B, Hervig, R.L., 1989.Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites.Contributions to Mineralogy and Petrology, 102(1):1-17.doi: 10.1007/BF01160186 [21] Menegon, L., Piazolo, S., Pennacchioni, G., 2011.The Effect of Dauphiné Twinning on Plastic Strain in Quartz.Contributions to Mineralogy and Petrology, 161(4):635-652.doi: 10.1007/s00410-010-0554-7 [22] Piazolo, S., Prior, D.J., Holness, M.D., 2005.The Use of Combined Cathodoluminescence and EBSD Analysis:A Case Study Investigating Grain Boundary Migration Mechanisms in Quartz.Journal of Microscopy, 217(2):152-161.doi: 10.1111/j.1365-2818.2005.01423.x [23] Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.The American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204 [24] Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7 [25] Schloemers, V.H., 1962a.Hydrothermal-Synthetische Gemeinsame Kristallisation von Orthoklas and Quarz, Ⅰ.Radex Rundschau, 3:133-156. doi: 10.1007/BF00371426 [26] Schloemer, V.H., 1962b.Hydrothermal-Synthetische Gemeinsame Kristallisation von Orthoklas and Quarz, Ⅱ.Radex Rundschau, 4:157-173. doi: 10.1007/BF00371426 [27] Seclaman, M., Constantinescu, E., 1972.Metasomatic Origin of Some Micrographic Intergrowths.The American Mineralogist, 57:932-940. https://www.researchgate.net/publication/259503167_A_study_of_intergrowth_textures_and_their_possible_origins_in_the_Alvand_plutonic_complex_Hamadan_Iran [28] Simpson, D.R., 1962.Graphic Granite from the Ramona Pegmatite District, California.The American Mineralogist, 47:1123-1138. http://thesis.library.caltech.edu/3660/ [29] Smith, J.V., 1974.Intergrowths of Feldspars with Other Minerals.In:Smith, J.V., ed., Feldspar Minerals:2 Chemical and Textural Properties.Springer, Heidelberg, Berlin, 553-647.doi: 10.1007/978-3-642-65743-6_8 [30] Stel, H., 1992.Diagnostic Microstructures for Primary and Deformational Quartz Rods in Graphic Granite.The American Mineralogist, 77:329-335. https://www.researchgate.net/publication/289117782_Diagnostic_microstructures_for_primary_and_deformational_quartz_rods_in_graphic_granite [31] Sunagawa, I., Imai, H., Takada, M., et al., 2004.Morphogenesis of Quartz Crystals Twinned after Japan Law.European Journal of Mineralogy, 16(1):91-97.doi: 10.1127/0935-1221/2004/0016-0091 [32] Tullis, J., 1970.Quartz:Preferred Orientation in Rocks Produced by Dauphiné Twinning.Science, 168(3937):1342-1344.doi: 10.1126/science.168.3937.1342 [33] Tullis, J., 2002.Deformation of Granitic Rocks:Experimental Studies and Natural Examples.Reviews in Mineralogy and Geochemistry, 51(1):51-95.doi: 10.2138/gsrmg.51.1.51 [34] Wahlstrom, E.E., 1939.Graphic Granite.The American Mineralogist, 24:681-698. http://stoneplus.cst.cmich.edu/graphic.htm [35] Wenk, H.R., Lonardelli, I., Vogel, S.C., et al., 2005.Dauphiné Twinning as Evidence for an Impact Origin of Preferred Orientation in Quartzite:An Example from Vredefort, South Africa.Geology, 33(4):273-276.doi: 10.1130/G21163.1 [36] Wenk, H.R., Rybacki, E., Dresen, G., et al., 2006.Dauphiné Twinning and Texture Memory in Polycrystalline Quartz, Part 1:Experimental Deformation of Novaculite.Physics and Chemistry of Minerals, 33(10):667-676.doi: 10.1007/s00269-006-0115-9 [37] Wenk, H.R., Barton, N., Bortolotti, M., et al., 2009.Dauphiné Twinning and Texture Memory in Polycrystalline Quartz, Part 3:Texture Memory during Phase Transformation.Physics and Chemistry of Minerals, 36(10):567-583.doi: 10.1007/s00269-009-0302-6 [38] Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm [39] Xu, H.J., Zhang, J.F., Yu, T., et al., 2015a.Crystallographic Evidence for Simultaneous Growth in Graphic Granite.Gondwana Research, 27(4):1550-1559.doi: 10.1016/j.gr.2014.01.013 [40] Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015b.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010 [41] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x [42] Zhao, S.R., Bian, Q.J., Ling, Q.C., 2004.Crystallography and Mineralogy. Higher Education Press, Beijing, 396 (in Chinese). http://pubs.rsc.org/en/Content/ArticleLanding/AR/1922/AR9221900234#!divAbstract [43] Zhao, S.R., Wang, Q.Y., Xiao, P., et al., 2012.Complication on the Twinning of Quartz.Geological Science and Technology Information, 31(5):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205004.htm [44] 李建康, 2012.花岗伟晶岩结构结晶动力学的研究进展.地学前缘, 19(4): 165-172. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204019.htm [45] 徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm [46] 赵珊茸, 边秋娟, 凌其聪, 2004.结晶学及矿物学.北京:高等教育出版社, 396. http://www.cnki.com.cn/Article/CJFDTOTAL-FYJY201507075.htm [47] 赵珊茸, 王勤燕, 肖平, 等, 2012.论石英双晶的复杂性.地质科技情报, 31(5): 8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205004.htm