• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合

    周春银 金振民 王雁宾 王超 张艳飞

    周春银, 金振民, 王雁宾, 王超, 张艳飞, 2016. 地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合. 地球科学, 41(9): 1451-1460. doi: 10.3799/dqkx.2016.114
    引用本文: 周春银, 金振民, 王雁宾, 王超, 张艳飞, 2016. 地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合. 地球科学, 41(9): 1451-1460. doi: 10.3799/dqkx.2016.114
    Zhou Chunyin, Jin Zhenmin, Wang Yanbin, Wang Chao, Zhang Yanfei, 2016. Sound Velocity Measurement of Minerals and Rocks at Mantle Transition Zone Conditions Using Ultrasonic and Multianvil Techniques. Earth Science, 41(9): 1451-1460. doi: 10.3799/dqkx.2016.114
    Citation: Zhou Chunyin, Jin Zhenmin, Wang Yanbin, Wang Chao, Zhang Yanfei, 2016. Sound Velocity Measurement of Minerals and Rocks at Mantle Transition Zone Conditions Using Ultrasonic and Multianvil Techniques. Earth Science, 41(9): 1451-1460. doi: 10.3799/dqkx.2016.114

    地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合

    doi: 10.3799/dqkx.2016.114
    基金项目: 

    国家自然科学基金项目 41372057

    国家自然科学基金项目 41174076

    国家自然科学基金青年基金项目 41404068

    详细信息
      作者简介:

      周春银(1985-),男,博士后,主要从事地幔岩石学高温高压实验以及矿物物理研究.E-mail:zhoucy@cug.edu.cn, chunyinzhou@gmail.com

    • 中图分类号: P574

    Sound Velocity Measurement of Minerals and Rocks at Mantle Transition Zone Conditions Using Ultrasonic and Multianvil Techniques

    • 摘要: 地幔矿物的波速测量研究是认识地球深部物质组成和性质的重要方法.国际上在大压机中利用超声波技术对地幔矿物材料开展了广泛的波速测量研究,实验温压范围达到地幔转换带条件,而国内大压机超声波波速测量局限于6 GPa压力以内.在中国地质大学(武汉)地球深部研究实验室1 000 t Walker型多面砧大压机上,利用超声波技术,建立了一套高压波速测量系统,对地幔转换带矿物Mg2SiO4瓦兹利石多晶样品在18 GPa压力范围内的弹性波速进行了测量,测量结果与前人超声波波速测量结果相比总体吻合程度良好.利用多面砧大压机和超声波技术,在国内首次实现了地幔转换带高压条件下的波速测量,缩短了我国高压波速测量水平与国外先进水平的差距,同时可以为中国及周边地区地球物理观测资料的解析提供矿物物理方面的实验约束,为国内岩石矿物和固体材料的弹性研究提供实验技术支持.

       

    • 图  1  瓦兹利石样品(R379) 电子背散射显微照片

      样品颗粒间三连点发育,颗粒度<10 μm,照片中孔洞并非原生而是在抛光过程中形成的

      Fig.  1.  Electron back scattering image of the wadsleyite sample (R379)

      图  2  超声波波速测量实验样品组装

      蓝色线代表超声波入射和反射信号路径,A1、B1、S1分别表示碳化钨压砧/Al2O3缓冲棒、缓冲棒/样品、样品/NaCl+BN界面的一次反射信号.热电偶靠近NaCl+BN层附近放置

      Fig.  2.  Cell assembly for the ultrasonic velocity measurement

      图  3  实验装置压力标定曲线

      图中各点分别为金属Bi、ZnTe和ZnS在常温高压下发生相变时所对应的油压及相应的压力

      Fig.  3.  Pressure calibration curve for the experimental cell assembly

      图  4  超声波波速测量系统示意

      超声波信号由波形发生器发出,经过前置信号放大器作放大处理(Gate端口输入电平控制放大器的启动开关),通过双工机探头端(Probe)传给碳化钨切角处的LiNbO3传感器,LiNbO3传感器可以将电信号和声信号做转换处理,同时作为发射端和接收端工作,返回的信号由双工机传回给数字示波器记录.波形发生器和数字示波器之间由另一根同步线作时间同步.箭头指示信号传输路径.详见文中解释

      Fig.  4.  Schematic of the ultrasonic velocity measurement system

      图  5  超声波信号示例(a)和超声波S波信号局部放大图(b)

      实验编号U004,18 GPa,室温条件;图a的频率为40 MHz;图b的频率为30 MHz.A1、B1、S1分别表示碳化钨压砧/Al2O3缓冲棒、缓冲棒/样品、样品/NaCl+BN界面的一次反射信号,B1与S1之间的时差即为超声波在样品中的走时

      Fig.  5.  An example (experiment No.U004) for the ultrasonic signal (a) and an S-wave signal in enlarged scale (b)

      图  6  高压条件下瓦兹利石(R379) 的弹性波速(a)和弹性模量(b)

      Fig.  6.  The elastic wave velocities (a) and elastic modulus (b) of wadsleyite (R379)

      表  1  高压下瓦兹利石测量值

      Table  1.   Peak strengths and friction angles of glass beads within different cell pressures

      P(GPa) tP(μs) tS(μs) l(mm) Vp(km/s) Vs(km/s) K(GPa) G(GPa)
      0.0 - - 1.179 - - - -
      1.6 0.244 2 0.420 8 1.176 9.63 5.59 178.8 109.3
      3.0 0.237 4 0.411 6 1.172 9.88 5.70 191.6 114.5
      4.5 0.233 4 0.406 2 1.170 10.02 5.76 199.8 117.9
      5.8 0.231 0 0.403 0 1.167 10.10 5.79 205.3 120.0
      7.1 0.228 4 0.400 0 1.165 10.20 5.82 211.6 122.1
      8.3 0.226 6 0.398 2 1.162 10.26 5.84 216.6 123.4
      9.5 0.225 0 0.396 0 1.160 10.31 5.86 220.5 125.0
      10.6 0.223 6 0.393 8 1.158 10.36 5.88 223.9 126.6
      11.6 0.222 2 0.392 6 1.157 10.41 5.89 228.2 127.6
      12.6 0.221 0 0.391 4 1.155 10.45 5.90 231.8 128.5
      13.5 0.220 0 0.390 2 1.154 10.49 5.91 234.7 129.5
      14.3 0.219 0 0.389 2 1.152 10.52 5.92 237.8 130.3
      15.1 0.218 0 0.388 2 1.151 10.56 5.93 241.0 131.1
      15.8 0.217 2 0.387 2 1.150 10.59 5.94 243.4 131.9
      16.4 0.216 6 0.386 6 1.149 10.61 5.94 245.4 132.5
      17.0 0.216 0 0.385 8 1.148 10.63 5.95 247.2 133.1
      17.5 0.215 4 0.385 2 1.147 10.65 5.96 249.2 133.6
      18.0 0.214 8 0.384 6 1.147 10.68 5.96 251.2 134.1
      注:本实验压力标定误差大约为0.3 GPa,长度误差大约为0.002 mm,超声波走时误差为大约0.6 ns,相应的波速误差大约分别为0.04 km/s(P波)和0.02 km/s(S波),计算得到的弹性模量的误差大约为3 GPa(K)和1 GPa(G).P.压力;tP.P波走时;tS.S波走时;l.样品长度;Vp.P波速度;Vs.S波速度;K.体积模量;G.剪切模量.
      下载: 导出CSV

      表  2  本实验测量所得弹性参数与前人数据对比

      Table  2.   The elastic parameters obtained in present measurements compared with previous data

      文献 K0(GPa) K G0(GPa) G 最高压力(GPa) 研究方法
      本研究 182±2 4.0±0.1 112±1 1.3±0.1 18 超声波、多面砧
      Sawamoto et al., 1984 174 - 114 - 0 布里渊散射
      Gwanmesia et al., 1990b - 4.8±0.2 - 1.7±0.1 3.0 超声波、活塞圆筒
      Li et al., 1996 170 4.24±0.10 108 1.49±0.03 12.5 超声波、多面砧
      Zha et al., 1997 170±2 4.3±0.2 115±2 1.4±0.2 14 布里渊散射
      Li et al., 2001 173±1 4.2±0.1 113±1 1.5±0.1 7 超声波、多面砧
      Kiefer et al., 2001 182 4.23 116 1.10 - 理论计算
      下载: 导出CSV
    • [1] Bassett, W.A., 2009.Diamond Anvil Cell, 50th Birthday.High Pressure Research, 29(2):163-186.doi: 10.1080/08957950802597239
      [2] Birch, F., 1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research, 65(4):1083-1102.doi: 10.1029/jz065i004p01083
      [3] Birch, F., 1961.The Velocity of Compressional Waves in Rocks to 10 Kilobars:2.Journal of Geophysical Research, 66(7):2199-2224.doi: 10.1029/jz066i007p02199
      [4] Chang, Y.Y., Jacobsen, S.D., Kimura, M., et al., 2014.Elastic Properties of Transparent Nano-Polycrystalline Diamond Measured by GHz-Ultrasonic Interferometry and Resonant Sphere Methods.Physics of the Earth and Planetary Interiors, 228:47-55.doi: 10.1016/j.pepi.2013.09.009
      [5] Cook, R.K., 1957.Variation of Elastic Constants and Static Strains with Hydrostatic Pressure:A Method for Calculation from Ultrasonic Measurements.The Journal of the Acoustical Society of America, 29(4):445-449.doi: 10.1121/1.1908922
      [6] Davies, G.F., Dziewonski, A.M., 1975.Homogeneity and Constitution of the Earth's Lower Mantle and Outer Core.Physics of the Earth and Planetary Interiors, 10(4):336-343.doi: 10.1016/0031-9201(75)90060-6
      [7] Dziewonski, A.M., Anderson, D.L., 1981.Preliminary Reference Earth Model.Physics of the Earth and Planetary Interiors, 25(4):297-356.doi: 10.1016/0031-9201(81)90046-7
      [8] Gwanmesia, G.D., Li, B., Liebermann, R.C., 1993.Hot Pressing of Polycrystals of High-Pressure Phases of Mantle Minerals in Multi-Anvil Apparatus.Pure and Applied Geophysics, 141(2-4):467-484.doi: 10.1007/BF00998340
      [9] Gwanmesia, G.D., Liebermann R.C., Guyot F., 1990a.Hot-Pressing and Characterization of Polycrystals of β-Mg2SiO4, for Acoustic Velocity Measurements.Geophysical Research Letters, 17(9):1331-1334.doi: 10.1029/GL017i009p01331
      [10] Gwanmesia, G.D., Rigden, S., Jackson, I., et al., 1990b.Pressure Dependence of Elastic Wave Velocity for β-Mg2SiO4 and the Composition of the Earth's Mantle.Science, 250(4982):794-797.doi: 10.1126/science.250.4982.794
      [11] Higo, Y., Funakoshi, K., Irifune, T., 2012.Development of the Elastic Wave Velocity Measurement Technique by the Ultrasonic Method to Lower Mantle Condition.AGU Fall Meeting Abstracts, San Francisco. https://www.hindawi.com/journals/amse/2017/1651753/
      [12] Hughes, D.S., Cross, J.H., 1951.Elastic Wave Velocities in Rocks at High Pressures and Temperatures.Geophysics, 16(4):577-593.doi: 10.1190/1.1437706
      [13] Irifune, T., Higo, Y., Inoue, T., et al., 2008.Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region.Nature, 451(7180):814-817.doi: 10.1038/nature06551
      [14] Katsura, T., Ito, E., 1989.The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures:Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel.Journal of Geophysical Research, 94(B11):15663-15670.doi: 10.1029/JB094iB11p15663
      [15] Katsura, T., Yamada, H., Nishikawa, O., et al., 2004.Olivine-Wadsleyite Transition in the System (Mg, Fe)2SiO4.Journal of Geophysical Research(Solid Earth), 109(B2):105-122.doi: 10.1029/2003jb002438
      [16] Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995.Constraints on Seismic Velocities in the Earth from Traveltimes.Geophysical Journal International, 122(1):108-124.doi: 10.1111/j.1365-246x.1995.tb03540.x
      [17] Kiefer, B., Stixrude, L., Hafner, J., et al., 2001.Structure and Elasticity of Wadsleyite at High Pressures.American Mineralogist, 86(11-12):1387-1395.doi: 10.2138/am-2001-11-1207
      [18] Kono, Y., Irifune, T., Higo, Y., et al., 2010.P-V-T Relation of MgO Derived by Simultaneous Elastic Wave Velocity and In Situ X-Ray Measurements:A New Pressure Scale for the Mantle Transition Region.Physics of the Earth and Planetary Interiors, 183(1-2):196-211.doi: 10.1016/j.pepi.2010.03.010
      [19] Li, B., Gwanmesia, G.D., Liebermann, R.C., 1996.Sound Velocities of Olivine and Beta Polymorphs of Mg2SiO4 at Earth's Transition Zone Pressures.Geophysical Research Letters, 23(17):2259-2262.doi: 10.1029/96gl02084
      [20] Li, B., Kung, J., Liebermann, R.C., 2004.Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-Anvil Apparatus.Physics of the Earth and Planetary Interiors, 143-144:559-574.doi: 10.1016/j.pepi.2003.09.020
      [21] Li, B., Liebermann, R.C., 2007.Indoor Seismology by Probing the Earth's Interior by Using Sound Velocity Measurements at High Pressures and Temperatures.Proceedings of the National Academy of Sciences, 104(22):9145-9150.doi: 10.1073/pnas.0608609104
      [22] Li, B., Liebermann, R.C., 2014.Study of the Earth's Interior Using Measurements of Sound Velocities in Minerals by Ultrasonic Interferometry.Physics of the Earth and Planetary Interiors, 233:135-153.doi: 10.1016/j.pepi.2014.05.006
      [23] Li, B., Liebermann, R.C., Weidner, D.J., 1998.Elastic Moduli of Wadsleyite (β-Mg2SiO4) to 7 Gigapascals and 873 Kelvin.Science, 281(5377):675-677.doi:0.1126/science.281.5377.675
      [24] Li, B., Liebermann, R.C., Weidner, D.J., 2001.P-V-Vp-Vs-T Measurements on Wadsleyite to 7 GPa and 873 K:Implications for the 410-km Seismic Discontinuity.Journal of Geophysical Research(Solid Earth), 106(B12):30579-30591. doi: 10.1029/2001jb000317
      [25] Liebermann, R.C., 2011.Multi-Anvil, High Pressure Apparatus:A Half-Century of Development and Progress.High Pressure Research, 31(4):493-532.doi: 10.1080/08957959.2011.618698
      [26] Liu, Z., Irifune, T., Gréaux, S., et al., 2014.Elastic Wave Velocity of Polycrystalline Mj80Py20 Garnet to 21 GPa and 2 000 K.Physics and Chemistry of Minerals, 42(3):213-222 doi: 10.1007/s00269-014-0712-y
      [27] Ma, M.N., Bai, W.M., 1999.Progress of High Temperature and Pressure Study on Elastic Wave Velocity and Its Geodynamical Implications.Progress in Geophysics, 14(1):40-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201106009.htm
      [28] McSkimin, H.J., 1950.Ultrasonic Measurement Techniques Applicable to Small Solid Specimens.The Journal of the Acoustical Society of America, 22(4):413-413. doi: 10.1121/1.1906618
      [29] Sawamoto, H., Weidner, D.J, Sasaki, S., et al., 1984.Single-Crystal Elastic Properties of the Modified Spinel (Beta) Phase of Magnesium Orthosilicate.Science, 224(4650):749-751 doi: 10.1126/science.224.4650.749
      [30] Wang, X.B., Chen, T., Qi, X.T., et al., 2015.Acoustic Travel Time Gauges for In-Situ Determination of Pressure and Temperature in Multi-Anvil Apparatus.Journal of Applied Physics, 118(6):1534-1543.doi: 10.1063/1.4928147
      [31] Wu, Y., Zhang, Y.F., Wang, Y.B., et al., 2013.Experimental Investigation of Phase Transformations of Olivine and Enstatite at the Lower Part of the Mantle Transition Zone:Implications for Structure of the 660 km Seismic Discontinuity.Science China Earth Sciences, 57(4):592-599.doi: 10.1007/s11430-013-4735-x
      [32] Xie, H.S., Zhang, Y.M., Xu, H.G., et al., 1993.A New Method of Measurement for Elastic-Wave Velocities in Minerals and Rocks at High-Temperature and High-Pressure and its Significance.Science in China (Series B), 36(10):1276-1280. http://chem.scichina.com:8081/sciBe/CN/article/downloadArticleFile.do?attachType=PDF&id=398201
      [33] Xie, H.S., Zhou, W.G., Zhao, Z.D., et al., 1998.Measurement of Elastic Wave Velocities in Rocks at High Temperature and Pressure.Earth Science Frontiers, 5(4):329-337(in Chinese with English abstract). doi: 10.1360/yb1993-36-10-1276
      [34] Zha, C.S., Duffy, T.S., Mao, H.K., et al., 1997.Single-Crystal Elasticity of β-Mg2SiO4 to the Pressure of the 410 km Seismic Discontinuity in the Earth's Mantle.Earth and Planetary Science Letters, 147(1-4):9-15.doi: 10.1016/S0012-821X(97)00010-1
      [35] Zhang, Y.F., Wang, Y.B., Wu, Y., et al., 2013.Phase Transitions of Harzburgite and Buckled Slab under Eastern China.Geochemistry, Geophysics, Geosystems, 14(4):1182-1199. doi: 10.1002/ggge.20069
      [36] Zhang, Y.F., Wu, Y., Liu, P.L., et al., 2012.Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences.Earth Science, 37(5):955-965(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205011.htm
      [37] Zhao, D.P., Yu, S., Ohtani, E., 2011.East Asia:Seismotectonics, Magmatism and Mantle Dynamics.Journal of Asian Earth Sciences, 40(3):689-709.doi: 10.1016/j.jseaes.2010.11.013
      [38] Zhou, C., Gréaux, S., Nishiyama, N., et al., 2014.Sound Velocities Measurement on MgSiO3 Akimotoite at High Pressures and High Temperatures with Simultaneous in Situ X-Ray Diffraction and Ultrasonic Study.Physics of the Earth and Planetary Interiors, 228:97-105.doi: 10.1016/j.pepi.2013.06.005
      [39] Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010.Mantle Transition Zone:An Important Field in the Studies of Earth's Deep Interior.Earth Science Frontiers, 17(3):90-113(in Chinese with English abstract). http://www.nature.com/nature/foxtrot/svc/authoremailform?doi=10.1038/nature13080&file=/nature/journal/v507/n7491/full/nature13080.html&title=Hydrous+mantle+transition+zone+indicated+by+ringwoodite+included+within+diamond&author=D.+G.+Pearson
      [40] 马麦宁, 白武明, 1999.高温高压实验弹性波速研究及其地球动力学意义.地球物理学进展, 14(1): 40-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199901002.htm
      [41] 谢鸿森, 周文戈, 赵志丹, 等, 1998.高温高压条件下岩石弹性波速测量, 地学前缘, 5(4): 148-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY804.019.htm
      [42] 张艳飞, 吴耀, 刘鹏雷, 等, 2012.Walker型28 GPa多面砧压机及其在地球科学中的应用.地球科学, 37(5): 955-965. http://earth-science.net/WebPage/Article.aspx?id=2301
      [43] 周春银, 金振民, 章军锋, 2010.地幔转换带:地球深部研究的重要方向.地学前缘, 17(3): 90-113. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3999
    • HTML全文浏览量:  1928
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-22
    • 刊出日期:  2016-09-15

    目录

      /

      返回文章
      返回