Adaptation and Correction of Dynamic Penetration Rod Length
-
摘要: 西部地区河床深厚覆盖层勘探取样及工程特性是水电工程地质勘察中常遇技术难题,动力触探(dynamic penetration test,DPT)因操作简单、适用土类多而成为西部地区河床覆盖层原位测试首选方法.现行规范仅给出了20 m杆长范围的修正方法,但对超此范围重型、超重型动力触探杆长适用性及修正问题,长期以来业内则颇多争议却少有研究.鉴于此,利用现场试验与数值模拟相结合,通过对动力触探试验杆上各测点应变现场实测并得到各测点应力分布,再利用LS-DYNA软件进行反演分析并确定相关计算参数,而后进行杆长25 m、40 m、60 m、80 m、120 m的数值模拟计算得到了杆长适用范围及修正系数.试验研究方法及成果可供类似问题研究与深厚覆盖层地区工程勘察借鉴或参考.Abstract: In the geotechnical investigation of hydropower projects in western China, exploratory sampling and engineering property research are challenging on account of the thick overburden on the riverbed. The dynamic penetration test(DPT) has become the preferred method of in-situ tests for the river overburden layers in western China due to its simple operation and applicability for different soil types. The current standard only provides a correction method for the rod length within 20 m. For the problems of adaptation and correction of heavy and extra-heavy dynamic penetration rod length, there is always much controversy but rare research for a long time. To address this issue, a study is conducted, involving the following procedures. Firstly, combined with the field test and numerical simulation, the stress value of each monitoring point is obtained by monitoring the rod of field DPT. Then, LS-DYNA software is used for inverse analysis and relevant parameters are determinined. Lastly, different rod lengths of DPT, such as 25 m, 40 m, 60 m, 80 m and 120 m, are simulated, and the adaptation and correction of rod length are obtained. The research method and results can be used for reference in similar problems and other geotechnical investigation practices in areas with deep river overburden layers.
-
表 1 动力触探现场试验应力沿杆长变化规律
Table 1. The rules of stress among the rod length in the field DPT
杆长(m) 杆顶应力(MPa) 杆底应力(MPa) 衰减比例(%) 沿杆长应力变化规律公式 25.87 160 95 40.63 y=0.143 4x2-0.203 6x-181.330 0 40.92 140 70 50.00 y=0.048 5x2-1.025 8x-137.000 0 46.85 140 68 51.43 y=0.021 8x2+0.337 0x-138.540 0 注:y为应力;x为杆长. 表 2 数值试验模型尺寸
Table 2. The model size of numerical simulation
材料(kg) 外径(cm) 内径(cm) 高度(cm) 落锤63.5 26.0 0.0 15.0 落锤120.0 28.0 0.0 24.8 土 150.0 0.0 1 000.0 表 3 主要计算参数
Table 3. The main calculation parameters
材料 密度(g/cm3) 弹性模量(Pa) 泊松比 落锤 7.85 2.10×1011 0.269 探杆 7.85 2.16×1011 0.269 土 1.80 6.00×106 0.300 表 4 探杆底端计算参数
Table 4. The parameters of rod at the bottom
序号 弹性模量(Pa) 杆长(m)/杆径(mm) 1 3.00×106 40/50 2 6.00×106 40/50 3 10.00×106 40/50 4 20.00×106 40/50 5 30.00×106 40/50 表 5 数值计算工况
Table 5. The calculation conditions of numerical simulation
工况序号 重锤(63.5 kg) 超重锤(120.0 kg) 杆径42 mm (a) 杆径50 mm (b) 杆径50 mm (c) 工况1 25 25 25 工况2 40 40 40 工况3 60 60 60 工况4 80 80 80 工况5 120 120 120 表 6 动力触探数值模拟应力沿杆长变化规律
Table 6. The rules of stress among the rod length in the numerical simulation of DPT
杆长(m)/杆径(mm) 考虑阻尼系数 未考虑阻尼系数 杆顶应力(MPa) 杆底应力(MPa) 衰减比例(%) 杆顶应力(MPa) 杆底应力(MPa) 衰减比例(%) 25/50 201 93 53.9 210 190 9.5 40/50 201 64 68.4 210 185 11.9 60/50 198 36 81.7 210 183 12.9 80/50 201 19 90.0 209 180 14.3 120/50 201 5 97.3 210 178 15.2 注:换算得到的杆底应力为多位小数,这里只作说明,故取整数;两个方案第1个监测点选取不同,考虑阻尼系数时,第1个监测点距离杆顶0.7 m,不考虑阻尼系数时,第1个监测点距离杆顶0.6 m. 表 7 重型动力触探锤击数杆长修正系数
Table 7. The modified coefficients of rod length of heavy dynamic penetration
杆长(m) 杆底冲击力(kN) 有效能(N·m) 杆长修正系数 水工公式列出的杆长修正系数 有效能公式列出的杆长修正系数 2 90.954 421.231 1.00 1.00 1.00 4 78.137 411.204 0.97 0.97 - 6 70.640 383.320 0.91 0.92 0.94 9 63.143 358.046 0.85 0.86 0.84 12 57.824 345.409 0.82 0.81 0.79 15 53.698 332.772 0.79 0.77 0.74 18 50.327 324.348 0.77 0.73 0.71 21 47.477 311.711 0.74 0.70 0.68 24 45.008 299.074 0.71 0.67 0.65 27 42.830 290.649 0.69 0.65 0.63 30 40.882 278.012 0.66 0.62 0.61 33 39.120 269.588 0.64 0.60 - 36 37.511 261.163 0.62 0.58 0.57 39 36.031 252.739 0.60 0.57 - 42 34.660 240.102 0.57 0.55 0.55 45 33.385 231.677 0.55 0.54 - 48 32.191 223.252 0.53 0.53 - 51 31.071 219.040 0.52 0.52 0.52 66 26.303 181.129 0.43 - 0.48 69 25.481 176.917 0.42 - - 72 24.694 168.492 0.40 - - 注:杆长修正系数利用式(2) 计算得出;水工公式、有效能公式列出的杆长修正系数见林宗元(2005);-表示未列出. 表 8 超重型动力触探锤击数杆长修正系数
Table 8. The modified coefficients of rod length of extra heavy dynamic penetration
杆长(m) 杆底冲击力(kN) 有效能(N·m) 杆长修正系数 水工公式列出的杆长修正系数 有效能公式列出的杆长修正系数 2 136.777 1 124.803 1.00 1.00 1.00 4 117.584 1 079.811 0.96 0.97 - 6 106.356 1 057.315 0.94 0.92 0.94 9 95.129 1 023.571 0.91 0.86 0.84 12 87.163 978.579 0.87 0.81 0.79 15 80.984 944.835 0.84 0.77 0.74 18 75.936 899.842 0.80 0.73 0.71 21 71.667 877.346 0.78 0.70 0.68 24 67.970 821.106 0.73 0.67 0.65 27 64.708 798.610 0.71 0.65 0.63 30 61.791 776.114 0.69 0.62 0.61 33 59.152 753.618 0.67 0.60 - 36 56.742 719.874 0.64 0.58 0.57 39 54.526 697.378 0.62 0.57 - 42 52.474 674.882 0.60 0.55 0.55 45 50.564 652.386 0.58 0.54 - 48 48.776 629.890 0.56 0.53 - 51 47.098 607.394 0.54 0.52 0.52 66 39.958 584.898 0.52 - 0.48 69 38.728 562.402 0.50 - - 72 37.549 551.153 0.49 - - 78 35.333 517.409 0.46 - - 81 34.288 506.161 0.45 - 0.45 84 33.281 483.665 0.43 - - 87 32.309 472.417 0.42 - - 90 31.370 461.169 0.41 - - 93 30.462 449.921 0.40 - - 96 29.583 427.425 0.38 - 0.44 99 28.731 416.177 0.37 - - 102 27.905 404.929 0.36 - 0.43 105 27.102 393.681 0.35 - - 108 26.320 382.433 0.34 - - 111 25.556 371.185 0.33 - - 114 24.808 359.937 0.32 - - 注:杆长修正系数利用式(2) 计算得出;水工公式、有效能公式列出的杆长修正系数见林宗元(2005);-表示未列出. -
[1] Bai, J.Z., 2005.The Theoretical Basis and Example Analysis of LS-DYNA3D Software.Science Press, Beijing (in Chinese). [2] Jiang, H.J., Li, C.A., Zhang, Y.F., et al., 2014.Origin of Meander Shape-Superimposed Valleys in the Middle Jialing River:Responses to Regional Geological Environment.Earth Science, 39(11):1666-1674(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201411012.htm [3] Li, H.Z., Guo, F., Pan, Y.Z., et al., 2015.Study on Extension and Polynomial Fitting of Correction Factors of Heavy Dynamic Penetration and Extra Heavy Dynamic Penetration.Yangtze River, 46(1):30-35 (in Chinese with English abstract). [4] Li, H.Z., Hao, W.Z., Xiang, J.B., et al., 2008.The Study of Sampling and the In-Situ Test and Laboratory Test in the River Thick Overburden Layers at the Wudongde Dam Site Area.Journal of Engineering Geology, 16(Suppl.):202-207 (in Chinese with English abstract). http://www.gcdz.org/EN/abstract/abstract10299.shtml [5] Lin, Z.Y., 2005.Geotechnical Testing and Monitoring Manual.China Architecture & Building Press, Beijing, 238-261 (in Chinese). [6] Ministry of Construction of the People's Republic of China, 2008.Technical Code for Building Pile Foundations (JGJ94-2008).China Architecture & Building Press, Beijing, 21 (in Chinese). [7] Ministry of Construction of the People's Republic of China, 2009.Code for Investigation of Geotechnical Engineering (GB50021-2001).China Architecture & Building Press, Beijing, 141-142 (in Chinese). [8] Ministry of Railways of the People's Republic of China., 2005.Code for Design on Subsoil and Foundation of Railway Bridge and Culvert (TB10002.5-2005).China Railway Publishing House, Beijing, 21-31 (in Chinese). [9] Shi, S.Q., Kang, J.G., Wang, M., et al., 2009.Engineering Application of ANSYSLS-DYNA Software in Explosion and Shock.China Architecture & Building Press, Beijing (in Chinese). [10] Shi, X.S., Cheng, Z.L., Zuo, Y.Z., et al., 2011.Density Identification Method of Dam Foundation Deep Overburden.Rock and Soil Mechanics, 32(7):2073-2084 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201107027.htm [11] Xu, H., Wang, M.Y., Cheng, Z.L., et al., 2008.Analysis of Effect of Canyon Terrain on Stress and Displacement of Cutoff Wall in Dam Foundation with Deep Overburden.Rock and Soil Mechanics, 29(Suppl.1):64-68 (in Chinese with English abstract). [12] Zuo, Y.Z., Cheng Z.L., Ding H.S., et al., 2014.Study of Modified Coefficient of Dynamic Penetration Rod Length.Rock and Soil Mechanics, 35(5):1284-1288 (in Chinese with English abstract). [13] 白金泽, 2005.LS-DYNA3D理论基础与实例分析.北京:科学出版社. [14] 江华军, 李长安, 张玉芬, 等, 2014.嘉陵江曲流型叠置河谷成因对区域地质环境的响应.地球科学, 39(11):1666-1674. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201411011.htm [15] 李会中, 郭飞, 潘玉珍, 等, 2015.重型超重型动力触探锤击数修正系数外延研究.人民长江, 46(1):30-35. http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201501010.htm [16] 李会中, 郝文忠, 向家菠, 等, 2008.金沙江乌东德水电站坝址河床深厚覆盖层勘探取样与试验研究.工程地质学报, 16(增刊):202-207. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ200810001041.htm [17] 林宗元, 2005.岩土工程试验监测手册.北京:中国建筑工业出版社, 238-261. [18] 中华人民共和国建设部, 2008.建筑桩基技术规范(JGJ94-2008).北京:中国建筑工业出版社, 21. [19] 中华人民共和国建设部, 2009.岩土工程勘察规范(GB50021-2001).北京:中国建筑工业出版社, 141-142. [20] 中华人民共和国铁道部, 2005. 铁路桥涵地基和基础设计规范(TB10002. 5-2005). 北京: 中国铁道出版社, 21-31. [21] 石少卿, 康建功, 汪敏, 等, 2011.ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用.北京:中国建筑工业出版社. [22] 石修松, 程展林, 左永振, 等, 2011.坝基深厚覆盖层密度辨识方法.岩土力学, 32(7):2073-2084. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201107027.htm [23] 徐晗, 汪明元, 程展林, 等, 2008.深厚覆盖层300 M级超高土质心墙坝应力变形特征.岩土力学, 29(增刊1):64-68. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSL200811001014.htm [24] 左永振, 程展林, 丁红顺, 等, 2014.动力触探杆长修正系数试验研究.岩土力学, 35(5):1284-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405010.htm