Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea
-
摘要: 冷泉碳酸盐岩记录了甲烷渗漏活动和流体组分随时间的变化过程,对示踪冷泉系统沉积环境变化具有非常重要的意义.对南海北部获取的冷泉碳酸盐岩进行了碳、氧同位素剖面研究,并对南海北部冷泉碳酸盐岩的碳、氧同位素变化范围进行了统计分析.研究结果及已发表的δ13C和δ18O剖面数据表明,南海北部冷泉碳酸盐岩剖面的δ13C和δ18O之间普遍存在相关性,相关系数R2最高可达0.933 1.经统计,南海北部冷泉碳酸盐岩样品δ13C和δ18O均具有较大的变化范围,其最大变化分别为34.50×10-3和5.89%(Vienna Pee Dee Belemnite,V-PDB).冷泉碳酸盐岩δ13C和δ18O的相关性特征可能指示了初始流体的变化、后期矿物形成/重结晶作用、渗漏系统较为复杂或者成岩作用等环境变化信息.对不同碳酸盐岩样品来说,δ13C的变化主要由海水的参与程度决定,而δ18O的变化可能与温度和Mg元素参与方解石沉淀的程度有关.Abstract: Cold seep carbonates record the changes of fluids and environments in the methane seepages, which is important to reveal the sedimentary environment changes. The carbon and oxygen isotope profiles of the northern South China Sea and their vary intervals were studied. The results show that there are correlations between δ13C and δ18O along the profiles. Combined with the published δ13C and δ18O data, it is suggested that the correlations between them along the profiles are common, with the maximum correlation coefficient R2 of 0.933 1. Accroding to the statistics results, both the δ13C and δ18O vary greatly for the cold seep carbonates in the northern South China Sea, which maximal varing interval can be 34.50×10-3 and 5.89%(Vienna Pee Dee Belemnite, V-PDB), respectively. The correlations between δ13C and δ18O along the profiles perhaps indicate the changes of original fluids, the mineral formation or recrystallization, the complex methane seep systems and the diagenetic effects. For different cold seep carbonates, the vary intervals of δ13C were influenced by the participation degree of seawater, and the vary intervals of δ18O perhaps were related with the precipitation temperature and the Mg of calcite.
-
Key words:
- isotope /
- methane seep /
- cold seep carbonate /
- the northern South China Sea /
- environmental geology
-
图 6 南海北部其他研究样品δ13C和δ18O的相关性
a.红色位置为碳、氧同位素取样位置,b.标记1~10的白点为碳、氧同位素相关关系研究取样点;碳、氧同位素数据分别来自文献(陈选博和韩喜球, 2013;杨克红等, 2013)
Fig. 6. Relationships between δ13C and δ18O of other cold seep carbonates in the northern South China Sea
表 1 冷泉碳酸盐岩取样位置
Table 1. Sampling locations of the cold seep carbonates
站位 经度(°E) 纬度(°N) 水深(m) 样品 S0603 118.735 8 22.140 9 655 S03A S0604 118.734 9 22.140 8 638 S04F 表 3 南海北部各地碳酸盐岩δ13C和δ18O变化特征
Table 3. Vary intervals of δ13C and δ18O of cold seep carbonates in the northern South China Sea
样品 变化范围 位置 数据个数 来源 δ13C (10-3, V-PDB) δ18O (10-3, V-PDB) TVG1-7 11.81 1.21 Site1 2 Han et al., 2008 TVG1-8 1.56 0.10 Site1 2 Han et al., 2008 TVG2-1 9.41 0.31 Site1 3 Han et al., 2008 TVG2-3 9.53 0.62 Site1 3 Han et al., 2008 TVG3-3 13.18 0.15 Site1 2 Han et al., 2008 TVG8-C5-2 3.01 0.48 Site3 2 Han et al., 2008 TVG-9-C1-1 1.39 0.23 Site3 2 Han et al., 2008 TVG9-C4 0.95 0.23 Site3 2 Han et al., 2008 TVG11-C2-1 5.39 0.74 Site3 2 Han et al., 2008 TVG11-C1-4-1 0.57 0.36 Site3 2 Han et al., 2008 TVG13-C1-1 6.28 1.48 Site2 4 Han et al., 2008 TVG14-C1-1 3.64 0.88 Site2 3 Han et al., 2008 TVG14-C2-3 1.97 0.27 Site2 2 Han et al., 2008 Chen 6.21 2.09 Site2 10 陈选博和韩喜球, 2013 A-2 4.62 1.56 S0603 36 杨克红等, 2013 S03A 17.98 1.32 S0603 20 本文 S04F 22.15 5.89 S0604 29 本文 HS4DG-1 1.28 0.71 神狐 3 Ge and Jiang, 2013 DS1 34.5 0.90 东沙西南 7 Wang et al., 2014 DS2 5.00 1.90 东沙西南 5 Wang et al., 2014 HS4aDG-1 3.30 0.50 神狐 5 Tong et al., 2013 HS4aDG-2 11.70 2.20 神狐 2 Tong et al., 2013 HS4DG 6.40 2.30 神狐 6 Tong et al., 2013 E105-1 3.20 0.90 东沙西南 3 Tong et al., 2013 DSGH-2 7.40 0.40 东沙西南 3 Tong et al., 2013 TVG1-1 8.70 1.00 Site1 4 Tong et al., 2013 TVG2 2.40 0.90 Site1 4 Tong et al., 2013 TVG3-1 2.40 0.10 Site1 2 Tong et al., 2013 TVG13 7.50 0.70 Site2 3 Tong et al., 2013 TVG14-1 0.90 0.10 Site2 2 Tong et al., 2013 TVG14-2 7.00 0.30 Site2 3 Tong et al., 2013 TVG14-3 5.70 1.30 Site2 2 Tong et al., 2013 TVG6 1.40 0.60 Site3 2 Tong et al., 2013 TVG8 2.10 0.40 Site3 3 Tong et al., 2013 TVG9 0.60 0.40 Site3 2 Tong et al., 2013 TVG11 0.90 0.20 Site3 2 Tong et al., 2013 HD3 0.20 0.30 东沙东北附近 3 Tong et al., 2013 HD314 1.40 0.60 东沙东北附近 2 Tong et al., 2013 注:变化范围=最大值-最小值. 表 2 冷泉碳酸盐岩δ13C和δ18O的统计特征
Table 2. Statistics characteristics of δ13C and δ18O about the carbonate samples
样品 δ13C (10-3, V-PDB) δ18O (10-3, V-PDB) 分布状态 数据个数 最大值 最小值 平均值 中值 最大值 最小值 平均值 中值 δ13C (10-3) δ18O (10-3) S03A -28.8 -46.8 -40.8 -37.8 3.5 2.2 3.1 2.8 偏态 偏态 20 S04F -22.9 -45.0 -36.5 -33.9 3.1 -2.8 1.3 0.2 偏态 偏态 29 S03D -27.5 -32.1 -31.1 -29.8 2.3 0.8 1.9 1.6 偏态 偏态 36 Chen -43.9 -50.1 -47.6 -47.0 4.8 2.8 3.9 3.8 正态 正态 10 表 4 世界各地冷泉碳酸盐岩δ13C和δ18O的相关系数R2
Table 4. Correlation coefficients R2 between δ13C and δ18O of the cold seep carbonates in the world
区域或样品 相关系数R2 样品个数 数据来源 备注 S03A 0.331 4 20 本文 S04F 0.933 1 29 本文 A-2 0.861 9 36 杨克红等, 2013 相关系数R2为本文计算 Chen 0.868 7 10 陈选博和韩喜球, 2013 相关系数R2为本文计算 黑海 0.580 0 15 Bahr et al., 2009 Eel River北部 0.957 3 12 Gieskes et al., 2005 相关系数R2为本文计算 冲绳海槽 0.778 6/0.297 2 10/19 Sun et al., 2015 同一样品两条剖面,原文为R 日本琉球岛的黑岛丘 0.688 9/0.504 1 方解石/白云石 Takeuchi et al., 2007 方解石和白云石分别统计,原文为R -
[1] Aloisi, G., Pierre, C., Rouchy, J., et al., 2000.Methane-Related Authigenic Carbonates of Eastern Mediterranean Sea Mud Volcanoes and Their Possible Relation to Gas Hydrate Destabilisation.Earth and Planetary Science Letters, 184(1):321-338.doi: 10.1016/s0012-821x(00)00322-8 [2] Bahr, A., Pape, T., Bohrmann, G., et al., 2009.Authigenic Carbonate Precipitates from the NE Black Sea:A Mineralogical, Geochemical, and Lipid Biomarker Study.International Journal of Earth Sciences (Geol Rundsch), 98(3):677-695.doi: 10.1007/s00531-007-0264-1 [3] Bayon, G., Pierre, C., Etoubleau, J., et al., 2007.Sr/Ca and Mg/Ca Ratios in Niger Delta Sediments:Implications for Authigenic Carbonate Genesis in Cold Seep Environments.Marine Geology, 241(1-4):93-109.doi: 10.1016/j.margeo.2007.03.007 [4] Boetius, A., Ravenschlag, K., Schubert, C.J., et al., 2000.A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane.Nature, 407(6804):623-626.doi: 10.1038/35036572 [5] Campbell, K.A., 2006.Hydrocarbon Seep and Hydrothermal Vent Paleoenvironments and Paleontology:Past Developments and Future Research Directions.Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4):362-407.doi: 10.1016/j.palaeo.2005.06.018 [6] Chen, F., Zhuang, C., Zhang, G.X., et al., 2014.Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period.Earth Science, 39(11):1617-1626 (in Chinese with English abstract). http://caod.oriprobe.com/articles/43267991/Abnormal_Sedimentary_Events_and_Gas_Hydrate_Dissociation_in_Dongsha_Ar.htm [7] Chen, X.B., Han, X.Q., 2013.Carbon and Oxygen Isotope Characteristics of the Growth Profile of a Seep Carbonate Chimney from the Northeastern Slope of the South China Sea and Its Formation Model.Acta Sedimentologica Sinica, 31(1):50-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301007.htm [8] Chen, Z., Yan, W., Chen, M.H., et al., 2006.Discovery of Seep Carbonate Nodules as New Evidence for Gas Venting on the Northern Continental Slope of South China Sea.Chinese Science Bulletin, 51(10):1228-1237.doi: 10.1007/s11434-006-1228-8 [9] Chen, Z., Yang, H.P., Huang, C.Y., et al., 2007.Characteristics of Cold Seeps and Structures of Chemoauto-Synthesis-Based Communities in Seep Sediments.Journal of Tropical Oceanography, 26(6):73-82(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200706012.htm [10] Claypool, G.E., Kaplan, I.R., 1974.The Origin and Distribution of Methane in Marine Sediments In:Kaplan, I.R., ed., Natural Gases in Marine Sediments.Plenum Press, New York, 99-139.doi:10.1007/978-1-4684-2757-8_8 [11] Feng, D., Chen, D., 2015.Authigenic Carbonates from an Active Cold Seep of the Northern South China Sea:New Insights into Fluid Sources and Past Seepage Activity.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 122(2015):74-83.doi: 10.1016/j.dsr2.2015.02.003 [12] Ge, L., Jiang, S., 2013.Sr Isotopic Compositions of Cold Seep Carbonates from the South China Sea and the Panoche Hills (California, USA) and Their Significance in Palaeooceanography.Journal of Asian Earth Sciences, 65(2013):34-41.doi: 10.1016/j.jseaes.2012.10.016 [13] Ge, L., Jiang, S., Yang, T., et al., 2011.Glycerol Ether Biomarkers and Their Carbon Isotopic Compositions in a Cold Seep Carbonate Chimney from the Shenhu Area, Northern South China Sea.Chinese Science Bulletin, 56(16):1700-1707.doi: 10.1007/s11434-011-4486-z [14] Gieskes, J., Mahn, C., Day, S., et al., 2005.A Study of the Chemistry of Pore Fluids and Authigenic Carbonates in Methane Seep Environments:Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin.Chemical Geology, 220(3-4):329-345.doi: 10.1016/j.chemgeo.2005.04.002 [15] Han, X., Suess, E., Huang, Y., et al., 2008.Jiulong Methane Reef:Microbial Mediation of Seep Carbonates in the South China Sea.Marine Geology, 249(3-4):243-256.doi: 10.1016/j.margeo.2007.11.012 [16] Han, X., Suess, E., Liebetrau, V., et al., 2014.Past Methane Release Events and Environmental Conditions at the Upper Continental Slope of the South China Sea:Constraints by Seep Carbonates.International Journal of Earth Sciences, 103(7):1873-1887.doi: 10.1007/s00531-014-1018-5 [17] Han, X., Suess, E., Sahling, H., et al., 2004.Fluid Venting Activity on the Costa Rica Margin:New Results from Authigenic Carbonates.International Journal of Earth Sciences, 93(4):596-611.doi: 10.1007/s00531-004-0402-y [18] Han, X., Yang, K., Huang, Y., 2013.Origin and Nature of Cold Seep in Northeastern Dongsha Area, South China Sea:Evidence from Chimney-Like Seep Carbonates.Chinese Science Bulletin, 58(30):3689-3697.doi: 10.1007/s11434-013-5819-x [19] Irwin, H., Curtis, C., Coleman, M., 1977.Isotopic Evidence for Source of Diagenetic Carbonates Formed during Burial of Organic-Rich Sediments.Nature, 269(5625):209-213.doi: 10.1038/269209a0 [20] Joseph, C., Campbell, K.A., Torres, M.E., et al., 2013.Methane-Derived Authigenic Carbonates from Modern and Paleoseeps on the Cascadia Margin:Mechanisms of Formation and Diagenetic Signals.Palaeogeography, Palaeoclimatology, Palaeoecology, 390(2013):52-67.doi: 10.1016/j.palaeo.2013.01.012 [21] Kulm, L.D., Suess, E., Moore, J.C., et al., 1986.Oregon Subduction Zone:Venting, Fauna, and Carbonates.Science, 231(4738):561-566.doi: 10.1126/science.231.4738.561 [22] Mazzini, A., Ivanov, M.K., Parnell, J., et al., 2004.Methane-Related Authigenic Carbonates from the Black Sea:Geochemical Characterisation and Relation to Seeping Fluids.Marine Geology, 212(1-4):153-181.doi: 10.1016/j.margeo.2004.08.001 [23] Naehr, T.H., Rodriguez, N.M., Bohrmann, G., et al., 2000.Methane-Derived Authigenic Carbonates Associated with Gas Hydrate Decomposition and Fluid Venting above the Blake Ridge Diapir.Proceedings of the Ocean Drilling Program.Scientific Results.Ocean Drilling Program, 164:285-300. [24] Paull, C.K., Ussler Ⅲ, W., Peltzer, E.T., et al., 2007.Authigenic Carbon Entombed in Methane-Soaked Sediments from the Northeastern Transform Margin of the Guaymas Basin, Gulf of California.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 54(11-13):1240-1267.doi: 10.1016/j.dsr2.2007.04.009 [25] Peckmann, J., Reimer, A., Luth, U., et al., 2001.Methane-Derived Carbonates and Authigenic Pyrite from the Northwestern Black Sea.Marine Geology, 177(1-2):129-150.doi: 10.1016/s0025-3227(01)00128-1 [26] Roberts, H.H., Aharon, P., 1994.Hydrocarbon-Derived Carbonate Buildups of the Northern Gulf of Mexico Continental Slope:A Review of Submersible Investigations.Geo-Marine Letters, 14(2-3):135-148.doi: 10.1007/BF01203725 [27] Sackett, W.M., 1978.Carbon and Hydrogen Isotope Effects during the Thermocatalytic Production of Hydrocarbons in Laboratory Simulation Experiments.Geochimica et Cosmochimica Acta, 42(6):571-580.doi: 10.1016/0016-7037(78)90002-9 [28] Schrag, D.P., Higgins, J.A., Macdonald, F.A., et al., 2013.Authigenic Carbonate and the History of the Global Carbon Cycle.Science, 339(6119):540-543.doi: 10.1126/science.1229578 [29] Suess, E., 2014.Marine Cold Seeps and Their Manifestations:Geological Control, Biogeochemical Criteria and Environmental Conditions.International Journal of Earth Sciences, 103(7):1889-1916.doi: 10.1007/s00531-014-1010-0 [30] Sun, Z., Wei, H., Zhang, X., et al., 2015.A Unique Fe-Rich Carbonate Chimney Associated with Cold Seeps in the Northern Okinawa Trough, East China Sea.Deep Sea Research Part Ⅰ, 95:37-53.doi: 10.1016/j.dsr.2014.10.005 [31] Takeuchi, R., Matsumoto, R., Ogihara, S., et al., 2007.Methane-Induced Dolomite "Chimneys" on the Kuroshima Knoll, Ryukyu Islands, Japan.Journal of Geochemical Exploration, 95(1-3):16-28.doi: 10.1016/j.gexplo.2007.05.008 [32] Tarutani, T., Clayton, R.N., Mayeda, T.K., 1969.The Effect of Polymorphism and Magnesium Substitution on Oxygen Isotope Fractionation between Calcium Carbonate and Water.Geochimica et Cosmochimica Acta, 33(8):987-996.doi: 10.1016/0016-7037(69)90108-2 [33] Teichert, B.M.A., Eisenhauer, A., Bohrmann, G., et al., 2003.U/Th Systematics and Ages of Authigenic Carbonates from Hydrate Ridge, Cascadia Margin:Recorders of Fluid Flow Variations.Geochimica et Cosmochimica Acta, 67(20):3845-3857.doi: 10.1016/s0016-7037(03)00128-5 [34] Tong, H., Feng, D., Cheng, H., et al., 2013.Authigenic Carbonates from Seeps on the Northern Continental Slope of the South China Sea:New Insights into Fluid Sources and Geochronology.Marine and Petroleum Geology, 43:260-271.doi: 10.1016/j.marpetgeo.2013.01.011 [35] Tong, H.P., Feng, D., Chen, D.F., 2012.Progresses on Petrology, Mineralogy and Geochemistry of Cold Seep Carbonates in the Northern South China Sea.Journal of Tropical Oceanography, 31(5):45-56(in Chinese with English abstract). [36] Wang, S., Yan, W., Chen, Z., et al., 2014.Rare Earth Elements in Cold Seep Carbonates from the Southwestern Dongsha Area, Northern South China Sea.Marine and Petroleum Geology, 57:482-493.doi: 10.1016/j.marpetgeo.2014.06.017 [37] Whiticar, M.J., Faber, E., Schoell, M., 1986.Biogenic Methane Formation in Marine and Freshwater Environments:CO2 Reduction vs.Acetate Fermentation-Isotope Evidence.Geochimica et Cosmochimica Acta, 50(5):693-709.doi: 10.1016/0016-7037(86)90346-7 [38] Wu, D.D., Wu, N.Y., Ye, Y., et al., 2009.Petrographic Characteristics of Authigenic Carbonates from Jiulong Methane Reef of Northern South China Sea.Journal of Tropical Oceanography, 28(3):74-81(in Chinese with English abstract). [39] Yang, K.H., Chu, F.Y., Zhao, J.R., et al., 2009.Minerals' Micro-Shape and Its Significance of Seep Carbonates in the North of the South China Sea.Acta Mineralogica Sinica, 29(3):345-352(in Chinese with English abstract). [40] Yang, K.H., Chu, F.Y., Zhao, J.R., et al., 2013.Sedimentary Environment of the Cold-Seep Carbonate Chimneys, North of the South China Sea.Acta Oceanologica Sinica, 35(2):82-89(in Chinese with English abstract). [41] Yu, X.G., Han, X.Q., Li, H.L., et al., 2008.Biomarkers and Carbon Isotope Composition of Anaerobic Oxidation of Methane in Sediments and Carbonates of Northeastern Part of Dongsha, South China Sea.Acta Oceanologica Sinica, 30(3):77-84(in Chinese with English abstract). [42] 陈芳, 庄畅, 张光学, 等, 2014.南海东沙海域末次冰期异常沉积事件与水合物分解.地球科学, 39(11):1617-1626. http://www.earth-science.net/WebPage/Article.aspx?id=2964 [43] 陈选博, 韩喜球, 2013.南海东北陆坡烟囱状冷泉碳酸盐岩生长剖面的碳, 氧同位素特征与生长模式.沉积学报, 31(1):50-55. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301007.htm [44] 陈忠, 杨华平, 黄奇瑜, 等, 2007.海底甲烷冷泉特征与冷泉生态系统的群落结构.热带海洋学报, 26(6):73-82. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200706012.htm [45] 佟宏鹏, 冯东, 陈多福, 2012.南海北部冷泉碳酸盐岩的矿物, 岩石及地球化学研究进展.热带海洋学报, 31(5):45-56. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201205008.htm [46] 邬黛黛, 吴能友, 叶瑛, 等, 2009.南海北部陆坡九龙甲烷礁冷泉碳酸盐岩沉积岩石学特征.热带海洋学报, 28(3):74-81. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200903013.htm [47] 杨克红, 初凤友, 赵建如, 等, 2009.南海北部冷泉碳酸盐岩矿物微形貌及其意义探讨.矿物学报, 29(3):345-352. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200903011.htm [48] 杨克红, 初凤友, 赵建如, 等, 2013.南海北部烟囱状冷泉碳酸盐岩的沉积环境分析.海洋学报, 35(2):82-89. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201302009.htm [49] 于晓果, 韩喜球, 李宏亮, 等, 2008.南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成.海洋学报, 30(3):77-84. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200803010.htm