Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet
-
摘要: 拉抗俄Cu-Mo矿床是冈底斯成矿带东段典型的斑岩型矿床,前人对该矿床进行了初步的矿床地球化学研究,但欠缺系统性.在系统的野外地质调查基础上,对拉抗俄斑岩Cu-Mo矿床的含矿斑岩开展了详细的地球化学和年代学研究,旨在精确确定矿床含矿斑岩的成岩年龄、岩石成因及源区特征.岩石地球化学特征显示,含矿花岗闪长斑岩富硅,相对贫镁和钙,SiO2含量为62.51%~72.41%,MgO含量为0.59%~1.30%,CaO含量为0.95%~3.44%;碱含量高,Na2O含量为3.51%~4.75%,K2O含量为3.30%~4.97%;偏铝质或弱的过铝质,A/CNK比值为0.90~1.01;相对富集大离子亲石元素Rb、Ba、Th、U、Sr,明显亏损Nb、Ta、Ti、P、Zr等高场强元素.岩体稀土总量较低,为82.80×10-6~132.09×10-6;富集轻稀土,且轻重稀土分异明显;具有弱的Eu负异常和弱Ce负异常.采用LA-ICP-MS锆石U-Pb同位素测年技术对含矿花岗闪长斑岩进行定年,岩体成岩年龄为13.58±0.42 Ma,系中新世岩浆活动的产物.锆石εHf(t)值为-3.99~4.49,Hf同位素两阶段模式年龄tDM2为808~1 349 Ma.研究结果显示拉抗俄含矿花岗闪长斑岩具有埃达克岩地球化学特征,其岩浆源区主要来源于新生地壳部分熔融的组分,在岩浆侵位过程中遭受了古老地壳物质的混染,岩石形成于印度-亚洲大陆碰撞造山带的后碰撞伸展构造背景.Abstract: The Lakang'e Cu-Mo deposit is a typical porphyry deposit in the eastern Gangdese metallogenic belt, on which previous geochemical studies are not adequate and systematic.In this paper, we present the results of the systematic logging of drillholes and provide new petrological zircon U-Pb age, and Hf isotope data for the deposit that allow the identification of the timing of formation and mineralization of the Lakang'e porphyry Cu-Mo deposit and the relationship between this deposit and other porphyry-type deposits in the Gangdese belt.Chemical analyses show that the ore-bearing granodiorite-porphyry has high SiO2, low Mg and Ca (SiO2=62.51% to 72.41%, MgO=0.59% to 1.30%, CaO=0.95% to 3.44%), highalkaline (Na2O=3.51% to 4.75%, K2O=3.30% to 4.97%), metaluminous (A/CNK=0.90 to 1.01), enriched in LILES such as Rb, Ba, Th, U, Sr, and depleted in HFSES such as Nb, Ta, Ti, P and Zr. The rocks also display low total REEcontents (∑REE=82.80×10-6 to 132.09×10-6), enriched LREE and differentiate obviously, with weakly negative Eu and Ce anomalies. LA-ICP-MS zircon U-Pb dating indicates that the Lakang'e ore-bearing granodiorite-porphyry emplaced at 13.58±0.42 Ma. εHf(t) values and two-stage model ages of zircons are -3.99 to 4.49 and 808 to 1349 Ma respectively. The results indicate that the ore-bearing granodiorite-porphyry in the Lakang'e deposit has adakitegeochemical characteristics, and the parental magmas were mainly derived from a juvenile crust and partly mixed with old continental crust rock during the evolution. The porphyry in Lakang'edeposit was formed in post-collisional extension setting of India-Asia continental collision orogenic belt.
-
Key words:
- geochemistry /
- zircon U-Pb dating /
- Hf isotopic compositions /
- Gangdese metallogenic belt /
- Tibet
-
图 1 冈底斯成矿带地质简图及主要斑岩-矽卡岩矿床分布
矿床:1.汤不拉;2.亚贵拉;3.沙让;4.洞中拉;5.吹败子;6.弄如日;7.冲木达;8.蒙亚啊;9.哈海岗;10.甲玛;11.驱龙;12.拉抗俄;13.程巴;14.努日;15.克鲁;16.达布;17.厅宫;18.冲江;19.吉如;20.雄村;21.朱诺.SL.南冈底斯;CL.中冈底斯;NL.北冈底斯;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;IYZSZ.印度河-雅鲁藏布江缝合带;底图据Zheng et al.(2014)修改
Fig. 1. Geological sketch of the Gangdese metallogenic belt showing the major ore deposit
图 7 拉抗俄含矿斑岩稀土元素配分曲线(a)和微量元素蛛网图(b)
a.球粒陨石数据,据Sun and McDonough (1989);b.原始地幔数据,据McDonough et al.(1992)
Fig. 7. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spider diagrams (b) of the ore-bearing porphyry in Lakang'e deposit
图 8 拉抗俄含矿花岗闪长斑岩Sr/Y-Y(a)和(La/Yb)N-YbN(b)关系
Fig. 8. Relations of Sr/Y-Y (a) and (La/Yb)N-YbN (b) from the Lakang'e ore-bearing porphyry
图 9 拉抗俄含矿花岗闪长斑岩锆石U-Pb年龄-Hf同位素组成关系
驱龙数据杨志明(2008);甲玛数据引自应立娟,未刊资料;邦铺数据引自王立强,未刊资料;QL.驱龙;JM.甲玛;BP.邦铺;底图据侯增谦等(2012)
Fig. 9. Relations between U-Pb ages and Hf isotopic composition of zircons from the ore-bearing granodiorite-porphyry in Lakang'e deposit
图 10 拉抗俄含矿花岗闪长斑岩R1-R2构造环境判别关系
① 幔斜长花岗岩;② 破坏性活动板块边缘(板块碰撞前)花岗岩;③ 版块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山期A型花岗岩;⑥ 同碰撞(S型)花岗岩;⑦ 造山期后A型花岗岩.底图据Bachelor and Bowden(1985)
Fig. 10. R1-R2 factor diagram of the ore-bearing granodiorite-porphyry in Lakang'e deposit
表 1 拉抗俄矿床含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb analyses of the ore-bearing granodiorite-porphyry in Lakang'e deposit
分析点号 组成(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 3 408.84 1 874.23 1.82 0.048 83 0.010 02 0.014 88 0.003 18 0.002 17 0.000 10 138.98 422.17 15.00 3.18 13.97 0.62 2 4 429.35 2 355.40 1.88 0.048 33 0.003 22 0.014 07 0.000 96 0.002 11 0.000 04 122.31 142.57 14.19 0.96 13.60 0.27 3 2 717.49 1 351.95 2.01 0.046 02 0.006 03 0.014 42 0.003 03 0.002 21 0.000 21 error 14.54 3.03 14.22 1.37 4 2 424.72 1 544.63 1.57 0.048 02 0.008 41 0.013 34 0.002 95 0.001 95 0.000 13 101.94 375.88 13.46 2.95 12.56 0.81 5 707.50 1 054.51 0.67 0.053 07 0.014 73 0.015 94 0.003 03 0.002 38 0.000 19 331.54 531.11 16.06 3.02 15.30 1.23 6 1 870.43 1 360.07 1.38 0.051 36 0.011 59 0.015 08 0.003 09 0.002 24 0.000 13 257.47 448.10 15.19 3.09 14.39 0.82 7 2 931.11 3 478.54 0.84 0.050 55 0.009 81 0.013 95 0.002 55 0.002 02 0.000 05 220.44 396.25 14.07 2.56 13.01 0.31 8 1 799.15 1 552.69 1.16 0.048 20 0.009 44 0.016 25 0.003 69 0.002 46 0.000 31 109.35 407.36 16.36 3.68 15.86 2.00 9 14 711.74 3 800.91 3.87 0.050 76 0.006 49 0.016 48 0.001 97 0.002 42 0.000 08 231.55 270.34 16.60 1.97 15.59 0.53 表 2 拉抗俄矿床含矿花岗闪长斑岩主量元素含量(%)、CIPW标准矿物及相关参数
Table 2. Major oxide compositions (%) with calculated CIPW-normative minerals and parameters of the ore-bearing granodiorite-porphyry in Lakang'e deposit
样品编号-深度(m) SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O TiO2 MnO P2O5 烧失量 总量 / / / Q An Ab Or C Di Hy Ⅱ Mt Ap A/CNK A/NK SI AR AKI DI ZK201-26.8 67.40 14.61 0.97 3.07 1.03 1.90 4.56 3.30 0.34 0.060 0.14 2.01 99.39 / / / 21.62 8.72 39.60 20.05 0.44 / 7.13 0.66 1.44 0.34 1.01 1.32 7.97 2.82 0.76 81.27 ZK201-86.0 62.51 15.51 1.15 2.63 1.30 3.44 4.48 3.43 0.53 0.060 0.21 4.06 99.32 / / / 14.67 12.68 39.78 21.30 / 3.13 5.12 1.06 1.75 0.51 0.90 1.40 10.00 2.43 0.72 75.75 ZK201-47.8 66.45 14.96 0.84 2.71 1.12 1.99 4.72 3.45 0.39 0.050 0.16 2.64 99.48 / / / 19.23 9.10 41.20 21.08 0.24 / 6.74 0.77 1.25 0.39 0.99 1.30 8.72 2.86 0.77 81.51 ZK101-109.7 72.42 12.84 0.44 1.89 0.67 0.95 3.51 4.97 0.24 0.050 0.09 1.35 99.42 / / / 29.47 4.20 30.29 29.97 0.17 / 4.57 0.46 0.65 0.21 1.00 1.15 5.83 4.20 0.87 89.73 ZK101-140.2 71.92 13.33 0.65 1.87 0.68 1.06 3.67 4.92 0.24 0.040 0.10 1.06 99.54 / / / 27.98 4.70 31.53 29.55 0.27 / 4.33 0.47 0.95 0.23 1.00 1.17 5.77 3.96 0.85 89.06 ZK101-431.8 69.80 14.42 0.84 1.38 0.59 1.95 4.75 3.48 0.24 0.003 0.08 2.12 99.64 / / / 24.29 7.97 41.19 21.07 / 1.16 2.43 0.46 1.24 0.19 0.95 1.24 5.35 3.02 0.80 86.55 注:Q.石英;An.钙长石;Ab.钠长石;Or.钾长石;C.刚玉;Di.透辉石;Hy.紫苏辉石;Ⅱ.钛铁矿;Mt.磁铁矿;Ap.磷灰石;A/CNK=n(Al2O3)/[n(CaO)+n(Na2O)+n(K2O)];A/NK=n(Al2O3)/[n(Na2O)+n(K2O)];AKI=[n(Na2O)+n(K2O)]/n(Al2O3);SI.固结指数;AR.莱特碱度率;DI.分异指数. 表 3 拉抗俄矿床含矿花岗闪长斑岩微量及稀土元素含量(10-6)及相关参数
Table 3. Results of trace and REE compositions (10-6) and parameters of the ore-bearing granodiorite-porphyry in Lakang'e deposit
样品编号-深度(m) Rb Ba Th U K Ta Nb Sr Nd P Zr Hf Sm Ti Y Yb Lu / / / / / La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE HREE LREE/HREE LaN/YbN Eu/Eu* Ce/Ce* ZK201-26.8 94 538 5.74 1.43 27 419 0.27 1.68 594 21.92 623 102 2.89 3.55 2034 5.62 0.49 0.08 / / / / / 23.79 40.88 5.08 21.92 3.55 1.06 2.42 0.27 1.11 0.20 0.61 0.08 0.49 0.08 5.62 101.54 96.28 5.26 18.31 34.68 1.05 0.87 ZK201-86.0 92 648 3.79 1.89 28 498 0.19 2.39 688 29.64 923 114 1.63 4.91 3195 4.92 0.44 0.06 / / / / / 23.44 48.23 6.54 29.64 4.91 1.34 3.26 0.34 1.25 0.21 0.58 0.07 0.44 0.06 4.92 120.32 114.10 6.22 18.35 38.66 0.96 0.94 ZK201-47.8 119 729 5.26 1.41 28 673 0.21 1.86 509 31.33 709 112 3.22 4.78 2347 6.09 0.53 0.08 / / / / / 30.10 50.96 7.36 31.33 4.78 1.19 3.14 0.34 1.30 0.24 0.66 0.08 0.53 0.08 6.09 132.09 125.73 6.36 19.77 41.05 0.88 0.81 ZK101-109.7 145 1416 8.49 2.41 41 291 0.13 1.29 392 18.70 397 89 1.30 2.90 1423 5.35 0.42 0.07 / / / / / 18.98 32.64 4.49 18.70 2.90 0.82 1.99 0.22 0.88 0.17 0.48 0.06 0.42 0.07 5.35 82.80 78.52 4.28 18.33 32.33 0.99 0.84 ZK101-140.2 132 737 7.11 2.09 40 876 0.11 1.11 483 18.44 422 94 2.78 2.84 1456 3.92 0.42 0.07 / / / / / 18.66 35.29 4.31 18.44 2.84 0.84 2.02 0.22 0.87 0.16 0.46 0.06 0.42 0.07 3.92 84.66 80.39 4.27 18.81 32.10 1.02 0.93 ZK101-431.8 82 602 7.58 2.16 28 864 0.13 1.25 548 20.70 357 113 3.27 3.09 1415 5.49 0.56 0.09 / / / / / 23.29 34.37 5.01 20.70 3.09 0.84 2.16 0.25 1.04 0.20 0.60 0.08 0.56 0.09 5.49 92.28 87.29 4.99 17.51 29.65 0.94 0.74 注:Eu/Eu*=2EuN/(SmN+GdN);Ce/Ce*=2CeN/(LaN+PrN). 表 4 拉抗俄矿床花岗闪长斑岩锆石Hf同位素组成
Table 4. Hf isotope composition of zircons from the ore-bearing granodiorite-porphyry in Lakang'e deposit
测点 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ 176Hf/177Hf(t) εHf(o) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 2 13.60 0.039 932 0.001 656 0.282 891 0.000 011 0.282 887 4.21 4.49 521 808 -0.95 3 14.22 0.019 518 0.000 852 0.282 777 0.000 014 0.282 955 0.16 0.47 672 1 065 -0.97 4 12.56 0.084 787 0.002 967 0.282 823 0.000 013 0.282 854 1.80 2.05 642 962 -0.91 5 15.30 0.016 333 0.000 734 0.282 650 0.004 367 0.259 309 -4.32 -3.99 848 1 349 -0.98 6 14.39 0.021 006 0.000 885 0.282 749 0.000 013 0.282 897 -0.83 -0.52 712 1 128 -0.97 7 13.01 0.020 204 0.000 919 0.282 738 0.000 011 0.282 975 -1.19 -0.91 727 1 152 -0.97 8 15.86 0.016 218 0.000 783 0.282 691 0.000 014 0.282 967 -2.88 -2.54 792 1 257 -0.98 注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDMC=1/λ×ln{1+[(176Hf/177Hf)S, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 77和0.033 2,0.283 25和0.038 4,据Blichert-Toft and Albarède(1997)和 Griffin et al.(2000) ;λ=1.867×10-11 a-1,据Söderlund et al.(2004) ;(176Lu/177Hf)C=0.015,t.锆石结晶年龄;进行数据处理时,176Lu的衰变常数采用1.867×10-11 a-1,据Söderlund et al.(2004) ;εHf(t)值的计算利用Bouvier et al.(2008) 推荐的球粒陨石n(176Hf)/n(177Hf)比值(0.282 772) 及176Lu/177Hf比值(0.033 2);Hf模式年龄计算时采用当前亏损地幔的(176Hf)/(177Hf)比值(0.283 25) 和(176Lu)/(177Hf)比值(0.015) 及(176Lu)/(177Hf)比值(0.015),据Amelin et al.(1999) . -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth′s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [3] Atherton M.P., Pertord N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146.doi: 10.1038/362144a0 [4] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55.doi: 10.1016/0009-2541(85)90034-8 [5] Belousova, E.A., Griffin, W.L., O′Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7 [6] Blichert-Toft J, Albarède F., 1997.The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258.doi: 10.1016/s0012-821x(97)00040-x [7] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57.doi: 10.1016/j.epsl.2008.06.010 [8] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7 [9] Chen, M.H., Zhang, W., Yang, Z.X., et al., 2009.Zircon SHRIMP U-Pb Age and Hf Isotopic Composition of Baiceng Ultrabasic Dykes in Zhenfeng County, Southwestern Guizhou Province.Mineral Deposits, 28(3) :240-250 (in Chinese with English abstract). [10] Defant M.J., Drummond M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665.doi: 10.1038/347662a0 [11] Defant M.J., Drummond M.S., 1993.Mount St.Helens:Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc.Geology, 21(6):547-550.doi:10.1130/0091-7613(1993)021<0547:mshpeo>2.3.co;2 [12] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):205-215.doi: 10.1017/s0263593300006611 [13] Feng, R., Kerrich, R., 1992.Geochemical Evolution of Granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac Subprovince, Superior Province, Canada:Implications for Tectonic History and Source Regions.Chemical Geology, 98(1-2):23-70.doi: 10.1016/0009-2541(92)90090-r [14] Gaetani, M., Garzanti, E., 1991.Multicyclic History of the Northern India Continental Margin (Northwestern Hinwlaya).AAPG Bulletin, 75:1427-1446.doi: 10.1306/0c9b2957-1710-11d7-8645000102c1865d [15] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Analysis of Forty-Two Major and Trace Elements of USGS and NIST SRM Glasses by LA-ICP-MS.Geostandard Newslett, 22:181-196. https://www.researchgate.net/publication/252188504_Analysis_of_forty-two_major_and_trace_elements_in_USGS_and_NIST_SRM_glasses_by_LA-ICPMS [16] Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003.Neogene Porphyries from Gangdese:Petrological, Geochemical Characteristics and Geodynamic Significances.Acta Petrologica Sinica, 19(3):418-428 (in Chinese with English abstract). https://www.researchgate.net/publication/286970950_Neogene_porphyries_from_Gangdese_Petrological_geochemical_characteristics_and_geodynamic_significances [17] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30:1261-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108013.htm [18] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007.Volcanic Rock Geochemistry and Tectonic Implication of the Luobadui Formation on the Gangdese Zone, Xizang (Tibet).Acta Petrologica Sinica, 23(11):2699-2714 (in Chinese with English abstract). https://www.researchgate.net/publication/292234727_Discovery_and_tectonic_significance_of_Permian_basic_volcanic_rocks_in_the_Selong_area_on_the_northern_slope_of_the_Himalayas_southern_Tibet [19] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/s0016-7037(99)00343-9 [20] Hanchar, J.M., Miller, C.F., 1993.Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images:Implications for Interpretation of Complex Crustal Histories.Chemical Geology, 110(1-3):1-13.doi: 10.1016/0009-2541(93)90244-d [21] He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2012.Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys.Geological Review, 52(1):100-106 (in Chinese with English abstract). doi: 10.1007/s11430-009-0131-y [22] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). https://www.researchgate.net/profile/Antonio_Simonetti/publication/260862937_In-situ_petrographic_thin_section_U-Pb_dating_of_zircon_and_titanite_by_laser_ablation-MC-ICP-MS/links/57c4881208ae5e5a8191bbd9.pdf?origin=publication_list [23] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155.doi: 10.1016/s0012-821x(04)00007-x [24] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen.Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). https://www.researchgate.net/publication/279572227_Genesis_of_adakitic_porphyry_and_tectonic_controls_on_the_Gangdese_Miocene_porphyry_copper_belt_in_the_Tibetan_orogen [25] Hou, Z.Q., Ma, H.W., Zaw, K., et al., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145.doi: 10.2113/98.1.125 [26] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003.Re-Os Dating of Molybdenite from the Gangdese Metallogenic Belt, Tibet:Applications of Mineralization Time and Dynamic Background.Science in China (Series D), 33(7):609-618 (in Chinese with English abstract). [27] Hou, Z.Q., Wang, E.Q., 2008.Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract). https://www.researchgate.net/publication/285912159_Metallogenesis_of_the_Indo-Asian_collisional_orogen_New_advances [28] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006 [29] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting :Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm [30] Ji, W.Q., Wu, F.Y., Zhong, S.L., et al., 2009.Petrogenesis and Ages of Granites in the Gangdese Batholith, South Tibet.Science in China (Series D), 39(7):849-871 (in Chinese w ith English abstract). https://www.researchgate.net/profile/Wei_Qiang_Ji/publication/227064098_Geochronology_and_petrogenesis_of_granitic_rocks_in_Gangdese_batholith_southern_Tibet/links/54640ced0cf2cb7e9da99ddc.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [31] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2015.Re-Os Dating of Molybdenite from the Lakang′e Porphyry Cu-Mo Deposit in Tibet and Its Geological Significance.Geolgy in China, 42(2):570-584 (in Chinese with English abstract). [32] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002.Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm La-ICP-MS.Acta Petrologica Sinica, 18(3):408-418 (in Chinese with English abstract). https://www.researchgate.net/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard [33] Mahéo, G., Guillot, S., Blichert-Toft, J., et al., 2002.A Slab Breakoff Model for the Neogene Thermal Evolution of South Karakorum and South Tibet.Earth and Planetary Science Letters, 195(1-2):45-58.doi: 10.1016/s0012-821x(01)00578-7 [34] McDonough, W.F., Sun, S.S., Ringwood, A.E., et al., 1992.Potassium, Rubidium and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth.Geochimica et Cosmochimica Acta., 56(3):1001-1012.doi: 10.1016/0016-7037(92)90043-i [35] Miller, C., Schuster, R., Klotzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424.doi: 10.1093/petroj/40.9.1399 [36] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200503001.htm [37] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ [38] Mo, X.X., Zhao, Z.D., DePaolo, D.J., et al., 2006.Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization:Evidence from Sr-Nd Isotopes.Acta Petrologica Sinica, 22(4):795-803 (in Chinese with English abstract). [39] Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009.On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet:Petrological and Geochemical Constraints.Earth Science, 34(1):17-24 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=1783 [40] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007.Re-Os Isotopic Dating on Molybdenite Separates from the Xiaodonggou Porphyry Mo Deposit, Hexigten Qi, Inner Mongolia.Acta Geologica Sinica, 81(7):898-905 (in Chinese with English abstract). https://www.researchgate.net/publication/284973094_Re-Os_isotopic_age_dating_of_molybdenite_separates_from_the_Chaobuleng_skarn_iron-polymetallic_deposit_Dong_Ujimqin_Banner_Inner_Mongolia [41] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). https://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution [42] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 [43] Pearce, J.A., Mei, H., 1988.Volcanic Rocks for the 1985 Tibet Geotraverse Lhasa to Golmud.Phil.Trans.Roy.Soc.Load.A., 327:203-213. doi: 10.1098/rsta.1988.0126 [44] Pearce J.A., Norry M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47.doi: 10.1007/bf00375192 [45] Qin, Z.P., Wang, X.W., Duo, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348 (in Chinese with English abstract). [46] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002.Implications of S and Pb Isotopic Compositions of the Gangdise Porphyry Copper Belt for the Ore-Forming Material Source and Material Recycling within the Orogenic Belt.Geological Bulletin of China, 21(11):768-776 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz200211015 [47] Qu, X.M., Hou, Z.Q., Li, Z.Q., 2003.40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significances.Acta Geological Sinica, 77(2):245-252 (in Chinese with English abstract). https://www.researchgate.net/publication/279599796_40Ar39Ar_ages_of_the_ore-bearing_porphyries_of_the_Gangdese_porphyry_copper_belt_and_their_geological_significance [48] Qu, X.M., Hou, Z.Q., Zaw, K., et al., 2007.Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223.doi: 10.1016/j.oregeorev.2005.03.012 [49] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009.Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau.Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200906005.htm [50] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003.Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau.Mineral Deposits, 22(3):217-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200303000.htm [51] Shui, X.F., Zhao, Y.Y., Guo, S., et al., 2012.U-Pb Dating and Hf Isotopic Characteristics of Zircons from Granodiorite in the Dexing Ore Concentration.Geology in China, 39(6):1543-1561 (in Chinese with English abstract). https://www.researchgate.net/publication/287638003_U-Pb_dating_and_Hf_isotopic_characteristics_of_zircons_from_granodiorite_in_theDexingore_concentration_area [52] Sillitoe, R.H., 1972.A Plate Tectonic Model for the Origin of Porphyry Copper Deposits.Economic Geology, 67(2):184-197.doi: 10.2113/gsecongeo.67.2.184 [53] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3 [54] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). https://www.researchgate.net/publication/227743909_The_onset_of_the_Tan-Lu_fault_movement_in_eastern_China_Constraints_from_zircon_SHRIMP_and_40Ar39Ar_dating [55] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [56] Tang, J.X., Chen, Y.C., Duo, J., et al., 2009a.The Main Ore Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern of Gangdese Metallogenic Belt, Tibet.Acta Mieralogica Sinica, 29(Suppl.1):476-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200401004.htm [57] Tang, J.X., Huang, Y., Li, Z.J., et al., 2009b.Element Geochemical Characteristics of Xiongcun Cu-Au Deposit in Xaitongmoin County, Tibet.Mineral Deposits, 28(1):15-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200901003.htm [58] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010.Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite.Mineral Deposits, 29(3):461-475 (in Chinese with English abstract). https://www.researchgate.net/publication/279764755_Study_on_mineral_compositions_of_the_ore_from_the_Xiongcun_CuAu_deposit_in_Xietongmen_County_Tibet_China [59] Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986.Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas:Evidence from High-Pressure Experiments and Natural Rocks.Journal of Volcanology and Geothermal Research, 29(1-4):293-309.doi: 10.1016/0377-0273(86)90049-1 [60] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2935 [61] Wang, L.L., Mo, X.X., Li, B., et al., 2006.Geochronlogy and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu (Mo) Ore Deposit, Tibet.Aata Petrologica Sinica, 22(4):1001-1008 (in Chinese with English abstract). https://www.researchgate.net/publication/279718246_Geochronology_and_geochemistry_of_the_ore-bearing_porphyry_in_Qulong_Cu_Mo_ore_deposit_Tibet [62] Wang, L.Q., Pan, G.T., Zhu, D.C., et al., 2008.Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China:Evidence from Volcanic Rocks and Geochemistry.Geological Bulletin of China, 27(9):1509-1534 (in Chinese with English abstract). [63] Wang, L.Q., Tang, J.X., Chen, Y.C., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Ore-Bearing Monzogranite Porphyry in Bangpu Molybdenum(Copper) Deposit, Tibet and Its Significance.Mineral Deposits, 30(2):349-360 (in Chinese with English abstract). https://www.researchgate.net/publication/233440370_Discrimination_of_Ore-Bearing_and_Barren_Porphyries_in_the_Yulong_Porphyry_Copper_Ore_Belt_Eastern_Tibet [64] Wang, Q., McDermott, F., Xu, J.F., et al., 2005.Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet:Lower-Crustal Melting in an Intracontinental Setting.Geology, 33(6):465.doi: 10.1130/g21522.1 [65] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007.Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust.Geochimica et Cosmochimica Acta, 71(10):2609-2636.doi: 10.1016/j.gca.2007.03.008 [66] Wang, Q., Xu, J.F., Zhao, Z.H., 2001.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200102009.htm [67] Wang, Y., Zhang, Q., Qian, Q., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200002017.htm [68] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematic and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). https://www.researchgate.net/publication/305531916_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology [69] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602 (in Chinese with English abstract). https://www.researchgate.net/publication/249521397_Temperature_spectra_of_zircon_crystallization_in_plutonic_rocks [70] Xu, Z.Q., Ji, S.C., Cai, Z.H., et al., 2012.Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya:Constraints from Deformation, Fabrics and Geochronology.Gondwana Reserch, 21(1):19-36.doi: 10.1016/j.gr.2011.06.010 [71] Yang, D.M., Li, C., Wang, T.W., 2001.Features and Genesis of the North-South-Trending Tectonic Belt in the Eastern Sector of the Gangdese Mountains, Tibet.Regional Geology of China, 20(4):392-397 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200604013.htm [72] Yang, Z., Liu, R., Wang, X.Y., et al., 2014.Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China:Evidence from Zircon U-Pb Ages and Hf Isotopes.Earth Science, 39(9):1258-1276 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2939 [73] Yang, Z.M., 2008.The Qulong Giant Porphyry Copper Deposit in Tibet:Magmatism and Mineraliztion (Dissertation).Chinese Academy of Geological Sciences, Beijing, 1-145 (in Chinese with English abstract). [74] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System in Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212.doi: 10.1016/j.oregeorev.2009.03.005 [75] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211 [76] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118.doi: 10.1016/j.chemgeo.2007.10.003 [77] Zhang, G.Y., Zheng, Y.Y., Gong, F.Z., et al., 2008.Geochronolgic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process.Acta Petrologica Sinica, 24(3):473-479 (in Chinese with English abstract). https://www.researchgate.net/publication/285572680_Alteration_and_mineralization_at_the_Zhibula_Cu_skarn_deposit_Gangdese_belt_Tibet [78] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244 (in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China [79] Zhang, S., Shi, H.F., Hao, H.J., et al., 2014.Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet.Earth Science, 39(5):509-524 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2860 [80] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences, 79:842-857.doi: 10.1016/j.jseaes.2013.03.029 [81] Zhou, T.F., Fan, Y., Yuan, F., et al., 2011.Geochronology and Significance of Volcanic Rocks in the Ning-Wu Basin of China.Science in China (Series D), 41(7):960-971 (in Chinese). https://www.researchgate.net/publication/226642424_Geochronology_and_significance_of_volcanic_rocks_in_the_Ning-Wu_Basin_of_China [82] Zhou, X., Cao, Y.G., 1984.Tibet Plate Tectonics-Construction Plans and Specifications.Geological Publishing House, Beijing, 1-20 (in Chinese). [83] Zhu, D, C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). [84] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010.Presence of Permian Extension and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin, 122(7-8):979-993.doi: 10.1130/b30062.1 [85] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442 [86] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdese Belt, Tibet, China.Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200804004.htm [87] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301:241-255.doi: 10.1016/j.epsl.2010.11.005 [88] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003 [89] 陈懋弘, 章伟, 杨宗喜, 等, 2009.黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究.矿床地质, 28(3): 240-250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903003.htm [90] 高永丰, 侯增谦, 魏瑞华, 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19(3): 418-428. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303004.htm [91] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8): 1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm [92] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义.岩石学报, 23(11): 2699-2714. doi: 10.3969/j.issn.1000-0569.2007.11.003 [93] 和钟铧, 杨德明, 郑常青, 等, 2012.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1): 100-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601016.htm [94] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [95] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2): 239-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm [96] 侯增谦, 曲晓明, 王淑贤, 等, 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑), 33(7): 609-618. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm [97] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3): 275-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm [98] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4): 647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm [99] 纪伟强, 吴福元, 锺孙霖, 等, 2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑), 39(7): 849-871. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm [100] 冷秋锋, 唐菊兴, 郑文宝, 等, 2015.西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义.中国地质, 42(2): 570-584. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502016.htm [101] 柳小明, 高山, 袁洪林, 等, 2002.193 nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报, 18(3): 408-418. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203016.htm [102] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3): 281-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503001.htm [103] 莫宣学, 赵志丹, Don J DePaolo, 等, 2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报, 22(4): 795-803. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604004.htm [104] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3): 135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm [105] 莫宣学, 赵志丹, 朱弟成, 等, 2009.西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束.地球科学, 34(1): 17-24. http://earth-science.net/WebPage/Article.aspx?id=1783 [106] 聂凤军, 张万益, 杜安道, 等, 2007.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义.地质学报, 81(7): 898-905. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707003.htm [107] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [108] 秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2): 339-348. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102015.htm [109] 曲晓明, 侯增谦, 李佑国, 2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报, 21(11): 768-776. doi: 10.3969/j.issn.1671-2552.2002.11.015 [110] 曲晓明, 侯增谦, 李振清, 2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义.地质学报, 77(2): 245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302022.htm [111] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6): 523-535. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906005.htm [112] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质, 22(3): 217-225. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303000.htm [113] 水新芳, 赵元艺, 郭硕, 等, 2012.德兴矿集区花岗闪长斑岩锆石U-Pb年龄、Hf同位素特征及其意义.中国地质, 39(6): 1543-1561. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206005.htm [114] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [115] 唐菊兴, 陈毓川, 多吉, 等, 2009a.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价.矿物学报, 29(增刊1): 476-478. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1249.htm [116] 唐菊兴, 黄勇, 李志军, 等, 2009b.西藏谢通门县雄村铜金矿床元素地球化学特征.矿床地质, 28(1): 15-28. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200901003.htm [117] 唐菊兴, 黎风佶, 李志军, 等, 2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质, 29(3): 461-475. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003007.htm [118] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9): 1277-1288. http://earth-science.net/WebPage/Article.aspx?id=2935 [119] 王亮亮, 莫宣学, 李冰, 等, 2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报, 22(4): 1001-1008. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065143.htm [120] 王立强, 唐菊兴, 陈毓川, 等, 2012.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 30(2): 349-360. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102016.htm [121] 王立全, 潘桂棠, 朱弟成, 等, 2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报, 27(9): 1509-1534. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200809014.htm [122] 王强, 许继锋, 赵振华, 2001.一种新的火成岩-埃达克岩的研究综述.地球科学进展, 16(2): 201-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200102009.htm [123] 王焰, 张旗, 钱青, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2): 251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm [124] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [125] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1602. doi: 10.3321/j.issn:0023-074X.2004.16.002 [126] 杨德明, 李才, 王天武, 2001.西藏冈底斯东段南北向构造特征与成因.中国区域地质, 20(4): 392-397. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200104009.htm [127] 杨振, 刘锐, 王新宇, 等, 2014.云开地区燕山晚期花岗岩的岩石成因及构造意义:锆石U-Pb年龄及Hf同位素证据.地球科学, 39(9): 1258-1276. http://earth-science.net/WebPage/Article.aspx?id=2939 [128] 杨志明, 2008.西藏驱龙超大型斑岩铜矿床——岩浆作用与矿床成因(博士学位论文).北京:中国地质科学院, 1-145. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177369.htm [129] 张刚阳, 郑有业, 龚福志, 等, 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报, 24(3): 473-479. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803007.htm [130] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2): 236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm [131] 张硕, 史洪峰, 郝海健, 等, 2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学, 39(5): 509-524. http://earth-science.net/WebPage/Article.aspx?id=2860 [132] 周涛发, 范裕, 袁峰, 等, 2011.宁芜(南京-芜湖)盆地火山岩的年代学及其意义.中国科学(D辑), 41(7): 960-971. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107010.htm [133] 周详, 曹佑功, 1984.西藏板块构造-建造图及说明书.北京:地质出版社, 1-20. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218663.htm [134] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2): 1-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902002.htm [135] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4): 458-466. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200804004.htm