Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene
-
摘要: 矿物出溶结构保存有早期母体矿物的物理化学条件信息,对其开展研究不仅有助于了解寄主岩石的来源深度,而且有助于研究减压折返的动力学演化过程.在世界许多高压-超高压带的榴辉岩和石榴辉石岩中,人们普遍发现单斜辉石中有定向排列的针状或棒状SiO2析出物,其矿物相主要为α石英,有时会伴生钙质角闪石等含水矿物.这些定向针状或棒状体通常平行于单斜辉石c[001]轴方向延伸,石英长轴可以为其c[0001]轴或a[1120]轴.电子背散射衍射(EBSD)测试结果表明,多数石英(96%)析出物与寄主单斜辉石具有结晶学取向关系:(1) 50%的石英c轴平行,并且[0001]Qz//[001]Cpx;(2)35%的石英至少有一个a轴平行,并且[1120]Qz//[001]Cpx;(3)11%的石英至少有一个s{1121}面平行,并且(1121)Qz//(100)Cpx.钙质角闪石析出物与寄主单斜辉石也具有密切结晶学取向关系:(100)Amp//(100)Cpx、[010]Amp//[010]Cpx、[001]Amp//[001]Cpx、[100]Amp∧[100]Cpx≈32°.上述定量显微构造证据表明,单斜辉石中定向石英析出物是由出溶作用所形成,并且多数石英出溶体形成于α石英稳定域.已有高温高压实验研究数据表明,单斜辉石中空位的形成和钙埃斯科拉组分(CaEs)的含量均受化学组成、压力、温度等多种因素综合影响:单斜辉石中CaEs含量对化学组成非常敏感,并受到共生矿物体系中自由SiO2相和蓝晶石的共同缓冲;相同化学组成和等压条件下,CaEs含量总体上随温度升高缓慢降低;相同化学组成和等温条件下,CaEs含量在<6 GPa区间随压力升高而增加,在>6 GPa区间随压力升高而降低.单斜辉石定向SiO2析出物的形成可能涉及多种因素,高压只是其中必要条件之一.榴辉岩质单斜辉石中“石英±角闪石”析出物很可能形成于开放体系,与熔流体活动密切相关,涉及多阶段物质扩散、晶体成核生长、重结晶、退变质反应等复杂作用过程.单斜辉石中定向SiO2析出物的显微结构特征并非超高压岩石的必要条件,这种特殊显微结构也不能作为证明超高压的充分条件.Abstract: Exsolution lamellae-bearing minerals preserve information on the physicochemical conditions of the precursor homogeneous host and are helpful in understanding the subduction depth as well as the processes of decompression recorded in the host rocks during exhumation. Oriented silica precipitates in clinopyroxene have been reported widely in eclogite and garnet pyroxenite from high pressure and ultrahigh pressure metamorphic terranes around the world.Most of such silica precipitates are identified as α-quartz which in part coexist with hydrous minerals such as calcic amphibole.Such oriented precipitates are elongated parallel to the c-axis of host clinopyroxene, while the long axes of quartz being either c[0001]or a[1120]. Electron backscatter diffraction (EBSD) analyses demonstrate that the majority (96%) of quartz precipitates have topotactic relationships with their host clinopyroxenes.Three types of crystallographic topotactic relationships have been identified between quartz and host clinopyroxene: (1) 50% quartz precipitates share the same orientation for the c-axes with [0001]Qz//[001]Cpx; (2) 35% quartz precipitates share the same orientation for the a-axes with [1120]Qz//[001]Cpx; and (3) 11% quartz precipitates share the same orientation for the s-planes with (1121)Qz//(100)Cpx.Other quartz axes and planes disperse in large or small girdles around the shared axes or planes.Calcic amphibole precipitates also have a strong crystallographic relationship with host clinopyroxene, i.e., (100)Amp//(100)Cpx, [010]Amp//[010]Cpx, [001]Amp//[001]Cpx, [100]Amp∧[100]Cpx≈32°. The results provide quantitative microstructural evidence supporting an exsolution origin for oriented quartz needles/rods in clinopyroxene and demonstrate that the exsolution of quartz from clinopyroxene occurred within the stability field of α-quartz rather than coesite.Integrated analyses of published high pressure and high temperature experiments show that the cation vacancy and Ca-Eskola (CaEs) component in clinopyroxene are affected by bulk chemistry, pressure and temperature. The solubility of SiO2 in clinopyroxene are sensitive to bulk chemistry, and the CaEs content in clinopyroxene at high pressure conditions is buffered by free silica phase and kyanite. The CaEs contents in clinopyroxene depend strongly on pressure, which shows rapid increase with pressure up to 6 GPa and then decrease with pressure. By contrast, the CaEs contents in clinopyroxene decrease slightly with temperature which indicates that the effect of temperature is relatively week.On the basis of the above integrated analyses on high pressure experiments and observations on mineral association and microstructural results from natural samples, we suggest that the formation mechanism of the oreiented silica in clinopyroxene is more complicated than we might initially assume. The oriented precipitates of α-quartz and calcic amphiboles in host clinopyroxene are probably formed during multi-stage mechanism involving exsolution, diffusion and exchange of multiple substances, nucleation and growth, recrystallization and some retrograded reactions, which are probably promoted by supercritical fluid or partial melting during exhumation. This study suggests that the texture of oriented quartz precipitates in clinopyroxene is neither necessary nor sufficient for UHP rocks, i. e., it cannot be used as an indisputable UHP-indicator.
-
Key words:
- ultrahigh pressure metamorphism /
- clinopyroxene /
- quartz exsolution /
- EBSD /
- topotaxy /
- petrology
-
图 1 榴辉岩单斜辉石中石英出溶体显微照片
a.新鲜榴辉岩矿物组合为石榴石+绿辉石+金红石,其中半自形绿辉石中含丰富石英棒状体;b.放大图像显示不同长度和宽度的石英棒状体呈定向排列,其长轴延长方向平行寄主单斜辉石c[001]方向;c.弱退变质榴辉岩矿物组合为石榴石+单斜辉石+金红石+石英+角闪石+斜长石,退变质角闪石沿着石榴子石与单斜辉石颗粒边界分布,单斜辉石中含有若干定向粗大石英棒状体和大量细小石英析出体;d.石英析出体截面呈柱状或不规则多边形状,部分石英析出体一侧伴生细小角闪石,注意角闪石+石英析出体常与粒内微裂隙相邻;e.单斜辉石内部含有大量石英±角闪石析出体和粒间与粒内微裂隙;f.放大图像显示较粗大角闪石紧邻粒内开放式裂隙.a,b来自南大别双河新鲜榴辉岩(RP-28);c,d,e,f来自苏鲁威海刘公岛弱退变质榴辉岩(WH08-4).a,b,c为光学显微镜单偏光图像;d,e,f为扫描电镜电子背散射图像;Amp.角闪石;Cpx.单斜辉石;Grt.石榴子石;Qz.石英;Rt.金红石
Fig. 1. Photographs showing parageneses and textures of clinopyroxene with quartz precipitations in eclogite
图 2 天然榴辉岩单斜辉石中主量元素和端元组分对应关系
a.单斜辉石中Na2O-Al2O3质量百分比对应关系;b.单斜辉石单位分子中Na-Si原子数对应关系;c.钙切尔马克(CaTs)分子与硬玉(Jd)分子对应关系;d.钙埃斯科拉(CaEs)分子与硬玉(Jd)分子对应关系.电子探针数据据Katayama et al.(2000)、Tsai and Liou(2000)、Dobrzhinetskaya et al.(2002)、Page et al.(2005)、梁金龙等(2006)、Proyer et al.(2009)和Xu et al.(2015)
Fig. 2. Relations for major element and end-number contents in clinopyroxene from natural eclogites
图 4 高温高压实验合成单斜辉石中CaEs和Si含量变化
a.CaEs摩尔含量随压力变化;b.Si原子数随压力变化;c.CaEs摩尔含量随温度变化;d.Si原子数随温度变化;e.CaEs摩尔含量与总阳离子数对应关系;f.Si与Al原子数对应关系;g.CaEs摩尔含量与Si原子数对应关系;h.Si与Na+K原子数对应关系.数据引自Wood and Henderson(1978)、Gasparik(1985, 1986)、Zhao et al.(2011)和Kawasaki and Osanai(2015)
Fig. 4. Variation of CaEs component and Si cation per formula unit in clinopyroxene synthesized in high pressure and high temperature experiments
图 5 石英和角闪石析出体与寄主单斜辉石结晶学取向对应关系
a.单斜辉石中角闪石析出体结晶学取向上半球散点图;b.单斜辉石中石英析出体结晶学取向上半球散点图;c.石英析出体结晶学取向反极图.EBSD测量数据来自两块榴辉岩:南大别双河新鲜榴辉岩(RP-28,170 Qz in 17 Cpx)和苏鲁威海刘公岛弱退变质榴辉岩(WH08-4,53 Amp and 2 015 Qz in 35 Cpx).为获得统计对比分析结果,所有寄主单斜辉石均旋转到同一取向,石英和角闪石的结晶学取向则随寄主单斜辉石作协同旋转.单斜辉石的结晶学参考坐标已在上半球等角度散点图中标出,即[001]cpx位于南北方向,[010]cpx位于东西方向,(100)cpx位于圆心.石英反极图分别沿着//[010]cpx,//[001]cpx和⊥(100)cpx三个方向投影
Fig. 5. Diagnostic crystallographic topotactic relationships between quartz and amphibole precipitates and host clinopyroxene
图 6 单斜辉石析出石英+角闪石的可能模式
a.超高压环境条件下,在柯石英稳定域内,超硅单斜辉石可以含有过量硅和一定空位;b.随着压力降低,亚稳态超硅单斜辉石释放出少量硅,这些析出硅在单斜辉石核部结晶生长;c.随着压力和温度进一步降低,在α石英稳定域,单斜辉石在开放体系熔流体活动的促进下丢失Na等化学组分,同时伴有大量硅析出并在单斜辉石核部结晶生长出大量α石英微晶;d.在α石英稳定域,早期石英微晶重结晶形成较为粗大的定向棒状体,并伴随后续硅的析出和结晶形成微细石英针状体;e.在裂隙附近,单斜辉石和石英析出体受熔流体活动影响,发生退变质反应形成石英+角闪石特殊结构
Fig. 6. Possible quartz+amphibole precipitate formation model in clinopyroxene
-
[1] Bakun-Czubarow, N., 1992.Quartz Pseudomorphs after Coesite and Quartz Exsolutions in Eclogitic Omphacites of the Zlote Mountains in the Sudetes (SW Poland).Archiwum Mineralogiczne, 48:3-25. doi: 10.1007/s12583-010-0130-0 [2] Boudeulle, M., 1994.Disproportionation in Mineral Solid Solutions:Symmetry Constraints on Precipitate Orientation and Morphology.Implications for the Study of Oriented Intergrowths.Journal of Applied Crystallography, 27(4):567-573.doi: 10.1107/S0021889894000750 [3] Bruno, M., Compagnoni, R., Hirajima, T., et al., 2002.Jadeite with the Ca-Eskola Molecule from an Ultra-High Pressure Metagranodiorite, Dora-Maira Massif, Western Alps.Contributions to Mineralogy and Petrology, 142(5):515-519.doi: 10.1007/s004100100307 [4] Chen, J., Xu, Z.Q., 2005.Pargasite and Ilmenite Exsolution Texture in Clinopyroxenes from the Hujialing Garnet-Pyroxenite, Su-Lu UHP Terrane, Central China:A Geodynamic Implication.European Journal of Mineralogy, 17(6):895-903.doi: 10.1127/0935-1221/2005/0017-0895 [5] Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118.doi: 10.1007/BF00381838 [6] Day, H.W., Mulcahy, S.R., 2007.Excess Silica in Omphacite and the Formation of Free Silica in Eclogite.Journal of Metamorphic Geology, 25(1):37-50.doi: 10.1111/j.1525-1314.2006.00677.x [7] Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H. J., et al., 2002.Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland:Evidence of Deep Subduction.Journal of Metamorphic Geology, 20(5):481-492.doi: 10.1046/j.1525-1314.2002.00383.x [8] Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., et al., 2009.Phlogopite and Quartz Lamellae in Diamond-Bearing Diopside from Marbles of the Kokchetav Massif, Kazakhstan:Exsolution or Replacement Reaction?Journal of Metamorphic Geology, 27(9):607-620.doi: 10.1111/j.1525-1314.2009.00832.x [9] Dobrzhinetskaya, L.F., Faryad, S.W., 2011.Frontiers of Ultrahigh-Pressure Metamorphism:View from Field and Laboratory.In:Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S., Cuthbert, S., eds., Ultrahigh-Pressure Metamorphism:25 Years After The Discovery of Coesite And Diamond.Elsevier, London, 1-39.doi:10.1016/B978-0-12-385144-4.00020-5 [10] Eskola, P., 1921.On the Eclogites of Norway.Videnskaps-selskapets i Kristiana Skrifter I.Matamatisk-Naturvi-denskabelig Klasse, 8:1-118. [11] Franchi, S., 1902.Ueber Feldspath-Uralitisirung der Natron-thonerde-Pyroxene aus den eklogitischen Glimmerschiefern der Gebirge von Biella (Graiische Alpen).Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 1902:112-126 (in French). https://www.researchgate.net/publication/223579660_Eclogites_and_their_geodynamic_interpretation_A_history [12] Gasparik, T., 1985.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Pyroxene and Plagioclase in the System Na2O-CaO-Al2O3-SiO2.Contributions to Mineralogy and Petrology, 89(4):346-357.doi: 10.1007/BF00381556 [13] Gasparik, T., 1986.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Clinopyroxene in the Silica-Saturated System CaO-MgO-Al2O3-SiO2.American Mineralogist, 71(5-6):686-693. https://www.researchgate.net/publication/282312774_Experimental_study_of_subsolidus_phase_relations_and_mixing_properties_of_clinopyroxene_in_the_silica-saturated_system_CaO-MgO-Al2O3-Si2O [14] Gayk, T., Kleinschrodt, R., Langosch, A., et al., 1995.Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Münchberg Massif.European Journal of Mineralogy, 7(5):1217-1220.doi: 10.1127/ejm/7/5/1217 [15] Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1-2):61-76.doi: 10.1016/S0264-3707(99)00027-7 [16] Harlow, G.E., 1999.Interpretation of Kcpx and CaEs Components in Clinopyroxene from Diamond Inclusions and Mantle Samples.In:Gurney J.J., Gurney J.L., Pascoe M.D., Richardson S.H., eds., Proceedings of the Seventh International Kimberlite Conference.Red Roof Design, Cape Town, 321-331. [17] Hermann, J., 2002.Experimental Constraints on Phase Relations in Subducted Continental Crust.Contributions to Mineralogy and Petrology, 143(2):219-235.doi: 10.1007/s00410-001-0336-3 [18] Hill, T.R., Konishi, H., Xu, H.F., 2013.Natural Occurrence of Keatite Precipitates in UHP Clinopyroxene from the Kokchetav Massif:A TEM Investigation.American Mineralogist, 98(1):187-196.doi: 10.2138/am.2013.4170 [19] Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implication.Earth and Planetary Science Letters, 77(2):245-256.doi: 10.1016/0012-821X(86)90165-2 [20] Isaacs, A.M., Brown, P.E., Valley, J.W., et al., 1981.An Analytical Electron Microscopic Study of A Pyroxene-Amphibole Intergrowth.Contributions to Mineralogy and Petrology, 77(2):115-120.doi: 10.1007/BF00636515 [21] Janák, M., Froitzheim, N., Lupták, B., et al., 2004.First Evidence for Ultrahigh-Pressure Metamorphism of Eclogites in Pohorje, Slovenia:Tracing Deep Continental Subduction in the Eastern Alps.Tectonics, 23, TC5014, doi: 10.1029/2004TC001641 [22] Katayama, I., Parkinson, C.D., Okamoto, K., et al., 2000.Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan.American Mineralogist, 85(10):1368-1374.doi: 10.2138/am-2000-1004 [23] Kawasaki, T., Osanai, Y., 2015.Experimental Evidence of Bulk Chemistry Constraint on SiO2 Solubility in Clinopyroxene at High-Pressure Conditions.Lithos, 226:4-16.doi: 10.1016/j.lithos.2015.01.025 [24] Khanukhova, L.T., Zharikov, V.A., Ishbuatov, R.A., et al., 1976.Excess silica in Solid-Solution of High-Pressure Clinopyroxenes as Shown by Experimental Study of the System CaMgSi2O6-CaAl2SiO6 at 35 Kilobars and 1 200 ℃.Trans.Doklady Akademii Nauk SSSR, Earth Sciences Section, 229:170-172. http://www.sciencedirect.com/science/article/pii/S002449371500033X [25] Kihle, J., Harlov, D.E., Frigaard, ∅., et al., 2010.Epitaxial Quartz Inclusions in Corundum from A Sapphirine-Garnet Boudin, Bamble Sector, SE Norway:SiO2-Al2O3 Miscibility at High P-T Dry Granulite Facies Conditions.Journal of Metamorphic Geology, 28(7):769-784.doi: 10.1111/j.1525-1314.2010.00891.x [26] Klemd, R., 2003.Ultrahigh-Pressure Metamorphism in Eclogites from the Western Tianshan High-Pressure Belt (Xinjiang, Western China)—Comment.American Mineralogist, 88(7):1153-1156. https://www.researchgate.net/publication/216831987_Ultrahigh-pressure_metamorphism_in_eclogites_from_the_western_Tianshan_high-pressure_belt_Xinjiang_western_China-Comment [27] Knapp, N., Woodland, A.B., Klimm, K., 2013.Experimental Constraints in the CMAS System on the Ca-Eskola Content of Eclogitic Clinopyroxene.European Journal of Mineralogy, 25(4):579-596.doi: 10.1127/0935-1221/2013/0025-2326 [28] Konzett, J., Frost, D.J., Proyer, A., et al., 2008a.The Ca-Eskola Component in Eclogitic Clinopyroxene as a Function of Pressure, Temperature and Bulk Composition:An Experimental Study to 15 GPa with Possible Implications for the Formation of Oriented SiO2-Inclusions in Omphacite.Contributions to Mineralogy and Petrology, 155(2):215-228.doi: 10.1007/s00410-007-0238-0 [29] Konzett, J., Libowitzky, E., Hejny, C., et al., 2008b.Oriented Quartz+Calcic Amphibole Inclusions in Omphacite from the Saualpe and Pohorje Mountain Eclogites, Eastern Alps—An Assessment of Possible Formation Mechanisms based on IR-and Mineral Chemical Data and Water Storage in Eastern Alpine Eclogites.Lithos, 106(3-4):336-350.doi: 10.1016/j.lithos.2008.09.002 [30] Kushiro, I., 1969.Clinopyroxene Solid Solutions Formed by Reactions between Diopside and Plagioclase at High Pressures.Mineralogical Society of America, Special Publication, 2:179-191. doi: 10.1134/S0016702907060055 [31] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.American Mineralogist, 82(9-10):1019-1037. http://www.canmin.org/content/41/6/1355.abstract [32] Liang, J.L., Sun, X.M., Xu, L., et al., 2006.Quartz Exsolution in Omphacite of Ultrahigh Pressure Metamorphic Rocks from CCSD.Acta Geologica Sinica, 80(12):1904-1910 (in Chinese with English abstract). doi: 10.1080/00206819909465184 [33] Liati, A., Gebauer, D., Wysoczanski, R., 2002.U-Pb SHRIMP-Dating of Zircon Domains from UHP Garnet-Rich Mafic Rocks and Late Pegmatoids in the Rhodope Zone (N Greece):Evidence for Early Cretaceous Crystallization and Late Cretaceous Metamorphism.Chemical Geology, 184(3-4):281-299.doi: 10.1016/S0009-2541(01)00367-9 [34] Liou, J.G., Zhang, R.Y., Ernst, W.G., et al., 1998.High-Pressure Minerals from Deeply Subducted Metamorphic Rocks.Reviews in Mineralogy and Geochemistry, 37(1):33-96. http://cat.inist.fr/?aModele=afficheN&cpsidt=9898504 [35] Liu, L., Zhang, J.F., Green, H.W., et al., 2007.Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km.Earth and Planetary Science Letters, 263(3-4):180-191.doi: 10.1016/j.epsl.2007.08.010 [36] Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.Exsolution Microstructures in Ultrahigh-Pressure Rocks:Progress, Controversies and Challenges.Chinese Science Bulletin, 54(10):1387-1400 (in Chinese). doi: 10.1007/s11434-009-0204-5 [37] Liu, X.W., Jin, Z.M., 2008.Amphibole and Albite Exsolution in Omphacite of Eclogite from Raobazhai.Bulletin of Mineralogy, Petrology and Geochemistry, 27:379-380 (in Chinese). https://www.researchgate.net/publication/292769927_The_exsolution_of_clinoenstatite_and_quartz_in_diopside_from_garnet_pyroxenite_in_northern_Dabie [38] Liu, Y.C., Gu, X.F., Chen, Z.Y., 2009.Breakdown Textures and Ultrahigh Pressure Metamorphism of the Eclogites from the Luotian Dome in the North Dabie Complex.Chinese Journal of Geology, 44(1):202-212 (in Chinese with English abstract). https://www.researchgate.net/publication/288738680_Breakdown_textures_and_ultrahigh-pressure_metamorphism_of_the_eclogites_from_the_Luotian_Dome_in_the_North_Dabie_Complex [39] Liu, Y.C., Gu, X.F., Rolfo, F., et al., 2011.Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Complex Zone (Central China):Evidence from Mineral Inclusions and Decompression Textures.Journal of Asian Earth Sciences, 42(4):607-617.doi: 10.1016/j.jseaes.2010.10.016 [40] Mao, H.K., 1971.The System Jadeite (NaAlSi2O6)-Anorthite (CaAl2Si2O8) at High Pressures.Year book-Carnegie Institution of Washington, 69:163-168. https://www.researchgate.net/publication/286316481_Pressure_dependence_of_self-diffusion_in_NaAlSi3O8_melt_A_molecular_dynamics_study [41] McCormick, T.C., 1986.Crystal-Chemical Aspects of Nonstoichiometric Pyroxenes.American Mineralogist, 71(11-12):1434-1440. https://www.researchgate.net/publication/279559395_Crystal-chemical_aspects_of_nonstoichiometric_pyroxenes [42] McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178.doi: 10.1016/j.jsg.2012.08.006 [43] Milholland, C.S., Presnall, D.C., 1998.Liquidus Phase Relations in the CaO-MgO-Al2O3-SiO2 System at 3.0 GPa:The Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas.Journal of Petrology, 39(1):3-27.doi: 10.1093/petroj/39.1.3 [44] Miller, C., Mundil, R., Thöni, M., et al., 2005.Refining the Timing of Eclogite Metamorphism:A Geochemical, Petrological, Sm-Nd and U-Pb Case Study from the Pohorje Mountains, Slovenia (Eastern Alps).Contributions to Mineralogy and Petrology, 150(1):70-84.doi: 10.1007/s00410-005-0004-0 [45] Mori, T., Green, D.H., 1976.Subsolidus Equilibria between Pyroxenes in the CaO-MgO-SiO2 System at High Pressures and Temperatures.American Mineralogist, 61:616-625. https://www.researchgate.net/profile/David_Green11/publication/236383966_Subsolidus_equilibria_between_pyroxenes_in_the_CaO-MgO-SiO2_system_at_high_pressures_and_temperatures/links/00b7d52531d4e9bc68000000.pdf?origin=publication_detail [46] Ono, S., Yasuda, A., 1996.Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1 400 to 1 600 ℃.Physics of the Earth and Planetary Interiors, 96(2-3):171-179.doi: 10.1016/0031-9201(96)03149-4 [47] Page, F.Z., Essene, E.J., Mukasa, S.B., 2003.Prograde and Retrograde History of Eclogites from the Eastern Blue Ridge, North Carolina, USA.Journal of Metamorphic Geology, 21(7):685-698.doi: 10.1046/j.1525-1314.2003.00479.x [48] Page, F.Z., Essene, E.J., Mukasa, S.B., 2005.Quartz Exsolution in Clinopyroxene Is Not Proof of Ultrahigh Pressures:Evidence from Eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.American Mineralogist, 90(7):1092-1099.doi: 10.2138/am.2005.1761 [49] Papike, J.J., Ross, M., Clark, J.R., 1969.Crystal Chemical Characterization of Amphiboles based on Five New Structure Determinations.Mineralogical Society of America Special Paper, 2:117-136. http://www.sciencedirect.com/science/article/pii/0024493773900868 [50] Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204 [51] Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7 [52] Proyer, A., Krenn, K., Hoinkes, G., 2009.Oriented Precipitates of Quartz and Amphibole in Clinopyroxene of Metabasites from the Greek Rhodope:A Product of Open System Precipitation during Eclogite-Granulite-Amphibolite Transition.Journal of Metamorphic Geology, 27(9):639-654.doi: 10.1111/j.1525-1314.2009.00844.x [53] Proyer, A., McCammon, C., Dachs, E., 2004.Pitfalls in Geothermobarometry of Eclogites:Fe3+ and Changes in the Mineral Chemistry of Omphacite at Ultrahigh Pressures.Contributions to Mineralogy and Petrology, 147(3):305-318.doi: 10.1007/s00410-004-0554-6 [54] Safonov, O.G., Perchuk, L.L., Litvin, Y.A., et al., 2005.Phase Relations in the CaMgSi2O6-KAlSi3O8 Join at 6 and 3.5 GPa as a Model for Formation of Some Potassium-Bearing Deep-Seated Mineral Assemblages.Contributions to Mineralogy and Petrology, 149(3):316-337.doi: 10.1007/s00410-005-0651-1 [55] Shau, Y. H., Tsai, H. C., Liu, Y. H., et al., 2005.Transmission Electron Microscopic Study of Quartz Rods with Intergrown Amphibole within Omphacite in Eclogites from the Sulu Ultrahigh-Pressure Metamorphic Terrane, Eastern China.7th International Eclogite Conference, Leibnitz, 150:139. [56] Smith, D.C., 1984.Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics.Nature, 310(5979):641-644.doi: 10.1038/310641a0 [57] Smith, D.C., 1988.A Review of the Peculiar Mineralogy of the "Norwegian Coesite-Eclogite Province", with Crystal-Chemical, Petrological, Geochemical and Geodynamical Notes and an Extensive Bibliography.In:Smith, D.C., ed., Eclogites and Eclogite-Facies Rocks, Developments in Petrology.Elsevier, Amsterdam. [58] Smith, D.C., 2006.The SHAND Quaternary System for Evaluating the Supersilicic or Subsilicic Crystal-Chemistry of Eclogite Minerals, and Potential New UHPM Pyroxene and Garnet End-Members.Mineralogy and Petrology, 88(1-2):87-122.doi: 10.1007/s00710-006-0151-7 [59] Smith, D.C., Cheeney, R.F., 1980.Oriented Needles of Quartz in Clinopyroxene:Evidence for Exsolution of SiO2 from a Non-Stoichiometric Supersilicic "Clinopyroxene".26th International Geological Congress, Paris. [60] Smith, P.P.K., 1977.An Electron Microscopic Study of Amphibole Lamellae in Augite.Contributions to Mineralogy and Petrology, 59(3):317-322.doi: 10.1007/BF00374560 [61] Smyth, J.R., 1980.Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacite.American Mineralogist, 65(11-12):1185-1191. http://www.osti.gov/scitech/biblio/6636513 [62] Sobolev, N.V., Kuznetsova, I.K., Zyuzin, N.I., 1968.The Petrology of Grospydite Xenoliths from Zagodochnaya Kimberlite Pipe in Yakutia.Journal of Petrology, 9(2):253-280.doi: 10.1093/petrology/9.2.253 [63] Sobolev, N.V., Shatsky, V.S., 1990.Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation.Nature, 343(6260):742-746.doi: 10.1038/343742a0 [64] Su, W., You, Z.D., Wang, R.C., et al., 2001.Quartz and Clinoenstatite Exsolutions in Clinopyroxene of Garnet-Pyroxenolite from the North Dabie Mountains, Eastern China.Chinese Science Bulletin, 46(10):850-853 (in Chinese). doi: 10.1007/BF02900437 [65] Terry, M.P., Robinson, P., 2001.Evidence for Supersilicic Pyroxene in an UHP Kyanite Eclogite, Western Gneiss Region, Norway.Eleventh Annual V.M.Goldschmidt Conference, Hot Springs. https://www.researchgate.net/publication/216831880_Evidence_for_supersilicic_pyroxene_in_an_UHP_kyanite_eclogite_Western_Gneiss_Region_Norway [66] Tsai, C.H., Liou, J.G., 2000.Eclogite-Facies Relics and Inferred Ultrahigh-Pressure Metamorphism in the North Dabie Complex, Central-Eastern China.American Mineralogist, 85(1):1-8.doi: 10.2138/am-2000-0101 [67] Tsai, H.C., 2005.Mineral Precipitates in Eclogites from Donghai in the Sulu Ultrahigh-Pressure Province, Eastern China (Dissertation).National Sun Yat-sen University, Gaoxiong:46-103 (in Chinese with English abstract). http://www.openthesis.org/documents/Mineral-precipitates-in-eclogites-from-232203.html [68] Vogel, D.E., 1966.Nature and Chemistry of the Formation of Clinopyroxene-Plagioclase Symplectite from Omphacite.Neues Jahrbuch für Mineralogie-Monatshefte, 6:185-189. doi: 10.1007/BF01829368 [69] Wang, L., Jin, Z.M., He, M.C., 2003.Raman Spectrum Study on Quartz Exsolution in Omphacite from Eclogite and Its Tectonic Significances.Earth Science, 28(2):143-150 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy200302002&dbname=CJFD&dbcode=CJFQ [70] Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324.doi: 10.2138/am.2011.3760 [71] Wood, B.J., Henderson, C.M.B., 1978.Composition and Unit-Cell Parameters of Synthetic Non-Stoichiometric Tschermakitic Clinopyroxenes.American Mineralogist, 63(1-2):66-72. http://ammin.geoscienceworld.org/content/63/1-2/66 [72] Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm [73] Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010 [74] Xu, S.T., Su, W., Liu, Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82.doi: 10.1126/science.256.5053.80 [75] Yamaguchi, Y., Akai, J., Tomita, K., 1978.Clinoamphibole Lamellae in Diopside of Garnet Lherzolite from Alpe Arami, Bellinzona, Switzerland.Contributions to Mineralogy and Petrology, 66(3):263-270.doi: 10.1007/BF00373410 [76] You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). https://en.wikipedia.org/wiki/Ultra-high-pressure_metamorphism [77] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011a.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x [78] Zhang, Z.M., Shen, K., Liou, J.G., et al., 2011b.Fluid-Rock Interactions during UHP Metamorphism:A Review of the Dabie-Sulu Orogen, East-Central China.Journal of Asian Earth Sciences, 42(3):316-329.doi: 10.1016/j.jseaes.2011.02.002 [79] Zhang, L.F., Ellis, D.J., Jiang, W.B., 2002.Ultrahigh-Pressure Metamorphism in Western Tianshan, China:Part Ⅰ.Evidence from Inclusions of Coesite Pseudomorphs in Garnet and from Quartz Exsolution Lamellae in Omphacite in Eclogites.American Mineralogist, 87(7):853-860.doi: 10.2138/am-2002-0707 [80] Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005.Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China.American Mineralogist, 90(1):181-186.doi: 10.2138/am.2005.1587 [81] Zhang, R.Y., Liou, J.G., 1999.Exolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993.doi: 10.1080/00206819909465184 [82] Zhang, Z.M., Shen, K., Liou, J.G., et al., 2007.Fluid Inclusions Associated with Exsolved Quartz Needles in Omphacite of UHP Eclogites, Chinese Continental Scientific Drilling Main Drill Hole.International Geology Review, 49(5):479-486.doi: 10.2747/0020-6814.49.5.479 [83] Zhao, S.T, Nee, P., Green, H.W., et al., 2011.Ca-Eskola Component in Clinopyroxene:Experimental Studies at High Pressures and High Temperatures in Multianvil Apparatus.Earth and Planetary Science Letters, 307(3-4):517-524.doi: 10.1016/j.epsl.2011.05.026 [84] Zharikov, V.A., Ishbulatov, R.A., Chudinovskikh, L.T., 1984.High Pressure Clinopyroxenes and the Eclogite Barrier.Soviet Geology and Geophysics, 25:53-61. https://www.mindat.org/min-7630.html [85] Zheng, Y.F., Zhang, L.L., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158 (in Chinese with English abstract). http://www.eurekalert.org/pub_releases/2013-09/scp-scp091113.php [86] Zhu, Y.F., Ogasawara, Y., 2002.Phlogopite and Coesite Exsolution from Super-Silicic Clinopyroxene.International Geology Review, 44(9):831-836.doi: 10.2747/0020-6814.44.9.831 [87] 梁金龙, 孙晓明, 徐莉, 等, 2006.CCSD超高压变质岩绿辉石中的石英出溶体及其大陆动力学意义.地质学报, 80(12): 1904-1910. doi: 10.3321/j.issn:0001-5717.2006.12.013 [88] 刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.科学通报, 54(10): 1387-1400. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200910011.htm [89] 刘祥文, 金振民, 2008.饶拔寨榴辉岩绿辉石中镁铁闪石及单斜钠长石出溶体.矿物岩石地球化学通报, 27: 379-380. doi: 10.3969/j.issn.1007-2802.2008.z1.203 [90] 刘贻灿, 古晓锋, 陈振宇, 2009.北大别罗田榴辉岩的减压出溶结构与超高压变质作用.地质科学, 44(1): 202-212. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013178601.htm [91] 苏文, 游振东, 王汝成, 等, 2001.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶.科学通报, 46(10): 850-853. doi: 10.3321/j.issn:0023-074X.2001.10.015 [92] 蔡宪璋, 2005. 中国苏鲁超高压变质带东海地区榴辉岩之矿物析出物研究(硕士学位论文). 高雄: 国立中山大学, 46-103. [93] 王璐, 金振民, 何谋春, 2003.榴辉岩中石英出溶体的拉曼光谱学研究及其构造意义.地球科学, 28(2): 143-150. http://earth-science.net/WebPage/Article.aspx?id=1227 [94] 徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm [95] 游振东, 钟増球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2): 195-202. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702004.htm [96] 郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2): 135-158. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201302001.htm