Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia
-
摘要: 为了对古亚洲洋的演化提供新的资料,对内蒙中部乌拉特中旗图古日格角闪石岩进行了角闪石电子探针分析、锆石LA-ICP-MS U-Pb年代学,锆石Hf同位素和岩石地球化学分析,以确定其岩石成因及其地球动力学背景.两件测年样品加权平均年龄分别为273.5±1.3 Ma(MSWD=0.48) 和274.4±4.3 Ma(MSWD=0.041),属于早二叠世晚期.角闪石岩贫SiO2、Na2O、K2O,富Al2O3、TFe2O3、MgO和CaO,Mg#值为46.95~63.53,M/F比值为0.87~1.72;稀土元素配分曲线为右倾型,和原始地幔相比明显富集大离子亲石元素(Rb、Ba、K),而高场强元素Nb、Ta和Ti相对亏损,Th、U同样显示出相对亏损.电子探针分析结果表明角闪石岩中角闪石属于钙质角闪石,具有幔源角闪石的特点.角闪石岩中锆石的ε Hf(t)值为-0.3~8.5,锆石Hf单阶段模式年龄(t DM1)为580~920 Ma.研究表明其源区主要为亏损地幔,上涌过程中与富集岩石圈地幔发生相互作用,形成具有富集地幔特征岩浆.结合区域地质演化,认为角闪石岩形成于古亚洲洋闭合后的伸展环境,可能与俯冲板片的断离有关.Abstract: Electron microprobe results, zircon U-Pb dating, Hf isotope data and geochemistry of hornblendite at Tugurige, Urad Zhongqi, Inner Mongolia are reported in the paper, which provide constraints on formation time, magma source, and tectonic setting of the intrusions. The dating results indicate that the hornblendite formed in the late Early Permian (273.5±1.3 Ma, MSWD=0.48; 274.4±4.3 Ma, MSWD=0.041), and it contains low Na2O and K2O, high Al2O3, TFe2O3, MgO, CaO, Mg#=46.95-63.53, M/F=0.87-1.72. Chondrite-normalized REE patterns show LREE enrichment. On a trace element spider diagram, large ion lithophile elements (LILEs) such as Rb, Ba and K are enriched, whereas the high field strength elements Ti, P, Th and U are relatively depleted. Electronic Probe analysis results show that hornblende belongs to calcic amphibole and has the characteristics of mantle hornblende. The ε Hf(t) values of zircons from the hornblendite vary between -0.3 and 8.5, and their Hf one-stage model ages vary from 580 to 920 Ma, implying that their magma source was derived from a depleted mantle and may have been added metasomatic enriched lithospheric mantle components. Combined with regional tectonic evolution, the hornblendite formed in the post-collisional extension setting, perhaps triggered by slab break-off.
-
Key words:
- Inner Mongolia /
- Urad Zhongqi /
- crystal chemistry /
- geochronology /
- geochemistry /
- Hf isotope
-
图 4 角闪石的成分变化与定名
CaB.B位置Ca原子数;(Na+K)A.A位置Na与K原子数之和;TSi.T位置Si原子数;AlⅥ.C位置AlⅥ的原子数;Fe3+.C位置Fe3+的原子数;据Leake(1997)
Fig. 4. Classification of hornblendes
图 7 图古日格角闪石岩稀土元素配分模式(a)和微量元素蛛网图(b)
图a球粒陨石值据Boynton(1984); 图b原始地幔值据Sun and McDonough(1989)
Fig. 7. >Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b) for the Tugurige hornblendite
图 9 图古日格角闪石岩Th/Yb-Nb/Yb图解(a)、Ba/Th-Th/Nb图解(b)和Nb/Zr-Th/Zr图解(c)
图a据Pearce(2008);图b据Hanyu et al.(2006);图c据Woodhead et al.(2001)
Fig. 9. Th/Yb-Nb/Yb, Ba/Th-Th/Nb and Nb/Zr-Th/Zr diagrams of Tugurige hornblendite
表 1 图古日格角闪石岩中角闪石电子探针分析结果
Table 1. Results of electron microprobe analysis of Tugurige hornblendite
样品 TG3-1 TG3-2 TG3-3 TG3-4 TG3-5 TG3-6 TG4-1 TG4-2 TG4-3 TG4-4 TG4-5 TG4-6 SiO2 40.96 41.75 40.91 43.37 41.27 40.57 41.84 41.19 41.29 42.06 42.09 41.58 TiO2 2.47 2.34 2.41 1.91 2.64 2.39 1.06 2.10 3.19 2.56 2.41 2.28 Al2O3 13.28 12.69 13.21 10.87 13.58 12.99 13.17 12.72 12.63 12.33 12.19 12.86 TFeO 13.40 14.54 14.07 15.49 12.90 16.14 15.53 12.81 13.28 13.07 13.97 12.52 百
分
含
量Cr2O3 0.02 0.00 0.00 0.00 0.01 0.01 0.14 0.00 0.00 0.01 0.00 0.02 MnO 0.18 0.20 0.17 0.24 0.17 0.22 0.21 0.14 0.14 0.15 0.20 0.18 MgO 11.84 11.60 11.59 11.82 12.24 10.49 11.23 11.91 12.35 12.65 12.00 12.34 CaO 11.13 11.05 11.25 10.87 11.19 11.01 11.10 11.30 11.08 11.40 11.05 11.33 CoO 0.01 0.06 0.07 0.04 0.01 0.00 0.07 0.04 0.07 0.03 0.02 0.04 NiO 0.01 0.03 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.04 K2O 0.96 1.08 0.90 0.88 0.80 0.97 0.74 0.92 0.85 0.91 1.00 0.79 Na2O 2.36 2.23 2.33 2.06 2.28 2.18 2.22 2.21 2.13 2.17 2.18 2.27 Total 96.61 97.56 96.94 97.55 97.11 96.99 97.31 95.34 96.99 97.34 97.12 96.25 T Si 6.17 6.29 6.16 6.53 6.22 6.11 6.30 6.20 6.22 6.34 6.34 6.26 AlⅣ 1.83 1.71 1.84 1.47 1.78 1.89 1.70 1.80 1.78 1.66 1.66 1.74 C AlⅥ 0.52 0.54 0.50 0.46 0.62 0.41 0.64 0.46 0.46 0.52 0.50 0.54 Ti 0.25 0.23 0.24 0.19 0.26 0.24 0.11 0.21 0.32 0.26 0.24 0.23 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 Fe3+ 1.47 1.58 1.53 1.65 1.33 1.53 1.69 1.04 1.42 1.35 1.52 1.40 Mn 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.02 Mg 2.67 2.62 2.62 2.67 2.77 2.37 2.54 2.69 2.79 2.86 2.71 2.79 Fe2+ 0.06 0.00 0.08 0.00 0.00 0.42 0.00 0.58 0.00 0.00 0.00 0.01 B Ca 1.80 1.78 1.82 1.75 1.81 1.78 1.79 1.82 1.79 1.84 1.78 1.83 Na 0.20 0.22 0.18 0.25 0.19 0.22 0.21 0.18 0.21 0.16 0.22 0.17 A Na 0.48 0.43 0.50 0.36 0.47 0.41 0.44 0.47 0.41 0.47 0.42 0.49 K 0.18 0.21 0.17 0.17 0.15 0.19 0.14 0.18 0.16 0.18 0.19 0.15 Fe3++Fe2+ 1.53 1.58 1.61 1.65 1.33 1.95 1.69 1.62 1.42 1.35 1.52 1.42 Mg/(Mg+Fe2+) 0.98 1.00 0.97 1.00 1.00 0.85 1.00 0.82 1.00 1.00 1.00 1.00 Si/(Si+Ti+Al) 0.703 0.717 0.705 0.755 0.700 0.706 0.721 0.716 0.709 0.722 0.725 0.714 Ca/(Ca+Mg+Fe) 0.30 0.30 0.30 0.29 0.31 0.29 0.30 0.30 0.30 0.30 0.30 0.30 表 2 图古日格角闪石岩锆石LA-ICP-MS U-Pb同位素定年结果
Table 2. Results of LA-ICP-MS zircon U-Pb dating of Tugurige hornblendite
测点号 Pb(10-6) Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 1##-1 43.7 177.2 311.1 0.57 0.052 1 0.002 3 0.309 2 0.013 4 0.043 2 0.000 5 273 3 1##-2 34.6 130.8 258.1 0.51 0.051 8 0.002 1 0.310 5 0.012 7 0.043 3 0.000 4 273 3 1##-3 58.3 246.1 348.6 0.71 0.052 8 0.005 7 0.313 3 0.033 3 0.043 2 0.000 8 273 5 1##-4 47.4 200.3 302.0 0.66 0.049 6 0.001 9 0.297 3 0.011 1 0.043 8 0.000 5 277 3 1##-5 89.0 345.4 632.2 0.55 0.051 5 0.001 9 0.312 5 0.012 2 0.043 8 0.000 5 276 3 1##-6 50.1 208.5 363.4 0.57 0.047 4 0.001 9 0.281 7 0.011 5 0.043 0 0.000 4 271 3 1##-7 76.1 330.6 440.5 0.75 0.049 5 0.001 9 0.292 6 0.011 0 0.042 8 0.000 4 270 2 1##-8 118.8 510.9 742.6 0.69 0.050 5 0.001 3 0.302 2 0.008 2 0.043 0 0.000 3 272 2 1##-9 26.4 101.1 179.6 0.56 0.051 7 0.003 5 0.310 1 0.021 6 0.043 3 0.000 7 273 5 1##-10 72.0 318.5 488.0 0.65 0.050 0 0.002 7 0.299 2 0.015 5 0.043 3 0.000 6 273 4 1##-11 55.3 233.1 358.6 0.65 0.053 1 0.004 1 0.318 1 0.024 1 0.043 8 0.000 7 276 4 1##-12 29.9 135.2 249.8 0.54 0.049 2 0.004 9 0.299 5 0.031 0 0.043 5 0.000 8 275 5 1##-13 38.7 154.9 285.9 0.54 0.050 9 0.002 2 0.304 9 0.013 0 0.043 6 0.000 5 275 3 1##-14 66.0 289.4 398.8 0.73 0.050 2 0.001 8 0.299 4 0.010 6 0.043 1 0.000 4 272 2 1##-15 39.3 161.9 265.1 0.61 0.050 4 0.002 3 0.303 7 0.013 8 0.043 5 0.000 5 275 3 1##-16 52.8 227.3 357.5 0.64 0.050 5 0.002 8 0.303 6 0.015 6 0.043 7 0.000 6 276 3 1##-17 49.0 200.4 353.8 0.57 0.053 0 0.001 7 0.316 7 0.010 4 0.043 1 0.000 4 272 2 1##-18 55.5 218.9 365.3 0.60 0.051 1 0.001 9 0.307 2 0.011 0 0.043 5 0.000 4 275 2 1##-19 190.4 854.3 746.0 1.15 0.050 7 0.001 4 0.306 8 0.008 2 0.043 7 0.000 3 276 2 1##-20 25.3 100.5 170.5 0.59 0.052 7 0.003 2 0.307 8 0.017 3 0.043 5 0.000 6 274 3 TG-3-1 14.0 200.3 247.8 0.81 0.051 8 0.002 9 0.310 5 0.019 0 0.043 5 0.001 8 274 11 TG-3-2 31.1 440.1 569.0 0.77 0.052 0 0.001 9 0.311 4 0.013 9 0.043 5 0.001 7 274 11 TG-3-3 11.1 121.8 194.8 0.63 0.052 0 0.002 5 0.310 6 0.016 8 0.043 3 0.001 8 273 11 TG-3-4 55.7 556.4 1 068.0 0.52 0.054 3 0.001 8 0.324 9 0.013 6 0.043 4 0.001 7 274 11 TG-3-5 95.6 1 012.1 2 146.9 0.47 0.051 2 0.001 6 0.306 4 0.012 5 0.043 4 0.001 7 274 11 TG-3-6 40.3 761.4 630.6 1.21 0.051 9 0.002 1 0.311 0 0.014 9 0.043 5 0.001 8 274 11 TG-3-7 29.9 449.6 536.7 0.84 0.054 2 0.002 6 0.319 8 0.017 1 0.042 8 0.001 8 270 11 TG-3-8 25.1 398.3 472.4 0.84 0.051 5 0.002 0 0.309 2 0.014 1 0.043 6 0.001 8 275 11 TG-3-9 73.8 1 344.4 1 332.0 1.01 0.051 7 0.001 7 0.308 5 0.013 0 0.043 3 0.001 7 273 11 TG-3-10 88.3 1 763.9 1 250.1 1.41 0.051 5 0.002 9 0.309 3 0.018 6 0.043 6 0.001 8 275 11 TG-3-11 165.9 3 119.5 2 847.9 1.10 0.052 0 0.001 7 0.310 0 0.013 0 0.043 3 0.001 7 273 11 TG-3-12 120.6 1 872.8 2 096.7 0.89 0.051 1 0.001 6 0.307 1 0.012 5 0.043 6 0.001 8 275 11 TG-3-13 75.8 1 936.6 1 132.4 1.71 0.051 8 0.001 8 0.310 9 0.013 3 0.043 5 0.001 8 275 11 TG-3-14 29.0 299.4 504.7 0.59 0.051 6 0.002 5 0.308 6 0.016 8 0.043 4 0.001 8 274 11 TG-3-15 94.2 957.8 2 041.9 0.47 0.051 7 0.001 8 0.309 2 0.013 2 0.043 4 0.001 8 274 11 TG-3-16 21.8 133.7 448.8 0.30 0.050 0 0.001 9 0.298 9 0.013 5 0.043 3 0.001 8 274 11 TG-3-17 74.7 1 094.6 1 281.5 0.85 0.051 5 0.002 1 0.310 1 0.014 6 0.043 7 0.001 8 276 11 TG-3-18 42.2 397.3 860.0 0.46 0.051 5 0.001 9 0.308 1 0.014 0 0.043 4 0.001 8 274 11 TG-3-19 37.9 744.2 537.2 1.39 0.052 3 0.003 1 0.312 6 0.020 1 0.043 3 0.001 8 273 11 TG-3-20 22.9 184.4 435.1 0.42 0.050 0 0.001 8 0.309 2 0.013 4 0.044 8 0.001 8 283 11 TG-3-21 28.7 225.1 581.0 0.39 0.051 6 0.001 9 0.308 4 0.013 8 0.043 3 0.001 8 274 11 TG-3-22 124.2 4 611.9 1 706.3 2.70 0.051 3 0.002 0 0.308 4 0.014 4 0.043 6 0.001 8 275 11 TG-3-23 47.6 555.1 910.0 0.61 0.051 3 0.003 2 0.313 8 0.020 8 0.044 3 0.001 9 280 12 TG-3-24 178.6 2 543.6 3 706.5 0.69 0.051 1 0.001 8 0.306 6 0.013 2 0.043 5 0.001 8 275 11 TG-3-25 29.4 257.3 556.8 0.46 0.051 9 0.003 6 0.309 6 0.022 5 0.043 3 0.001 9 273 11 表 3 图古日格角闪石岩中锆石Lu-Hf同位素组成
Table 3. Zircon Lu-Hf isotopic compositions of hornblendite in Tugurige
点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) tDM1(Ma) fLu/Hf 1##-1 273 0.028 163 0.000 848 0.282 697 0.000 013 0.282 692 -2.7 3.2 784 -0.97 1##-2 273 0.027 582 0.000 835 0.282 648 0.000 011 0.282 644 -4.4 1.5 851 -0.97 1##-3 273 0.062 803 0.001 763 0.282 840 0.000 013 0.282 831 2.4 8.1 596 -0.95 1##-4 273 0.035 875 0.001 088 0.282 719 0.000 012 0.282 713 -1.9 3.9 757 -0.97 1##-5 273 0.041 498 0.001 236 0.282 731 0.000 013 0.282 725 -1.4 4.3 743 -0.96 1##-6 273 0.037 576 0.001 129 0.282 717 0.000 012 0.282 711 -1.9 3.9 760 -0.97 1##-7 273 0.026 663 0.000 813 0.282 681 0.000 013 0.282 677 -3.2 2.6 805 -0.98 1##-8 273 0.029 553 0.000 909 0.282 675 0.000 013 0.282 671 -3.4 2.4 815 -0.97 1##-9 273 0.026 114 0.000 811 0.282 662 0.000 011 0.282 658 -3.9 2.0 831 -0.98 1##-10 273 0.030 634 0.000 930 0.282 684 0.000 013 0.282 679 -3.1 2.7 803 -0.97 1##-11 273 0.021 323 0.000 653 0.282 650 0.000 012 0.282 646 -4.3 1.6 845 -0.98 1##-12 273 0.020 151 0.000 613 0.282 656 0.000 009 0.282 653 -4.1 1.8 835 -0.98 1##-13 273 0.065 582 0.001 881 0.282 852 0.000 015 0.282 842 2.8 8.5 580 -0.94 1##-14 273 0.029 505 0.000 880 0.282 680 0.000 012 0.282 676 -3.2 2.6 807 -0.97 1##-15 273 0.023 300 0.000 701 0.282 597 0.000 012 0.282 593 -6.2 -0.3 920 -0.98 注:εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×104;εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×104;tDM1=1/λ×{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM)/(176Lu/177Hf)S-(176Lu/177Hf)DM]};fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;其中,(176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值,(176Lu/177Hf)CHUR=0.032 200,(176Hf/177Hf)CHUR, 0=0.282 772;(176Lu/177Hf)DM=0.038 400,(176Hf/177Hf)DM=0.283 250;fCC、fS、fDM分别为大陆地壳、样品和亏损地幔的fLu/Hf,t为样品形成时间,λ=1.867×10-11 a-1. 表 4 图古日格角闪石岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果
Table 4. Major elements, trace elements and rare elements analyses of the Tugurige hornblendite
样品 1##-1 1##-2 1##-3 1##-4 1##-5 1##-6 SiO2 43.46 43.54 45.30 45.29 46.30 43.33 Al2O3 16.15 17.57 15.84 11.02 10.87 15.52 TFe2O3 14.22 14.01 13.91 13.99 13.34 15.14 MgO 7.59 6.26 7.43 11.89 11.73 7.93 CaO 9.34 9.44 9.90 11.35 11.10 10.25 Na2O 2.10 2.29 2.43 1.88 1.86 2.20 K2O 2.36 2.11 1.37 0.99 0.97 1.73 MnO 0.21 0.19 0.21 0.20 0.20 0.21 TiO2 1.52 1.49 1.47 1.89 1.85 1.67 P2O5 0.44 0.50 0.39 0.05 0.05 0.36 LOI 2.56 2.54 1.72 1.42 1.67 1.62 Total 99.95 99.94 99.97 99.97 99.94 99.96 Mg# 51.39 46.95 51.41 62.74 63.53 50.92 M/F 1.04 0.87 1.04 1.66 1.72 1.02 La 20.0 18.3 19.7 12.5 13.7 21.4 Ce 58.8 52.2 52.0 34.8 36.5 56.1 Pr 8.91 7.74 8.04 5.74 5.80 8.90 Nd 37.4 34.6 38.1 29.5 28.5 42.2 Sm 7.57 6.93 8.70 7.51 7.40 9.41 Eu 1.80 1.83 2.13 1.85 1.84 2.46 Gd 7.06 6.32 7.82 7.10 6.58 8.47 Tb 1.15 1.05 1.27 1.16 1.14 1.42 Dy 5.87 5.32 6.39 6.13 6.01 6.89 Ho 1.12 1.05 1.14 1.10 1.00 1.24 Er 3.27 3.11 3.13 2.93 2.69 3.50 Tm 0.51 0.47 0.47 0.44 0.41 0.53 Yb 2.87 2.82 2.67 2.47 2.34 3.09 Lu 0.45 0.42 0.39 0.35 0.34 0.45 REE 156.33 141.74 151.56 113.23 113.91 165.51 LREE 134.48 121.60 128.67 91.90 93.74 140.37 HREE 21.85 20.14 22.89 21.33 20.17 25.14 δEu 0.74 0.83 0.77 0.76 0.79 0.83 LREE/HREE 6.15 6.04 5.62 4.31 4.65 5.58 (La/Yb)N 4.70 4.38 4.97 3.41 3.95 4.67 (La/Sm)N 1.66 1.66 1.42 1.05 1.16 1.43 (Gd/Lu)N 1.95 1.87 2.49 2.52 2.41 2.34 V 317 290 289 439 480 368 Cr 124.0 63.2 94.2 272.0 268.0 87.2 Co 37.8 30.7 38.5 56.0 53.9 46.1 Ni 21.3 18.8 15.8 35.3 35.1 15.9 Ga 33.0 33.3 23.6 17.6 17.2 24.8 Rb 93.5 105.0 37.4 20.2 16.5 55.3 Sr 576 882 569 295 249 573 Y 35.2 32.1 31.1 29.1 27.8 34.3 Ba 303 540 710 1105 239 497 Pb 9.64 13.00 6.14 4.47 4.70 6.64 Th 2.54 2.89 2.23 1.50 3.01 2.41 U 0.72 0.91 0.86 0.45 0.97 0.89 Nb 6.55 6.27 6.03 5.34 5.49 6.74 Ta 0.284 0.266 0.320 0.325 0.365 0.320 Zr 116.0 152.0 96.2 60.1 67.0 115.0 Hf 3.64 4.20 3.49 2.67 2.93 3.89 La/Sm 2.64 2.64 2.26 1.66 1.85 2.27 Sr/Nd 15.40 25.49 14.93 10.00 8.74 13.58 -
[1] All Members of the IMA-CNMMN Amphibole Professional Committee, 2001.Amphibole Nomenclature—International Association of Mineralogy New Mineral and Mineral Named Committee Hornblende Professional Committee's Report.Acta Petrologica et Mineralogica, 20(1):84-100(in Chinese). http://www.academia.edu/1050464/Nomenclature_of_amphiboles_report_of_the_subcommittee_on_amphiboles_of_the_International_Mineralogical_Association_Commission_on_New_Minerals_and_ [2] Blichert-Toft, J., Catherine Chauvel, F., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278 [3] Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Elements Geochemistry.Elsevier, Amsterdam, 63-144.doi:10.1016/B978-0-444-42148-7.50008-3 [4] Chen, B., Zhao, G.C., Wilde, S., 2001.Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia:Isotopic Ages and Tectonic Implications.Geological Review, 47(4):361-364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104005.htm [5] Fisher, C.M., Vervoort, J.D., Hanchar, J.M., 2014.Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data.Chemical Geology, 363:125-133.doi: 10.1016/j.chemgeo.2013.10.019 [6] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29. https://www.researchgate.net/publication/259474862_Contribution_of_slab_melting_and_slab_dehydration_to_magmatism_in_the_NE_Japan_arc_for_the_last_25_Myr_Constraints_from_geochemistry [7] Hong, D.W., Huang, H.Z., Xiao, Y.J., et al., 1994.The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance.Acta Geologica Sinica, 68(3):219-230 (in Chinese with English abstract). https://www.researchgate.net/publication/229810589_Permian_Alkaline_Granites_in_Central_Inner_Mongolia_and_Their_Geodynamic_Significance1 [8] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008a.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093-1101. doi: 10.1039/b804760j [9] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2008b.A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 23(9):1192-1203. doi: 10.1039/B803934H [10] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012a.A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis.Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57.doi:10.1016/j. sab. 2012.09.007 [11] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012b.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.doi: 10.1039/C2JA30078H [12] Jian, P., Liu, D.Y., Kröner, A., et al., 2010.Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia.Lithos, 118(1-2):169-190.doi: 10.1016/j.lithos.2010.04.014 [13] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rock and Their Petrogenesis Significance.Journal of Mineralogy and Petrology, 4(3):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198403000.htm [14] Langmuir, C.H., Bender, J.F., Bence, A.E., et al., 1977.Petrogenesis of Basalts from the FAMOUS Area:Mid-Atlantic Ridge.Earth and Planetary Science Letters, 36(1):133-156.doi: 10.1016/0012-821X(77)90194-7 [15] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.Mineralogical Magazine, 61(405):295-321. doi: 10.1180/claymin [16] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16 (in Chinese with English abstract). https://www.researchgate.net/publication/290480034_Zircon_U-Pb-Hf_isotopes_bulk-rock_geochemistry_and_petrogenesis_of_Middle_to_Late_Triassic_I-type_granitoids_in_the_Xing%27an_Block_northeast_China_Implications_for_early_Mesozoic_tectonic_evolution_of_ [17] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007.Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates.Acta Petrologica Sinica, 23(3):565-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200703006.htm [18] Li, P.W., Zhang, S.H., Gao, R., et al., 2012.New Upper Carboniferous-Lower Permian Paleomagnetic Results from the Central Inner Mongolia and Their Geological Implications.Journal of Jilin University(Earth Science Edition), 42(Suppl.1):423-434, 440(in Chinese with English abstract). https://www.researchgate.net/publication/279624901_New_Upper_Carboniferous-lower_Permian_paleomagnetic_results_from_the_central_Inner_Mongolia_and_their_geological_implications [19] Li, Y.L., Zhou, H.W., Xiao, W.J., et al., 2012.Superposition of Paleo-Asian and West-Pacific Tectonic Domains in the Eastern Section of the Solonker Suture Zone:Insights from Petrology, Geochemistry and Geochronology of Deformed Diorite in Xar Moron Fault Zone, Inner Mongolia.Earth Science, 37(3):433-450 (in Chinese with English abstract). [20] Liegéois, J.P., 1998.Some Words on the Post-Collisional Magmatism.Lithos, 45:15-17. http://www.researchgate.net/profile/J-P_Liegeois/publication/259369329_Some_words_on_the_post-collisional_magmatism/links/00b4952b40900f0929000000.pdf [21] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://www.researchgate.net/profile/Keqing_Zong2/publication/268411794_Continental_and_Oceanic_Crust_Recycling-induced_MeltPeridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths/links/551434ad0cf2eda0df306881.pdf?disableCoverPage=true [22] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:70. http://searchworks.stanford.edu/view/6739593 [23] Luo, H.L., Wu, T.R., Li, Y., 2007.Geochemistry and SHRIMP Dating of the Kebu Massif from Wulatezhongqi, Inner Mongolia:Evidence for the Early Permian Under Palting Beneath the North China Craton.Acta Petrologica Sinica, 23(4):755-766(in Chinese with English abstract). [24] Luo, H.L., Wu, T.R., Zhao, L., 2009.Zicron SHRIMP U-Pb Dating of Wuliangsitai A-Type Granite on the Northern Margin of the North China Plate and Tectonic Significance.Acta Petrologica Sinica, 25(3):515-526(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903005.htm [25] Luo, H.L., Wu, T.R., Zhao, L., et al., 2013.Geochemical Characteristics of Bayinzhurihe Pluton and Its Tectonic Significance, Bayan Obo, Inner Mongolia.Geological Journal of China Universities, 19(1):123-132 (in Chinese with English abstract). https://www.researchgate.net/publication/304714661_Geochemical_characteristics_of_Bayinzhurihe_pluton_and_its_tectonic_significance_Bayan_Obo_Inner_Mongolia [26] Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008.Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China.Journal of Asian Earth Sciences, 32(5-6):348-370.doi:10.1016/j.jseaes. 2007.11.005 [27] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48.doi:10.1016/j. lithos. 2007.06.016 [28] Rudnick, R.L., 1995.Making Continental Crust.Nature, 378(7):571-578. https://community.dur.ac.uk/yaoling.niu/MyReprints-pdf/YoshiTatsumi-MakingCC.pdf [29] Rudnick, R.L., Gao, S., Ling, W.L., et al., 2004.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton.Lithos, 77(1-4):609-637.doi: 10.1016/j.lithos.2004.03.033 [30] Shao, J.A., 1991.Crustal Evolution of the Central-Northern Margin of the Sino-Korean Plate.Peking University Press, Beijing(in Chinese). [31] Shao, J.A., Tang, K.D., He, G.Q., 2014.Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China.Acta Petrologica Sinica, 30(7):1858-1866(in Chinese with English abstract). https://www.researchgate.net/publication/293238364_Early_Permian_tectono-palaeogeographic_reconstruction_of_Inner_Mongolia_China [32] Shao, J.A., Tian, W., Zhang, J.H., 2015.Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances.Earth Science, 40(9):1441-1457 (in Chinese with English abstract). https://www.researchgate.net/publication/284920190_Early_permian_cumulates_in_northern_margin_of_north_China_Craton_and_their_tectonic_significances [33] Shen, S.Z., Zhang, H., Shang, Q.H., et al., 2006.Permian Stratigraphy and Correlation of Northeast China:A Review.Journal of Asian Earth Sciences, 26(3-4):304-326.doi: 10.1016/j.jseaes.2005.07.007 [34] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004.Emplacement Age and Tectonic Implications of the Xilinhot A-Type Granite in Inner Mongolia, China.Chinese Science Bulletin, 49(7):723-729. doi: 10.1007/BF03184272 [35] Sun, L.X., Zhao, F.Q., Wang, H.C., et al., 2013.Zircon U-Pb Geochronology of Metabase Rocks from the Baoyintu Block in the Langshan Area, Inner Mongolia, and Its Tectonic Significance.Acta Geologica Sinica, 87(2):197-207 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.02.005 [36] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [37] Tang, K.D., 1990.Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton.Tectonics, 9(2):249-260. doi: 10.1029/TC009i002p00249 [38] Tang, K.D., 1992.Evolution of Fold Belt Tectonic and Metallogenic Regularities in North Sino-Korean Plate.Peking University Press, Beijing, 112-243(in Chinese). [39] Tang, Y.J., Zhang, H.F., Ying, J.F., 2014.Genetic Significance of Triassic Alkali-Rich Intrusive Rocks in the Yinshan and Neighboring Areas.Acta Petrologica Sinica, 30(7):2031-2040(in Chinese with English abstract). https://www.researchgate.net/publication/298832031_Genetic_significance_of_Triassic_alkali-rich_intrusive_rocks_in_the_Yinshan_and_neighboring_areas [40] Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. doi: 10.1016/j.chemgeo.2006.03.013 [41] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Oxford. [42] Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications.Acta Geoscientica Sinica, 31(3):395-412(in Chinese with English abstract). https://www.researchgate.net/publication/281037103_Spatial_and_Temporal_Distribution_of_Granitoids_in_the_Middle_Segment_of_the_Sino-Mongolian_Border_and_its_Tectonic_and_Metallogenic_Implications [43] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. doi: 10.1016/0016-7037(96)00201-3 [44] Wang, Q., 2010.Petrogenesis and Magma Source of Wengen A Magic-Ultramafic Intrusion, Inner Mongolia, China (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [45] Wang, Q., Liu, X.Y., Li, J.Y., 1991.Plate Tectonics between Cathaysia and Angaraland in China.Peking University Press, Beijing (in Chinese with English abstract). [46] Wang, W.Q., Liu, Z.H., Wang, X.A., et al., 2012.SHRIMP U-Pb Dating of the Zircon from the Hercynian Biotite Monzonitic Granites in Urad Zhongqi, Inner Mongolia, and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 42(6):1771-1782(in Chinese with English abstract). https://www.researchgate.net/publication/282223394_SHRIMP_U-Pb_dating_of_the_zircon_from_the_Hercynian_biotite_monzonitic_granites_in_Urad_Zhongqi_Inner_Mongolia_and_its_geological_significance [47] Wang, W.Q., Xu, Z.Y., Liu, Z.H., et al., 2013.Early-Middle Permian Tectonic Evolution of the Central-Northern Margin of the North China Craton:Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids.Acta Petrologica Sinica, 29(9):2987-3003(in Chinese with English abstract). https://www.researchgate.net/publication/282931715_Early_Carboniferous_tectonic_attribute_of_the_central-northern_margin_of_north_China_Craton_Constraints_from_geochemistry_of_highly_fractionated_I-type_granites_in_Cahayouhouqi_area [48] Wang, X.L., Zhang, C., Liu, S.W., et al., 2007.Electron Microprobe Dating of Monazite in Granite from Kanbao Area, Hebei Province.Acta Petrologica Sinica, 23(4):817-822(in Chinese with English abstract). https://www.researchgate.net/publication/281359485_Electron_microprobe_dating_of_monazite_in_granite_from_Kanbao_area_Hebei_province [49] Wang, Y.D., Sun, F.Y., Li, L., et al., 2015.Geochronology, Geochemistry, and Geological Implications of Late Carboniferous-Early Permian Mafic and Felsic Intrusive Rocks from Urad Zhongqi, Western Inner Mongolia.Geological Magazine, 152(6):1057-1072. doi: 10.1017/S0016756815000138 [50] Wang, Y.W., Wang, J.B., Wang, L.J., 2000.The Petrologic Characteristics of Hornblendite in Danailingou, Inner Mongolia.Geological Review, 46(3):301-306(in Chinese with English abstract). https://www.researchgate.net/publication/290021708_Petrological_and_geochemical_characteristics_of_the_Wanganzhen_complex_and_discussion_on_its_genesis [51] Windley, B., 1993.Proterozoic Anorogenic Magmatism and Its Orogenic Connections.Journal of the Geological Society, 150:39-50.doi: 10.1144/gsjgs.150.1.0039 [52] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346.doi: 10.1016/j.chemgeo.2004.04.026 [53] Woodhead, J., Hergt, J., Shelley, M., et al., 2004.Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation.Chemical Geology, 209(1-2):121-135.doi: 10.1016/j.chemgeo.2004.04.026 [54] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). https://www.researchgate.net/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology [55] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):288-308. https://www.researchgate.net/publication/228469753_Accretion_leading_to_collision_and_the_Permian_Solonker_suture_Inner_Mongolia_China_Termination_of_the_Central_Asian_Orogenic_Belt [56] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia.International Journal of Earth Sciences, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z [57] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015 [58] Xu, B., Chen, B., 1997.Structure and Evolution of the Paleozoic Orogenic Belt between North China Plate and Siberian Plate in the North Inner Mongolia.Science in China(Series D), 27(3):227-232(in Chinese). [59] Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. doi: 10.1016/j.epsl.2006.04.029 [60] Yuan, H.L., Gao, S., Liu X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3 [61] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.Laser Probe Zircon U-Pb and REE Composition Analysis of Cenozoic Intrusive in Northeast China.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). [62] Zhang, Q.W., Liu, Z.H., Chai, S.L., et al., 2011.Zircon U-Pb Dating of the Garnet-Bearing Granite from Wulan Area of Urad Zhongqi in Inner Mongolia and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 41(3):745-752(in Chinese with English abstract). [63] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008.Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China:Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt.Chemical Geology, 249(3-4):262-281. doi: 10.1016/j.chemgeo.2008.01.005 [64] Zhang, Z.Q., Yuan, Z.X., Tang, S.H., et al., 2003.Age and Geochemistry of the Bayan Obo Ore Deposit.Geological Publishing House, Beijing (in Chinese). [65] Zhao, L., Wu, T.R., Luo, H.L., 2011.SHRIMP U-Pb Dating, Geochemistry and Tectonic Implications of the Beiqigetao Gabbros in Urad Zhongqi Area, Inner Mongolia.Acta Petrologica Sinica, 27(10):3071-3082(in Chinese with English abstract). doi: 10.1080/00206814.2015.1039087?scroll=top [66] Zhao, L., Wu, T.R., Luo, H.L., et al., 2008.Petrology, Geochemistry and Tectonic Implications of the Wengeng Gabbros in Wulatezhongqi Area, Inner Mongolia.Acta Scientianum Naturalium Universitatis Pekinensis, 44(2):201-211(in Chinese with English abstract). doi: 10.1080/00206814.2015.1039087?scroll=top [67] Zhao, P., Chen, Y., Xu, B., et al., 2013.Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China.Journal of Geophysical Research:Solid Earth, 118(5):1873-1894. doi: 10.1002/jgrb.50198 [68] Zhao, Q.Y., Liu, Z.H., Wu, X.W., et al., 2007.Characteristics and Origin of Halaheshao Pluton in Daqingshan Region, Inner-Mongolia.Journal of Mineral.Petrol., 27(1):46-51(in Chinese with English abstract). https://www.researchgate.net/publication/287690451_Characteristics_and_origin_of_the_Shadegai_pluton_in_the_Daqingshan_Area_Inner-Mongolia [69] Zhou, Z.G., Gu, Y.C., Liu, C.F., et al., 2010.Discovery of Early-Middle Permian Cathaysian Flora in Manduhubaolage Area, Dong Ujimqin Qi, Inner Mongolia, China and Its Geological Significance.Geological Bulletin of China, 28(12):21-25(in Chinese with English abstract). [70] IMA-CNMMN角闪石专业委员会全体成员, 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告.岩石矿物学杂志, 20(1):84-100. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200101011.htm [71] 陈斌, 赵国春, Wilde, S., 2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及构造意义.地质评论, 47(4):361-364. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm [72] 洪大卫, 黄怀曾, 肖宜君, 等, 1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报, 68(3):219-230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htm [73] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, 4(3):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm [74] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001 [75] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3):565-582. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [76] 李朋武, 张世红, 高锐, 等, 2012.内蒙古中部晚石炭世-早二叠世古地磁新数据及其地质意义.吉林大学学报(地球科学版), 42(增刊1) :423-434, 440. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1051.htm [77] 李益龙, 周汉文, 肖文交, 等, 2012.古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加:来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据.地球科学, 37(3):433-450. http://www.earth-science.net/WebPage/Article.aspx?id=2248 [78] 罗红玲, 吴泰然, 李毅, 2007.乌拉特中旗克布岩体的地球化学特征及SHRIMP定年:早二叠世华北克拉通底侵作用的证据.岩石学报, 23(4):755-766. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704008.htm [79] 罗红玲, 吴泰然, 赵磊, 2009.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义.岩石学报, 25(3):515-526. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903005.htm [80] 罗红玲, 吴泰然, 赵磊, 等, 2013.白云鄂博中二叠世巴音珠日和岩体地球化学特征及构造意义.高校地质学报, 19(1):123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301015.htm [81] 邵济安, 1991.中朝板块北缘中段地壳演化.北京:北京大学出版社. [82] 邵济安, 唐克东, 何国琦, 2014.内蒙古早二叠世构造古地理的再造.岩石学报, 30(7):1858-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407002.htm [83] 邵济安, 田伟, 张吉衡, 2015.华北克拉通北缘早二叠世堆晶岩及其构造意义.地球科学, 40(9):1441-1457. http://www.earth-science.net/WebPage/Article.aspx?id=3150 [84] 孙立新, 赵凤清, 王惠初, 等, 2013.内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义.地质学报, 87(2):197-207. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302007.htm [85] 唐克东, 1992.中朝板块北侧褶皱带构造演化及成矿规律.北京:北京大学出版社, 112-243. [86] 汤艳杰, 张宏福, 英基丰, 2014.阴山及邻区三叠纪富碱侵入岩的成因意义.岩石学报, 30(7):2031-2040. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407016.htm [87] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm [88] 王倩, 2010. 内蒙古乌拉特中旗温根A区镁铁-超镁铁质岩体成因及岩浆源区讨论(硕士学位论文). 北京: 中国地质大学. [89] 王荃, 刘雪亚, 李锦轶, 1991.中国华夏与安加拉古陆间的板块构造.北京:北京大学出版社. [90] 王挽琼, 刘正宏, 王兴安, 等, 2012.内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMP U-Pb年龄及其地质意义.吉林大学学报(地球科学版), 42(6):1771-1782. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206021.htm [91] 王挽琼, 徐仲元, 刘正宏, 等, 2013.华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约.岩石学报, 29(9):2987-3003. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309003.htm [92] 王鑫琳, 张臣, 刘树文, 等, 2007.河北康保地区花岗岩独居石电子探针定年.岩石学报, 23(4):817-822. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704013.htm [93] 王玉往, 王京彬, 王莉娟, 2000.内蒙古大乃林沟角闪石岩岩石学特征.地质论评, 46(3):301-306. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200003013.htm [94] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [95] 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学:D辑:地球科学, 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm [96] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [97] 张青伟, 刘正宏, 柴社立, 等, 2011.内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义.吉林大学学报(地球科学版), 41(3):745-752. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103016.htm [98] 张宗清, 袁忠信, 唐索寒, 等, 2003.白云鄂博矿床年龄和地球化学.北京:地质出版社. [99] 赵磊, 吴泰然, 罗红玲. 2011. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义. 27(10): 3071-3082. [100] 赵磊, 吴泰然, 罗红玲, 等, 2008.内蒙古乌拉特中旗温更辉长岩类的岩石学、地球化学特征及其构造意义.北京大学学报(自然科学版), 44(2):201-211. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200802008.htm [101] 赵庆英, 刘正宏, 吴新伟, 等, 2007.内蒙古大青山地区哈拉合少岩体特征及成因.矿物岩石, 27(1):46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200701008.htm [102] 周志广, 谷永昌, 柳长峰, 等, 2010.内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义.地质通报, 29 (1):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001003.htm