Mechanism of Sea Level Change at the Earth Orbital Parameter Cycles during the Last 2 Ma BP
-
摘要: 海平面的变化往往对区域生态环境、社会经济造成严重影响.通过对全球相对海平面变化(relative sea level,简称RSL)记录的再分析结果,合成了近2 Ma BP以来的全球RSL变化记录,分析了合成RSL记录对原始RSL记录数理特征的继承性,并基于频谱、滤波等数理分析验证了合成RSL记录的合理性.在此基础上,讨论了合成RSL与大气CO2浓度、中高纬度海域表层海水温度(sea surface temperature,简称SST)、全球大洋底栖氧同位素(δ18OB)等参数指标间的相关性,结果显示:(1) 合成RSL不仅与原始RSL记录的变化趋势基本一致,继承了原始RSL记录对全球气候变化的响应特征,而且显示出合成RSL记录对地球轨道参数周期变化响应明显;(2) 近2 Ma BP以来,在冰期-间冰期旋回中,合成RSL与δ18OB变化呈良好的负相关,相关系数r平均值可以达到约0.81,高于合成RSL与大气CO2浓度及中高纬度海域SST变化的相关系数;(3) 在地球轨道参数周期上,合成RSL与极地冰盖体积(δ18OB)的变化几乎同时,在偏心率周期上,合成RSL落后于SST和大气CO2浓度变化;在斜率周期上,合成RSL落后于SST变化而领先于大气CO2浓度变化.推测这些变化的诱导因素可能是在太阳辐射量改变的前提下,大气CO2浓度及大洋SST变化对极地冰盖体积产生了差异影响,进而引起海平面发生变化.Abstract: Sea level change usually has great impact on global (or regional) ecological environment and social economy. Based on the published records of relative sea level (RSL), one new stacked RSL is reconstructed in this paper, and the correlations between the new stacked RSL and original records are analyzed. In addition, the reliability and rationality of the new stacked RSL are tested and verified respectively by Spectrum and Filtering analysis. Furthermore, the evolutionary history and correlations between the stacked RSL and atmospheric CO2 concentration, sea surface temperature (SST) in middle-high latitudinal oceans and benthic oxygen isotope (δ18OB) record are separately discussed in detail. The results show that: (1) the new stacked RSL has the similar change trend to the original RSL records during the last 2 Ma BP, and the correlation coefficients are all nearly 0.9. Meanwhile, the new stacked RSL also responds well to the global climate change events at the earth orbital parameter cycles; (2) The new stacked RSL and LR04-δ18OB have high negative correlation in glacial-interglacial cycles during the last 2 Ma BP, with the correlation coefficient of about 0.81, which is much higher than those of the new stacked RSL with SST and atmospheric CO2 concentration; (3) Based on the cross-spectral analytical results between the new stacked RSL and CO2, SST and δ18OB, individually, the new stacked RSL is nearly in phase with δ18OB, and both lags SST and CO2 at the eccentricity band, and lags SST but leads CO2 at the obliquity band. It is concluded that the polar ice sheet volume was influenced by changes of SST and atmospheric CO2 concentration, which might be caused by the change of solar insolation and finally influenced the sea level change at the earth orbital parameter cycles.
-
Key words:
- sea level /
- polar ice sheet /
- correlations /
- 2 Ma BP /
- climate change
-
图 1 LR04-δ18O记录和ODP846-δ18O、地中海-δ18O记录的对比
a.LR04-δ18O记录(Lisiecki and Raymo, 2005);b.ODP846-δ18O记录(Shackleton et al., 1995);c.地中海-δ18O记录(Lourens, 2004; Wang et al., 2010).图(b)和(c)中数值表示ODP846-δ18O和地中海-δ18O记录与LR04-δ18O记录“峰对峰,谷对谷”的对比中的年龄差异
Fig. 1. Comparison between LR04-δ18O stack and ODP846-δ18O, Mediterranean δ18O stack
图 2 近2 Ma BP以来合成RSL与LR04-δ18OB记录变化
a.LR04-δ18OB记录(Lisiecki and Raymo, 2005);b.近2 Ma以来合成RSL变化记录(黑色实线):红色虚线来源于Miller et al.(2005);绿色虚线来源于Rohling et al.(2014);蓝色虚线来源于Waelbroeck et al.(2002),作为参考记录.拟合方法为将各个记录的线性趋势去掉,再计算平均值后加上平均线性趋势得到
Fig. 2. Changes of RSL stack and LR04 stack during the last 2 Ma BP
图 3 近2 Ma BP以来合成RSL记录的频谱分析
a.2 000~900 ka时间段RSL的频谱分析结果,显示较强的40 ka周期,100 ka周期信号不明显;b.900~0 ka时间段RSL的频谱分析结果,显示较强的100 ka周期和较弱的40 ka周期.90%、95%、99%表示置信度,分析软件为Redfit35(Schulz and Mudelsee, 2002)
Fig. 3. Spectrum results of RSL stack during the last 2 Ma BP
图 4 近2 Ma BP以来合成RSL记录与LR04-δ18OB在地球轨道参数周期上的滤波分析
a.为合成RSL记录;b.100 ka偏心率周期滤波;c.40 ka斜率周期滤波;d.20 ka岁差周期滤波的中心频率和带宽分别为0.01 ka-1和0.003 105 ka-1、0.024 390 ka-1和0.002 654 ka-1及0.047 610 ka-1和0.010 250 ka-1,黑色曲线代表合成的RSL记录的滤波,右侧纵横数据代表RSL记录的滤波振幅;灰色曲线代表LR04-δ18OB记录的滤波,左侧纵横数据代表LR04-δ18OB记录的滤波振幅.图中矩形框指示“MPT”事件发生的主要阶段
Fig. 4. Filtering results of RSL stack and LR04-δ18OB stack in orbital cycles during the last 2 Ma BP
图 5 近2 Ma BP以来合成RSL记录与大气CO2浓度、SST、LR04-δ18OB记录变化对比
a.合成RSL变化趋势及其小波分析;b.近800 ka BP以来南极冰心中大气CO2浓度记录和近2 Ma BP以来合成大气CO2浓度变化及其小波分析,2 Ma BP以来的大气CO2浓度变化计算方法来自参考文献(Lüthi et al., 2008; Lisiecki, 2010),得出公式:大气CO2浓度=1/2×60.092×(δ13CB-南大洋+δ13CB-北大西洋)+239.35,相关系数r大于0.6,δ13CB数据来源于Wang et al.(2010);c.合成中高纬度SST变化趋势(数据来源见表 1)及其小波分析;d.LR04-δ18OB变化趋势及其小波分析.图中纵向阴影代表间冰期;小波分析结果中黑色等值线代表红噪假设下显著性水平为5%的区域.小波分析方法由Grinsted et al.(2004)提供
Fig. 5. Comparison between RSL stack and CO2, SST and δ18OB records during the last 2 Ma BP
图 6 近2 Ma BP以来合成RSL与各参数的相关性及交叉频谱分析
中文a.合成RSL与大气CO2浓度变化相关性及其交叉频谱分析;b.合成RSL与中高纬度SST变化相关性及其交叉频谱分析;c.合成RSL记录与LR04-δ18OB记录相关性及其交叉频谱分析.左侧相关性分析图中蓝色字体为冰期相关性,红色为间冰期相关性,黑色为近2 Ma BP以来冰期-间冰期旋回中的相关性(图中相关性分析数据为各参数指标在冰期,间冰期内的平均值;频谱分析数据为插值后的数据);右侧频谱图中段划线代表 80%置信度,点划线代表 95%置信度,交叉频谱图中带黄-紫色阴影区表示相位关系及偏差,80%或95%代表置信度.分别对大气CO2浓度与合成RSL值进行了800 ka BP以来与2 Ma BP以来的交叉频谱分析,结果基本一致.图中为近2 Ma BP以来的交叉频谱分析结果注解
Fig. 6. Relationships and cross-spectral analyses between RSL stack and other proxies
表 1 文章涉及到数据的来源
Table 1. Resources of data in this paper
参数 时间长度(Ma) 原始平均分辨率(ka) 参考文献 备注 RSL 0.45 0.5 Waelbroeck et al., 2002 仅作为参考 543.00 ≥5.0 Miller et al., 2005 0~9.25 Ma,平均分辨率为5 ka 5.30 2.0~3.0 Rohling et al., 2014 - SST 3.50 3.0 Martnez-Garcia et al., 2010 北太平洋ODP882 4.01 4.0 Lawrence et al., 2009 北大西洋ODP982 3.60 3.2 Martnez-Garcia et al., 2010 南大洋ODP1090 1.96 1.5 本文,未发表数据 南大洋ODP1170 CO2 0.79 0.7 Lüthi et al., 2008 南极冰心 LR04-δ18OB 5.30 2.5 Lisiecki and Raymo, 2005 全球底栖有孔虫氧同位素合成曲线 表 2 合成RSL变化与其他参数在地球轨道参数周期上的相关性
Table 2. Cross-spectral relationships and coherencies between RSL stack and other proxies
偏心率周期(100 ka) 斜率周期(40 ka) 岁差周期(23 ka) 岁差周期(19 ka) 相关系数 相位差* 相关系数 相位差 相关系数 相位差 相关系数 相位差 RSL vs CO2 0.930 9 -12.30°±15.2° 0.980 2 23.50°±8.0° 0.742 5 30.20°±31.3° 0.553 4 28.20°±46.1° RSL vs SST 0.904 2 -29.70°±18.1° 0.928 8 -27.20°±16.1° 0.564 1 -80.30°±45.4° 0.295 8 -2.60°±66.4° RSL vs δ18OB 0.981 6 -3.60°±11.1° 0.969 5 7.70°±9.7° 0.911 0 -6.10°±17.4° 0.781 7 6.10°±28.9° 注:“*”相位差为正值代表RSL变化领先其他参数,负值代表RSL变化落后其他参数. -
[1] Anderson, R.F., Ali, S., Bradtmiller, L.I., et al., 2009.Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2.Science, 323(5920):1443-1448.doi: 10.1126/science.1167441 [2] Almogi-Labin, A., 2011.The Paleoclimate of the Eastern Mediterranean during the Transition from Early to Mid Pleistocene (900 to 700 ka) Based on Marine and Non-Marine Records:An Integrated Overview.Journal of Human Evolution, 60(4):428-436.doi: 10.1016/j.jhevol.2010.03.007 [3] Bian, Y.P., Li, J.B., Jian, Z.M., et al., 2015.Vegetation and Climate Changes around Celebes Sea during Holocene.Earth Science, 40(5):870-880 (in Chinese with English abstract). https://www.researchgate.net/publication/281702219_Vegetation_and_climate_changes_around_Celebes_Sea_during_Holocene [4] Basavaiah, N., Babu, J.L.V.M., Gawali, P.B., et al., 2015.Late Quaternary Environmental and Sea Level Changes from Kolleru Lake, SE India:Inferences from Mineral Magnetic, Geochemical and Textural Analyses.Quaternary International, 279-280:197-208.doi: 10.1016/j.quaint.2014.12.018 [5] Bell, D.B., Jung, S.J.A., Kroon, D., 2015.The Plio-Pleistocene Development of Atlantic Deep-Water Circulation and Its Influence on Climate Trends.Quaternary Science Reviews, 123(6):265-282.doi: 10.1016/j.quascirev.2015.06.026 [6] Broeker, W., 1991.The Great Ocean Conveyor.Oceanography, 4(2):79-89.doi: 10.5670/oceanog.1991.07 [7] Chen, C.L., 2010.Long Term Trends in Global Sea Level-Analysis and Predictions(Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract). [8] Chen, C.L., Zuo, C.J., Du, L., et al., 2012.Long Term Trends in Global Sea Level under IPCC Sres A2 Scenario.Acta Oceanologica Sinica, 34(1):29-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SEAC201201003.htm [9] Chen, X., Wang, C.S., Wu, H.C., et al., 2015.Orbitally Forced Sea-Level Changes in the Upper Turonian-Lower Coniacian of the Tethyan Himalaya, Southern Tibet.Cretaceous Research, 56:691-701.doi: 10.1016/j.cretres.2014.07.010 [10] Clark, P.U., Pollard, D., 1998.Origin of the Middle Pleistocene Transition by Ice Sheet Erosion of Regolith.Paleoceanography, 13(1):1-9.doi: 10.1029/97pa02660 [11] Clark, P.U., Archer, D., Pollard, D., et al., 2006.The Middle Pleistocene Transition:Characteristics, Mechanisms, and Implications for Long-Term Changes in Atmospheric PCO2.Quaternary Science Reviews, 25(23-24):3150-3184.doi: 10.1016/j.quascirev.2006.07.008 [12] Fischer, H., Schmitt, J., Lüthi, D., et al., 2010.The Role of Southern Ocean Processes in Orbital and Millennial CO2 Variations—A Synthesis.Quaternary Science Reviews, 29(1-2):193-205.doi: 10.1016/j.quascirev.2009.06.007 [13] Gouretski, V., Koltermann, K.P., 2007.How Much is the Ocean Really Warming? Geophysical Research Letters, 34(1):L01610.doi: 10.1029/2006gl027834 [14] Grinsted, A., Moore, J.C., Jevrejeva, S., 2004.Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series.Nonlinear Processes in Geophysics, 11(5/6):561-566.doi: 10.5194/npg-11-561-2004 [15] Grant, K.M., Rohling, E.J., Bar-Matthews, M., et al., 2012.Rapid Coupling between Ice Volume and Polar Temperature over the Past 150 000 Years.Nature, 43(491):744-747.doi: 10.1038/nature11593 [16] Haq, B.U., Schutter, S.R., 2008.A Chronology of Paleozoic Sea-Level Changes.Science, 322(5898):64-68.doi: 10.1126/science.1161648 [17] Haq, B.U., Hardenbol, J., Vail, P.R., 1987.Chronology of Fluctuating Sea Levels since the Triassic.Science, 235(4793):1156-1167.doi: 10.1126/science.235.4793.1156 [18] Hays, J.D., Imbrie, J., Shackleton, N.J., 1976.Variations in the Earth's Orbit:Pacemaker of the Ice Ages.Science, 194(4270):1121-1132.doi: 10.1126/science.194.4270.1121 [19] He, L., Li, G.S., Li, K., et al., 2014.Changes and trends of sea level in the Pearl River Delta in the last 50 Years.Geographical Research, 33(5):987-1000 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201405017.htm [20] Howell, P., 2001.ARAND time series and spectral analysis package for the Marcintosh, Brown University.IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044.NOAA/NGDC Paleoclimatology Program, Boulder, Colorado, USA. [21] Huybers, P., 2011.Combined Obliquity and Precession Pacing of Late Pleistocene Deglaciations.Nature, 480(7376):229-232.doi: 10.1038/nature10626 [22] Imbrie, J., 1982.Astronomical Theory of the Pleistocene Ice Ages:A Brief Historical Review.Icarus, 50(2-3):408-422.doi: 10.1016/0019-1035(82)90132-4 [23] IPCC, 2007.Climate Change 2007:The Physical Seienee Basis.In:Solomon, S., Qin D., Manning, M., eds., Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, 2007.Cambridge University Press, Cambridge. [24] Jian, Z.M., Wang, P.X., Chen, M.P., et al., 2000.Foraminiferal Responses to Major Pleistocene Paleoceanographic Changes in the Southern South China Sea.Paleoceanography, 15(2):229-243.doi: 10.1029/1999pa000431 [25] Jin, Z.D., Bickle, M.J., Chapman, H.J., et al., 2009.Early to Mid-Pleistocene Ostracod Δ18O and Δ13C in the Central Tibetan Plateau:Implication for Indian Monsoon Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3-4):406-414.doi: 10.1016/j.palaeo.2009.06.028 [26] Jung, S.J.A., Kroon, D., 2011.Quantifying Rates of Change in Ocean Conditions with Implications for Timing of Sea Level Change.Global and Planetary Change, 79(3-4):204-213.doi: 10.1016/j.gloplacha.2010.11.004 [27] Kemp, A.E.S., Grigorov, I., Pearce, R.B., et al., 2010.Migration of the Antarctic Polar Front through the Mid-Pleistocene Transition:Evidence and Climatic Implications.Quaternary Science Reviews, 29(17-18):1993-2009.doi: 10.1016/j.quascirev.2010.04.027 [28] Lambeck, K., Chappell, J., 2001.Sea Level Change through the Last Glacial Cycle.Science, 292(5517):679-686.doi: 10.1126/science.1059549 [29] Lambeck, K., Esat, T.M., Potter, E.K., 2002.Links between Climate and Sea Levels for the Past Three Million Years.Nature, 419(6903):199-206.doi: 10.1038/nature01089 [30] Laskar, J., Robutel, P., Joutel, F., et al., 2004.A Long-Term Numerical Solution for the Insolation Quantities of the Earth.Astronomy and Astrophysics, 428(1):261-285.doi: 10.1051/0004-6361:20041335 [31] Lawrence, K.T., Herbert, T.D., Brown, C.M., et al., 2009.High-Amplitude Variations in North Atlantic Sea Surface Temperature during the Early Pliocene Warm Period.Paleoceanography, 24(2):PA2218.doi: 10.1029/2008pa001669 [32] Li, Q.Y., Wang, P.X., Zhao, Q.H., et al., 2008.Paleoceanography of the Mid-Pleistocene South China Sea.Quaternary Science Reviews, 27(11-12):1217-1233.doi: 10.1016/j.quascirev.2008.02.007 [33] Li, W.B., Wang, R.J., Xiang, F., et al., 2010.Sea Surface Temperature and Subtropical Front Movement in the South Tasman Sea during the last 800 Ka.Chinese Science Bulletin, 55(29):3338-3344.doi: 10.1007/s11434-010-4074-7 [34] Li, W.B., Wang, R.J., 2014.Research of the Mechanism of Sea Level Change during the Last 100 Ma.Marine Geology & Quaternary Geology, 34(1):117-127 (in Chinese with English abstract). [35] Lisiecki, L.E., 2010.A benthic δ13C-Based Proxy for Atmospheric pCO2 over the Last 1.5 Myr.Geophysical Research Letter, 37, L21708.doi: 2010GL045109 [36] Lisiecki, L.E., Raymo, M.E., 2005.A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records.Paleoceanography, 20(1):1-16.doi: 10.1029/2004pa001071 [37] Lisiecki, L.E., 2014.Atlantic Overturning Responses to Obliquity and Precession over the Last 3 Myr.Paleoceanography, 29(2):71-86.doi: 10.1002/2013pa002505 [38] Lourens, L.J., 2004.Revised Tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and Implications for the δ18O, Tephra, Calcareous Nannofossil, and Geomagnetic Reversal Chronologies of the Past 1.1 Myr.Paleoceanography, 19(3):PA3010.doi: 10.1029/2003pa000997 [39] Lüthi, D., Floch, M.L., Bereiter, B., et al., 2008.High-Resolution Carbon Dioxide Concentration Record 650 000-800 000 Years before Present.Nature, 453(7193):379-382.doi: 10.1038/nature06949 [40] Ma, W.T., 2011.Box Model Simulation of Orbital Cyclicity in the Late Cenozoic Ice Sheet and Oceanic Carbon Reservoir Changes(Dissertation).Tongji University, Shanghai (in Chinese with English abstract). [41] Maasch, K., 1988.Statistical Detection of the Mid-Pleistocene Transition.Climate Dynamics, 2(3):133-143.doi: 10.1007/bf01053471 [42] Maslin, M.A., Brierley, C.M., 2015.The Role of Orbital Forcing in the Early Middle Pleistocene Transition.Quaternary International, 389:47-55.doi: 10.1016/j.quaint.2015.01.047 [43] Martinez-Garcia, A., Rosell-Mele, A., McClymont, E.L., et al., 2010.Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue.Science, 328(5985):1550-1553.doi: 10.1126/science.1184480 [44] McCulloch, M.T., Esat, T., 2000.The Coral Record of Last Interglacial Sea Levels and Sea Surface Temperatures.Chemical Geology, 169(1-2):107-129.doi: 10.1016/s0009-2541(00)00260-6 [45] Miller, K.G., Kominz, M.A., Browning, J.V., et al., 2005.The Phanerozoic Record of Global Sea-Level Change.Science, 310:1293-1298. doi: 10.1126/science.1116412 [46] Nerem, R.S., Leuliette, É., Cazenave, A., 2006.Present-Day Sea-Level Change:A Review.Comptes Rendus Geoscience, 338(14-15):1077-1083.doi: 10.1016/j.crte.2006.09.001 [47] Neumann, A.C., Hearty, P.J., 1996.Rapid Sea-Level Changes at the Close of the Last Interglacial (Substage 5e) Recorded in Bahamian Island Geology.Geology, 24(9):775.doi:10.1130/0091-7613(1996)024<0775:rslcat>2.3.co;2 [48] Paillard, D., Labeyrie, L., Yiou, P., 1996.Macintosh Program Performs Time-Series Analysis.Eos, Transactions American Geophysical Union, 77(39):379.doi: 10.1029/96eo00259 [49] Pittet, B., Suan, G., Lenoir, F., et al., 2014.Carbon Isotope Evidence for Sedimentary Discontinuities in the Lower Toarcian of the Lusitanian Basin (Portugal):Sea Level Change at the Onset of the Oceanic Anoxic Event.Sedimentary Geology, 303:1-14.doi: 10.1016/j.sedgeo.2014.01.001 [50] Rohling, E.J., Grant, K., Hemleben, C.H., et al., 2007.High Rates of Sea-Level Rise during the Last Interglacial Period.Nature Geoscience, 1(1):38-42.doi: 10.1038/ngeo.2007.28 [51] Rohling, E.J., Grant, K., Bolshaw, M., et al., 2009.Antarctic Temperature and Global Sea Level Closely Coupled over the Past Five Glacial Cycles.Nature Geoscience, 2(7):500-504.doi: 10.1038/ngeo557 [52] Rohling, E.J., Braun, K., Grant, K., et al., 2010.Comparison between Holocene and Marine Isotope Stage-11 Sea-Level Histories.Earth and Planetary Science Letters, 291(1-4):97-105.doi: 10.1016/j.epsl.2009.12.054 [53] Rohling, E.J., Haigh, I.D., Foster, G.L., et al., 2013.A Geological Perspective on Potential Future Sea-Level Rise.Scientific Reports, 3:3461.doi: 10.1038/srep03461 [54] Rohling, E.J., Foster, G.L., Grant, K.M., et al., 2014.Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years.Nature, 508(7497):477-482.doi: 10.1038/nature13230 [55] Schmieder, F., Dobeneck, T.V., Bleil, U., 2000.The Mid-Pleistocene Climate Transition as Documented in the Deep South Atlantic Ocean:Initiation, Interim State and Terminal Event.Earth and Planetary Science Letters, 179(3-4):539-549.doi: 10.1016/S0012-821X(00)00143-6 [56] Schulz, M., Mudelsee, M., 2002.REDFIT:Estimating Red-Noise Spectra Directly from Unevenly Spaced Paleoclimatic Time Series.Computers & Geosciences, 28(3):421-426.doi: 10.1016/s0098-3004(01)00044-9 [57] Shackleton, N.J., Hall, M.A., Pate, D., 1995.Pliocene Stable Isotope stratigraphy of Site 846. In:Pisias, N.G., Mayer, L., Janecek, T., eds., Proceedings of Ocean Drilling Program, Scientific Results, 138, College Station, TX (Ocean Drilling Program), 337-355. [58] Shi, X.J., Yu, K.F., Chen, T.G., 2007.Progress in Researches on Sea-Level Changes in South China Sea since Mid-Holocene.Marine Geology & Quaternary Geology, 27(5):121-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200705021.htm [59] Tian, J., Wang, P.X., Cheng, X.R., 2004.Responses of Foraminiferal Isotopic Variations at ODP Site 1143 in the Southern South China Sea to Orbital Forcing.Science in China (Series D), 47(10):943.doi: 10.1360/03yd0129 [60] Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006.Midlatitude Westerlies, Atmospheric CO2, and Climate Change during the Ice Ages.Paleoceanography, 21(2):341-343.doi: 10.1029/2005pa001154 [61] Toggweiler, J.R., 2009.Shifting Westerlies.Science, 323:1434-1435.doi:10.1126/ science.1169823 [62] Yan, M., Zuo, J.C., Fu, S.B., et al., 2008.Advances on Sea Level Variation Research in Global and China Sea.Marine Environmental Science, 27(2):197-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYHJ200802025.htm [63] Waelbroeck, C., Labeyrie, L., Michel, E., et al., 2002.Sea-Level and Deep Water Temperature Changes Derived from Benthic Foraminifera Isotopic Records.Quaternary Science Reviews, 21(1-3):295-305.doi: 10.1016/s0277-3791(01)00101-9 [64] Wahl, T., Haigh, I.D., Woodworth, P.L., et al., 2013.Observed Mean Sea Level Changes around the North Sea Coastline from 1 800 to Present.Earth-Science Reviews, 124:51-67.doi: 10.1016/j.earscirev.2013.05.003 [65] Wang, P.X., Jian, Z.M., Liu, Z.F., 2006.Interactions Between the Earth Spheres:Deep-Sea Processes and Records (Ⅱ):Tropical Forcing of Climate Changes and Carbon Cycling.Advances in Earth Science, 21(4):338-345 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3463.shtml [66] Wang, P.X., 2006.Orbital Forcing of the Low-Latitude Processes.Quaternary Science, 26(5):694-702 (in Chinese with English abstract). https://www.researchgate.net/publication/285279913_Orbital_forcing_of_the_low-latitude_processes [67] Wang, P.X., Tian, J., Lourens, L.J., 2010.Obscuring of Long Eccentricity Cyclicity in Pleistocene Oceanic Carbon Isotope Records.Earth and Planetary Science Letters, 290(3-4):319-330.doi: 10.1016/j.epsl.2009.12.028 [68] Wang, Y.H., Zhang, R.S., Xie, Z.R., et al., 2004.Calculation of Relative Sea Level Change of Mid-Jiangsu Coast in the Future.Advances in Earth Science, 19(6):992-996 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200406015.htm [69] Wang, G.D., Kang, J.C., Han, Q.C., et al., 2014.A Review on Sea-Level Change Research in Global and the China Sea in Recent Years.Marine Sciences, 38(5):114-120 (in Chinese with English abstract). http://www.bgs.ac.uk/discoveringGeology/climateChange/general/coastal.html?src=topNav [70] Woodroffe, C.D., Webster, J.M., 2014.Coral Reefs and Sea-Level Change.Marine Geology, 352:248-267.doi: 10.1016/j.margeo.2013.12.006 [71] Wunsch, C., Ponte, R.M., Heimbach, P., 2007.Decadal Trends in Sea Level Patterns:1993—2004.Journal of Climate, 20(24):5889-5911.doi: 10.1175/2007jcli1840.1 [72] Wu, T., Kang J.C., Wang F., et al., 2006.The New Progresses on Global Sea Level Change.Advances in Earth Science, 21(7):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200607010.htm [73] Zachos, J.C., Pagani, M., Slian, L., et al., 2001.Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.Science, 292(5517):686-693.doi: 10.1126/science.1059412 [74] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008.An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics.Nature, 451(7176):279-283.doi: 10.1038/nature06588 [75] Zhang, J., Fang, M.Q., 2015.Sea Level Trends of China Seas from 1993 to 2012.Periodical of Ocean University of China, 45(1):121-126 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201501019.htm [76] Zhang, J.L., 2006.Global Sea Level Change and Influence of Steric Sea Level Change(Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract). [77] 边叶萍, 李家彪, 翦知湣, 等, 2015.苏拉威西海周边地区全新世植被演化及气候变化.地球科学, 40(5):870-880. http://www.earth-science.net/WebPage/Article.aspx?id=3080 [78] 陈长霖, 2010. 全球海平面长期趋势变化及气候情景预测研究(博士学位论文). 青岛: 中国海洋大学. [79] 陈长霖, 左军成, 杜凌, 等, 2012.IPCC气候情景下全球海平面长期趋势变化.海洋学报, 34(1):29-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201201003.htm [80] 何蕾, 李国胜, 李阔, 等, 2014.1959年来珠江三角洲地区的海平面变化与趋势.地理研究, 33(5):987-1000. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201405017.htm [81] 李文宝, 王汝建.2014.近100 Ma以来海平面变化机制.海洋地质与第四纪地质, 34(1):117-127. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201401018.htm [82] 马文涛, 2011. 新生代晚期冰盖与大洋碳储库变化的轨道周期及其数值模型分析(博士学位论文). 上海: 同济大学. [83] 时小军, 余克服, 陈特固, 2007.南海周边中全新世以来的海平面变化研究进展.海洋地质与第四纪地质, 7(5):121-132. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200705021.htm [84] 汪品先, 2006.低纬过程的轨道驱动.第四纪研究, 26(5):694-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200605002.htm [85] 汪品先, 翦知湣, 刘志飞, 2006.地球圈层相互作用中的深海过程和深海记录(Ⅱ):气候变化的热带驱动与碳循环.地球科学进展, 21(4):338-345. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604001.htm [86] 王国栋, 康建成, 韩钦臣, 等, 2014.近代全球及中国海平面变化研究述评.海洋科学, 38(5):114-120. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201405017.htm [87] 王艳红, 张忍顺, 谢志仁, 2004.未来江苏中部沿海相对海面变化预测.地球科学进展, 19(6):992-996. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200406015.htm [88] 吴涛, 康建成, 王芳, 等, 2006.全球海平面变化研究新进展.地球科学进展, 21(7):730-737. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200607010.htm [89] 颜梅, 左军成, 傅深波, 等, 2008.全球及中国海海平面变化研究进展.海洋环境科学, 27(2):197-200. http://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200802025.htm [90] 张静, 方明强, 2015.1993—2012年中国海海平面上升趋势.中国海洋大学学报, 45(1):121-126. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201501019.htm [91] 张建立, 2006. 全球海平面变化规律及比容变化的影响(硕士学位论文). 青岛: 中国海洋大学.