• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    近2 Ma BP以来地球轨道参数周期上全球海平面变化机制

    李文宝 王汝建

    李文宝, 王汝建, 2016. 近2 Ma BP以来地球轨道参数周期上全球海平面变化机制. 地球科学, 41(5): 742-756. doi: 10.3799/dqkx.2016.063
    引用本文: 李文宝, 王汝建, 2016. 近2 Ma BP以来地球轨道参数周期上全球海平面变化机制. 地球科学, 41(5): 742-756. doi: 10.3799/dqkx.2016.063
    Li Wenbao, Wang Rujian, 2016. Mechanism of Sea Level Change at the Earth Orbital Parameter Cycles during the Last 2 Ma BP. Earth Science, 41(5): 742-756. doi: 10.3799/dqkx.2016.063
    Citation: Li Wenbao, Wang Rujian, 2016. Mechanism of Sea Level Change at the Earth Orbital Parameter Cycles during the Last 2 Ma BP. Earth Science, 41(5): 742-756. doi: 10.3799/dqkx.2016.063

    近2 Ma BP以来地球轨道参数周期上全球海平面变化机制

    doi: 10.3799/dqkx.2016.063
    基金项目: 

    国家重大科学研究计划项目 2012CB957701

    南北极环境综合考察与评估专项 CHINARE2015-03-02

    国家自然科学基金项目 41406056

    南北极环境综合考察与评估专项 CHINARE2015-01-02

    详细信息
      作者简介:

      李文宝(1980-),男,副教授,博士,主要从事第四纪地质学、古海洋与古气候学研究.E-mail: tianshitd@126.com

      通讯作者:

      王汝建,E-mail: rjwang@tongji.edu.cn

    • 中图分类号: P736.2

    Mechanism of Sea Level Change at the Earth Orbital Parameter Cycles during the Last 2 Ma BP

    • 摘要: 海平面的变化往往对区域生态环境、社会经济造成严重影响.通过对全球相对海平面变化(relative sea level,简称RSL)记录的再分析结果,合成了近2 Ma BP以来的全球RSL变化记录,分析了合成RSL记录对原始RSL记录数理特征的继承性,并基于频谱、滤波等数理分析验证了合成RSL记录的合理性.在此基础上,讨论了合成RSL与大气CO2浓度、中高纬度海域表层海水温度(sea surface temperature,简称SST)、全球大洋底栖氧同位素(δ18OB)等参数指标间的相关性,结果显示:(1) 合成RSL不仅与原始RSL记录的变化趋势基本一致,继承了原始RSL记录对全球气候变化的响应特征,而且显示出合成RSL记录对地球轨道参数周期变化响应明显;(2) 近2 Ma BP以来,在冰期-间冰期旋回中,合成RSL与δ18OB变化呈良好的负相关,相关系数r平均值可以达到约0.81,高于合成RSL与大气CO2浓度及中高纬度海域SST变化的相关系数;(3) 在地球轨道参数周期上,合成RSL与极地冰盖体积(δ18OB)的变化几乎同时,在偏心率周期上,合成RSL落后于SST和大气CO2浓度变化;在斜率周期上,合成RSL落后于SST变化而领先于大气CO2浓度变化.推测这些变化的诱导因素可能是在太阳辐射量改变的前提下,大气CO2浓度及大洋SST变化对极地冰盖体积产生了差异影响,进而引起海平面发生变化.

       

    • 图  1  LR04-δ18O记录和ODP846-δ18O、地中海-δ18O记录的对比

      a.LR04-δ18O记录(Lisiecki and Raymo, 2005);b.ODP846-δ18O记录(Shackleton et al., 1995);c.地中海-δ18O记录(Lourens, 2004; Wang et al., 2010).图(b)和(c)中数值表示ODP846-δ18O和地中海-δ18O记录与LR04-δ18O记录“峰对峰,谷对谷”的对比中的年龄差异

      Fig.  1.  Comparison between LR04-δ18O stack and ODP846-δ18O, Mediterranean δ18O stack

      图  2  近2 Ma BP以来合成RSL与LR04-δ18OB记录变化

      a.LR04-δ18OB记录(Lisiecki and Raymo, 2005);b.近2 Ma以来合成RSL变化记录(黑色实线):红色虚线来源于Miller et al.(2005);绿色虚线来源于Rohling et al.(2014);蓝色虚线来源于Waelbroeck et al.(2002),作为参考记录.拟合方法为将各个记录的线性趋势去掉,再计算平均值后加上平均线性趋势得到

      Fig.  2.  Changes of RSL stack and LR04 stack during the last 2 Ma BP

      图  3  近2 Ma BP以来合成RSL记录的频谱分析

      a.2 000~900 ka时间段RSL的频谱分析结果,显示较强的40 ka周期,100 ka周期信号不明显;b.900~0 ka时间段RSL的频谱分析结果,显示较强的100 ka周期和较弱的40 ka周期.90%、95%、99%表示置信度,分析软件为Redfit35(Schulz and Mudelsee, 2002)

      Fig.  3.  Spectrum results of RSL stack during the last 2 Ma BP

      图  4  近2 Ma BP以来合成RSL记录与LR04-δ18OB在地球轨道参数周期上的滤波分析

      a.为合成RSL记录;b.100 ka偏心率周期滤波;c.40 ka斜率周期滤波;d.20 ka岁差周期滤波的中心频率和带宽分别为0.01 ka-1和0.003 105 ka-1、0.024 390 ka-1和0.002 654 ka-1及0.047 610 ka-1和0.010 250 ka-1,黑色曲线代表合成的RSL记录的滤波,右侧纵横数据代表RSL记录的滤波振幅;灰色曲线代表LR04-δ18OB记录的滤波,左侧纵横数据代表LR04-δ18OB记录的滤波振幅.图中矩形框指示“MPT”事件发生的主要阶段

      Fig.  4.  Filtering results of RSL stack and LR04-δ18OB stack in orbital cycles during the last 2 Ma BP

      图  5  近2 Ma BP以来合成RSL记录与大气CO2浓度、SST、LR04-δ18OB记录变化对比

      a.合成RSL变化趋势及其小波分析;b.近800 ka BP以来南极冰心中大气CO2浓度记录和近2 Ma BP以来合成大气CO2浓度变化及其小波分析,2 Ma BP以来的大气CO2浓度变化计算方法来自参考文献(Lüthi et al., 2008; Lisiecki, 2010),得出公式:大气CO2浓度=1/2×60.092×(δ13CB-南大洋+δ13CB-北大西洋)+239.35,相关系数r大于0.6,δ13CB数据来源于Wang et al.(2010);c.合成中高纬度SST变化趋势(数据来源见表 1)及其小波分析;d.LR04-δ18OB变化趋势及其小波分析.图中纵向阴影代表间冰期;小波分析结果中黑色等值线代表红噪假设下显著性水平为5%的区域.小波分析方法由Grinsted et al.(2004)提供

      Fig.  5.  Comparison between RSL stack and CO2, SST and δ18OB records during the last 2 Ma BP

      图  6  近2 Ma BP以来合成RSL与各参数的相关性及交叉频谱分析

      中文a.合成RSL与大气CO2浓度变化相关性及其交叉频谱分析;b.合成RSL与中高纬度SST变化相关性及其交叉频谱分析;c.合成RSL记录与LR04-δ18OB记录相关性及其交叉频谱分析.左侧相关性分析图中蓝色字体为冰期相关性,红色为间冰期相关性,黑色为近2 Ma BP以来冰期-间冰期旋回中的相关性(图中相关性分析数据为各参数指标在冰期,间冰期内的平均值;频谱分析数据为插值后的数据);右侧频谱图中段划线代表 80%置信度,点划线代表 95%置信度,交叉频谱图中带黄-紫色阴影区表示相位关系及偏差,80%或95%代表置信度.分别对大气CO2浓度与合成RSL值进行了800 ka BP以来与2 Ma BP以来的交叉频谱分析,结果基本一致.图中为近2 Ma BP以来的交叉频谱分析结果注解

      Fig.  6.  Relationships and cross-spectral analyses between RSL stack and other proxies

      表  1  文章涉及到数据的来源

      Table  1.   Resources of data in this paper

      参数 时间长度(Ma) 原始平均分辨率(ka) 参考文献 备注
      RSL 0.45 0.5 Waelbroeck et al., 2002 仅作为参考
      543.00 ≥5.0 Miller et al., 2005 0~9.25 Ma,平均分辨率为5 ka
      5.30 2.0~3.0 Rohling et al., 2014 -
      SST 3.50 3.0 Martnez-Garcia et al., 2010 北太平洋ODP882
      4.01 4.0 Lawrence et al., 2009 北大西洋ODP982
      3.60 3.2 Martnez-Garcia et al., 2010 南大洋ODP1090
      1.96 1.5 本文,未发表数据 南大洋ODP1170
      CO2 0.79 0.7 Lüthi et al., 2008 南极冰心
      LR04-δ18OB 5.30 2.5 Lisiecki and Raymo, 2005 全球底栖有孔虫氧同位素合成曲线
      下载: 导出CSV

      表  2  合成RSL变化与其他参数在地球轨道参数周期上的相关性

      Table  2.   Cross-spectral relationships and coherencies between RSL stack and other proxies

      偏心率周期(100 ka) 斜率周期(40 ka) 岁差周期(23 ka) 岁差周期(19 ka)
      相关系数 相位差* 相关系数 相位差 相关系数 相位差 相关系数 相位差
      RSL vs CO2 0.930 9 -12.30°±15.2° 0.980 2 23.50°±8.0° 0.742 5 30.20°±31.3° 0.553 4 28.20°±46.1°
      RSL vs SST 0.904 2 -29.70°±18.1° 0.928 8 -27.20°±16.1° 0.564 1 -80.30°±45.4° 0.295 8 -2.60°±66.4°
      RSL vs δ18OB 0.981 6 -3.60°±11.1° 0.969 5 7.70°±9.7° 0.911 0 -6.10°±17.4° 0.781 7 6.10°±28.9°
       注:“*”相位差为正值代表RSL变化领先其他参数,负值代表RSL变化落后其他参数.
      下载: 导出CSV
    • [1] Anderson, R.F., Ali, S., Bradtmiller, L.I., et al., 2009.Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2.Science, 323(5920):1443-1448.doi: 10.1126/science.1167441
      [2] Almogi-Labin, A., 2011.The Paleoclimate of the Eastern Mediterranean during the Transition from Early to Mid Pleistocene (900 to 700 ka) Based on Marine and Non-Marine Records:An Integrated Overview.Journal of Human Evolution, 60(4):428-436.doi: 10.1016/j.jhevol.2010.03.007
      [3] Bian, Y.P., Li, J.B., Jian, Z.M., et al., 2015.Vegetation and Climate Changes around Celebes Sea during Holocene.Earth Science, 40(5):870-880 (in Chinese with English abstract). https://www.researchgate.net/publication/281702219_Vegetation_and_climate_changes_around_Celebes_Sea_during_Holocene
      [4] Basavaiah, N., Babu, J.L.V.M., Gawali, P.B., et al., 2015.Late Quaternary Environmental and Sea Level Changes from Kolleru Lake, SE India:Inferences from Mineral Magnetic, Geochemical and Textural Analyses.Quaternary International, 279-280:197-208.doi: 10.1016/j.quaint.2014.12.018
      [5] Bell, D.B., Jung, S.J.A., Kroon, D., 2015.The Plio-Pleistocene Development of Atlantic Deep-Water Circulation and Its Influence on Climate Trends.Quaternary Science Reviews, 123(6):265-282.doi: 10.1016/j.quascirev.2015.06.026
      [6] Broeker, W., 1991.The Great Ocean Conveyor.Oceanography, 4(2):79-89.doi: 10.5670/oceanog.1991.07
      [7] Chen, C.L., 2010.Long Term Trends in Global Sea Level-Analysis and Predictions(Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract).
      [8] Chen, C.L., Zuo, C.J., Du, L., et al., 2012.Long Term Trends in Global Sea Level under IPCC Sres A2 Scenario.Acta Oceanologica Sinica, 34(1):29-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SEAC201201003.htm
      [9] Chen, X., Wang, C.S., Wu, H.C., et al., 2015.Orbitally Forced Sea-Level Changes in the Upper Turonian-Lower Coniacian of the Tethyan Himalaya, Southern Tibet.Cretaceous Research, 56:691-701.doi: 10.1016/j.cretres.2014.07.010
      [10] Clark, P.U., Pollard, D., 1998.Origin of the Middle Pleistocene Transition by Ice Sheet Erosion of Regolith.Paleoceanography, 13(1):1-9.doi: 10.1029/97pa02660
      [11] Clark, P.U., Archer, D., Pollard, D., et al., 2006.The Middle Pleistocene Transition:Characteristics, Mechanisms, and Implications for Long-Term Changes in Atmospheric PCO2.Quaternary Science Reviews, 25(23-24):3150-3184.doi: 10.1016/j.quascirev.2006.07.008
      [12] Fischer, H., Schmitt, J., Lüthi, D., et al., 2010.The Role of Southern Ocean Processes in Orbital and Millennial CO2 Variations—A Synthesis.Quaternary Science Reviews, 29(1-2):193-205.doi: 10.1016/j.quascirev.2009.06.007
      [13] Gouretski, V., Koltermann, K.P., 2007.How Much is the Ocean Really Warming? Geophysical Research Letters, 34(1):L01610.doi: 10.1029/2006gl027834
      [14] Grinsted, A., Moore, J.C., Jevrejeva, S., 2004.Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series.Nonlinear Processes in Geophysics, 11(5/6):561-566.doi: 10.5194/npg-11-561-2004
      [15] Grant, K.M., Rohling, E.J., Bar-Matthews, M., et al., 2012.Rapid Coupling between Ice Volume and Polar Temperature over the Past 150 000 Years.Nature, 43(491):744-747.doi: 10.1038/nature11593
      [16] Haq, B.U., Schutter, S.R., 2008.A Chronology of Paleozoic Sea-Level Changes.Science, 322(5898):64-68.doi: 10.1126/science.1161648
      [17] Haq, B.U., Hardenbol, J., Vail, P.R., 1987.Chronology of Fluctuating Sea Levels since the Triassic.Science, 235(4793):1156-1167.doi: 10.1126/science.235.4793.1156
      [18] Hays, J.D., Imbrie, J., Shackleton, N.J., 1976.Variations in the Earth's Orbit:Pacemaker of the Ice Ages.Science, 194(4270):1121-1132.doi: 10.1126/science.194.4270.1121
      [19] He, L., Li, G.S., Li, K., et al., 2014.Changes and trends of sea level in the Pearl River Delta in the last 50 Years.Geographical Research, 33(5):987-1000 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201405017.htm
      [20] Howell, P., 2001.ARAND time series and spectral analysis package for the Marcintosh, Brown University.IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044.NOAA/NGDC Paleoclimatology Program, Boulder, Colorado, USA.
      [21] Huybers, P., 2011.Combined Obliquity and Precession Pacing of Late Pleistocene Deglaciations.Nature, 480(7376):229-232.doi: 10.1038/nature10626
      [22] Imbrie, J., 1982.Astronomical Theory of the Pleistocene Ice Ages:A Brief Historical Review.Icarus, 50(2-3):408-422.doi: 10.1016/0019-1035(82)90132-4
      [23] IPCC, 2007.Climate Change 2007:The Physical Seienee Basis.In:Solomon, S., Qin D., Manning, M., eds., Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, 2007.Cambridge University Press, Cambridge.
      [24] Jian, Z.M., Wang, P.X., Chen, M.P., et al., 2000.Foraminiferal Responses to Major Pleistocene Paleoceanographic Changes in the Southern South China Sea.Paleoceanography, 15(2):229-243.doi: 10.1029/1999pa000431
      [25] Jin, Z.D., Bickle, M.J., Chapman, H.J., et al., 2009.Early to Mid-Pleistocene Ostracod Δ18O and Δ13C in the Central Tibetan Plateau:Implication for Indian Monsoon Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3-4):406-414.doi: 10.1016/j.palaeo.2009.06.028
      [26] Jung, S.J.A., Kroon, D., 2011.Quantifying Rates of Change in Ocean Conditions with Implications for Timing of Sea Level Change.Global and Planetary Change, 79(3-4):204-213.doi: 10.1016/j.gloplacha.2010.11.004
      [27] Kemp, A.E.S., Grigorov, I., Pearce, R.B., et al., 2010.Migration of the Antarctic Polar Front through the Mid-Pleistocene Transition:Evidence and Climatic Implications.Quaternary Science Reviews, 29(17-18):1993-2009.doi: 10.1016/j.quascirev.2010.04.027
      [28] Lambeck, K., Chappell, J., 2001.Sea Level Change through the Last Glacial Cycle.Science, 292(5517):679-686.doi: 10.1126/science.1059549
      [29] Lambeck, K., Esat, T.M., Potter, E.K., 2002.Links between Climate and Sea Levels for the Past Three Million Years.Nature, 419(6903):199-206.doi: 10.1038/nature01089
      [30] Laskar, J., Robutel, P., Joutel, F., et al., 2004.A Long-Term Numerical Solution for the Insolation Quantities of the Earth.Astronomy and Astrophysics, 428(1):261-285.doi: 10.1051/0004-6361:20041335
      [31] Lawrence, K.T., Herbert, T.D., Brown, C.M., et al., 2009.High-Amplitude Variations in North Atlantic Sea Surface Temperature during the Early Pliocene Warm Period.Paleoceanography, 24(2):PA2218.doi: 10.1029/2008pa001669
      [32] Li, Q.Y., Wang, P.X., Zhao, Q.H., et al., 2008.Paleoceanography of the Mid-Pleistocene South China Sea.Quaternary Science Reviews, 27(11-12):1217-1233.doi: 10.1016/j.quascirev.2008.02.007
      [33] Li, W.B., Wang, R.J., Xiang, F., et al., 2010.Sea Surface Temperature and Subtropical Front Movement in the South Tasman Sea during the last 800 Ka.Chinese Science Bulletin, 55(29):3338-3344.doi: 10.1007/s11434-010-4074-7
      [34] Li, W.B., Wang, R.J., 2014.Research of the Mechanism of Sea Level Change during the Last 100 Ma.Marine Geology & Quaternary Geology, 34(1):117-127 (in Chinese with English abstract).
      [35] Lisiecki, L.E., 2010.A benthic δ13C-Based Proxy for Atmospheric pCO2 over the Last 1.5 Myr.Geophysical Research Letter, 37, L21708.doi: 2010GL045109
      [36] Lisiecki, L.E., Raymo, M.E., 2005.A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records.Paleoceanography, 20(1):1-16.doi: 10.1029/2004pa001071
      [37] Lisiecki, L.E., 2014.Atlantic Overturning Responses to Obliquity and Precession over the Last 3 Myr.Paleoceanography, 29(2):71-86.doi: 10.1002/2013pa002505
      [38] Lourens, L.J., 2004.Revised Tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and Implications for the δ18O, Tephra, Calcareous Nannofossil, and Geomagnetic Reversal Chronologies of the Past 1.1 Myr.Paleoceanography, 19(3):PA3010.doi: 10.1029/2003pa000997
      [39] Lüthi, D., Floch, M.L., Bereiter, B., et al., 2008.High-Resolution Carbon Dioxide Concentration Record 650 000-800 000 Years before Present.Nature, 453(7193):379-382.doi: 10.1038/nature06949
      [40] Ma, W.T., 2011.Box Model Simulation of Orbital Cyclicity in the Late Cenozoic Ice Sheet and Oceanic Carbon Reservoir Changes(Dissertation).Tongji University, Shanghai (in Chinese with English abstract).
      [41] Maasch, K., 1988.Statistical Detection of the Mid-Pleistocene Transition.Climate Dynamics, 2(3):133-143.doi: 10.1007/bf01053471
      [42] Maslin, M.A., Brierley, C.M., 2015.The Role of Orbital Forcing in the Early Middle Pleistocene Transition.Quaternary International, 389:47-55.doi: 10.1016/j.quaint.2015.01.047
      [43] Martinez-Garcia, A., Rosell-Mele, A., McClymont, E.L., et al., 2010.Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue.Science, 328(5985):1550-1553.doi: 10.1126/science.1184480
      [44] McCulloch, M.T., Esat, T., 2000.The Coral Record of Last Interglacial Sea Levels and Sea Surface Temperatures.Chemical Geology, 169(1-2):107-129.doi: 10.1016/s0009-2541(00)00260-6
      [45] Miller, K.G., Kominz, M.A., Browning, J.V., et al., 2005.The Phanerozoic Record of Global Sea-Level Change.Science, 310:1293-1298. doi: 10.1126/science.1116412
      [46] Nerem, R.S., Leuliette, É., Cazenave, A., 2006.Present-Day Sea-Level Change:A Review.Comptes Rendus Geoscience, 338(14-15):1077-1083.doi: 10.1016/j.crte.2006.09.001
      [47] Neumann, A.C., Hearty, P.J., 1996.Rapid Sea-Level Changes at the Close of the Last Interglacial (Substage 5e) Recorded in Bahamian Island Geology.Geology, 24(9):775.doi:10.1130/0091-7613(1996)024<0775:rslcat>2.3.co;2
      [48] Paillard, D., Labeyrie, L., Yiou, P., 1996.Macintosh Program Performs Time-Series Analysis.Eos, Transactions American Geophysical Union, 77(39):379.doi: 10.1029/96eo00259
      [49] Pittet, B., Suan, G., Lenoir, F., et al., 2014.Carbon Isotope Evidence for Sedimentary Discontinuities in the Lower Toarcian of the Lusitanian Basin (Portugal):Sea Level Change at the Onset of the Oceanic Anoxic Event.Sedimentary Geology, 303:1-14.doi: 10.1016/j.sedgeo.2014.01.001
      [50] Rohling, E.J., Grant, K., Hemleben, C.H., et al., 2007.High Rates of Sea-Level Rise during the Last Interglacial Period.Nature Geoscience, 1(1):38-42.doi: 10.1038/ngeo.2007.28
      [51] Rohling, E.J., Grant, K., Bolshaw, M., et al., 2009.Antarctic Temperature and Global Sea Level Closely Coupled over the Past Five Glacial Cycles.Nature Geoscience, 2(7):500-504.doi: 10.1038/ngeo557
      [52] Rohling, E.J., Braun, K., Grant, K., et al., 2010.Comparison between Holocene and Marine Isotope Stage-11 Sea-Level Histories.Earth and Planetary Science Letters, 291(1-4):97-105.doi: 10.1016/j.epsl.2009.12.054
      [53] Rohling, E.J., Haigh, I.D., Foster, G.L., et al., 2013.A Geological Perspective on Potential Future Sea-Level Rise.Scientific Reports, 3:3461.doi: 10.1038/srep03461
      [54] Rohling, E.J., Foster, G.L., Grant, K.M., et al., 2014.Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years.Nature, 508(7497):477-482.doi: 10.1038/nature13230
      [55] Schmieder, F., Dobeneck, T.V., Bleil, U., 2000.The Mid-Pleistocene Climate Transition as Documented in the Deep South Atlantic Ocean:Initiation, Interim State and Terminal Event.Earth and Planetary Science Letters, 179(3-4):539-549.doi: 10.1016/S0012-821X(00)00143-6
      [56] Schulz, M., Mudelsee, M., 2002.REDFIT:Estimating Red-Noise Spectra Directly from Unevenly Spaced Paleoclimatic Time Series.Computers & Geosciences, 28(3):421-426.doi: 10.1016/s0098-3004(01)00044-9
      [57] Shackleton, N.J., Hall, M.A., Pate, D., 1995.Pliocene Stable Isotope stratigraphy of Site 846. In:Pisias, N.G., Mayer, L., Janecek, T., eds., Proceedings of Ocean Drilling Program, Scientific Results, 138, College Station, TX (Ocean Drilling Program), 337-355.
      [58] Shi, X.J., Yu, K.F., Chen, T.G., 2007.Progress in Researches on Sea-Level Changes in South China Sea since Mid-Holocene.Marine Geology & Quaternary Geology, 27(5):121-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200705021.htm
      [59] Tian, J., Wang, P.X., Cheng, X.R., 2004.Responses of Foraminiferal Isotopic Variations at ODP Site 1143 in the Southern South China Sea to Orbital Forcing.Science in China (Series D), 47(10):943.doi: 10.1360/03yd0129
      [60] Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006.Midlatitude Westerlies, Atmospheric CO2, and Climate Change during the Ice Ages.Paleoceanography, 21(2):341-343.doi: 10.1029/2005pa001154
      [61] Toggweiler, J.R., 2009.Shifting Westerlies.Science, 323:1434-1435.doi:10.1126/ science.1169823
      [62] Yan, M., Zuo, J.C., Fu, S.B., et al., 2008.Advances on Sea Level Variation Research in Global and China Sea.Marine Environmental Science, 27(2):197-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYHJ200802025.htm
      [63] Waelbroeck, C., Labeyrie, L., Michel, E., et al., 2002.Sea-Level and Deep Water Temperature Changes Derived from Benthic Foraminifera Isotopic Records.Quaternary Science Reviews, 21(1-3):295-305.doi: 10.1016/s0277-3791(01)00101-9
      [64] Wahl, T., Haigh, I.D., Woodworth, P.L., et al., 2013.Observed Mean Sea Level Changes around the North Sea Coastline from 1 800 to Present.Earth-Science Reviews, 124:51-67.doi: 10.1016/j.earscirev.2013.05.003
      [65] Wang, P.X., Jian, Z.M., Liu, Z.F., 2006.Interactions Between the Earth Spheres:Deep-Sea Processes and Records (Ⅱ):Tropical Forcing of Climate Changes and Carbon Cycling.Advances in Earth Science, 21(4):338-345 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3463.shtml
      [66] Wang, P.X., 2006.Orbital Forcing of the Low-Latitude Processes.Quaternary Science, 26(5):694-702 (in Chinese with English abstract). https://www.researchgate.net/publication/285279913_Orbital_forcing_of_the_low-latitude_processes
      [67] Wang, P.X., Tian, J., Lourens, L.J., 2010.Obscuring of Long Eccentricity Cyclicity in Pleistocene Oceanic Carbon Isotope Records.Earth and Planetary Science Letters, 290(3-4):319-330.doi: 10.1016/j.epsl.2009.12.028
      [68] Wang, Y.H., Zhang, R.S., Xie, Z.R., et al., 2004.Calculation of Relative Sea Level Change of Mid-Jiangsu Coast in the Future.Advances in Earth Science, 19(6):992-996 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200406015.htm
      [69] Wang, G.D., Kang, J.C., Han, Q.C., et al., 2014.A Review on Sea-Level Change Research in Global and the China Sea in Recent Years.Marine Sciences, 38(5):114-120 (in Chinese with English abstract). http://www.bgs.ac.uk/discoveringGeology/climateChange/general/coastal.html?src=topNav
      [70] Woodroffe, C.D., Webster, J.M., 2014.Coral Reefs and Sea-Level Change.Marine Geology, 352:248-267.doi: 10.1016/j.margeo.2013.12.006
      [71] Wunsch, C., Ponte, R.M., Heimbach, P., 2007.Decadal Trends in Sea Level Patterns:1993—2004.Journal of Climate, 20(24):5889-5911.doi: 10.1175/2007jcli1840.1
      [72] Wu, T., Kang J.C., Wang F., et al., 2006.The New Progresses on Global Sea Level Change.Advances in Earth Science, 21(7):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200607010.htm
      [73] Zachos, J.C., Pagani, M., Slian, L., et al., 2001.Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.Science, 292(5517):686-693.doi: 10.1126/science.1059412
      [74] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008.An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics.Nature, 451(7176):279-283.doi: 10.1038/nature06588
      [75] Zhang, J., Fang, M.Q., 2015.Sea Level Trends of China Seas from 1993 to 2012.Periodical of Ocean University of China, 45(1):121-126 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201501019.htm
      [76] Zhang, J.L., 2006.Global Sea Level Change and Influence of Steric Sea Level Change(Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract).
      [77] 边叶萍, 李家彪, 翦知湣, 等, 2015.苏拉威西海周边地区全新世植被演化及气候变化.地球科学, 40(5):870-880. http://www.earth-science.net/WebPage/Article.aspx?id=3080
      [78] 陈长霖, 2010. 全球海平面长期趋势变化及气候情景预测研究(博士学位论文). 青岛: 中国海洋大学.
      [79] 陈长霖, 左军成, 杜凌, 等, 2012.IPCC气候情景下全球海平面长期趋势变化.海洋学报, 34(1):29-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201201003.htm
      [80] 何蕾, 李国胜, 李阔, 等, 2014.1959年来珠江三角洲地区的海平面变化与趋势.地理研究, 33(5):987-1000. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201405017.htm
      [81] 李文宝, 王汝建.2014.近100 Ma以来海平面变化机制.海洋地质与第四纪地质, 34(1):117-127. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201401018.htm
      [82] 马文涛, 2011. 新生代晚期冰盖与大洋碳储库变化的轨道周期及其数值模型分析(博士学位论文). 上海: 同济大学.
      [83] 时小军, 余克服, 陈特固, 2007.南海周边中全新世以来的海平面变化研究进展.海洋地质与第四纪地质, 7(5):121-132. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200705021.htm
      [84] 汪品先, 2006.低纬过程的轨道驱动.第四纪研究, 26(5):694-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200605002.htm
      [85] 汪品先, 翦知湣, 刘志飞, 2006.地球圈层相互作用中的深海过程和深海记录(Ⅱ):气候变化的热带驱动与碳循环.地球科学进展, 21(4):338-345. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604001.htm
      [86] 王国栋, 康建成, 韩钦臣, 等, 2014.近代全球及中国海平面变化研究述评.海洋科学, 38(5):114-120. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201405017.htm
      [87] 王艳红, 张忍顺, 谢志仁, 2004.未来江苏中部沿海相对海面变化预测.地球科学进展, 19(6):992-996. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200406015.htm
      [88] 吴涛, 康建成, 王芳, 等, 2006.全球海平面变化研究新进展.地球科学进展, 21(7):730-737. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200607010.htm
      [89] 颜梅, 左军成, 傅深波, 等, 2008.全球及中国海海平面变化研究进展.海洋环境科学, 27(2):197-200. http://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200802025.htm
      [90] 张静, 方明强, 2015.1993—2012年中国海海平面上升趋势.中国海洋大学学报, 45(1):121-126. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201501019.htm
      [91] 张建立, 2006. 全球海平面变化规律及比容变化的影响(硕士学位论文). 青岛: 中国海洋大学.
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  5344
    • HTML全文浏览量:  1757
    • PDF下载量:  15
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-11
    • 刊出日期:  2016-05-15

    目录

      /

      返回文章
      返回