• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    使用水力屏障控制单一倾斜储层中CO2羽的迁移

    赵锐锐 成建梅

    赵锐锐, 成建梅, 2016. 使用水力屏障控制单一倾斜储层中CO2羽的迁移. 地球科学, 41(4): 675-682. doi: 10.3799/dqkx.2016.056
    引用本文: 赵锐锐, 成建梅, 2016. 使用水力屏障控制单一倾斜储层中CO2羽的迁移. 地球科学, 41(4): 675-682. doi: 10.3799/dqkx.2016.056
    Zhao Ruirui, Cheng Jianmei, 2016. Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir. Earth Science, 41(4): 675-682. doi: 10.3799/dqkx.2016.056
    Citation: Zhao Ruirui, Cheng Jianmei, 2016. Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir. Earth Science, 41(4): 675-682. doi: 10.3799/dqkx.2016.056

    使用水力屏障控制单一倾斜储层中CO2羽的迁移

    doi: 10.3799/dqkx.2016.056
    基金项目: 

    国家自然科学基金项目 41402212

    中央高校基本科研业务费专项资金资助项目 CUGL140814

    国家自然科学基金项目 1172217

    详细信息
      作者简介:

      赵锐锐(1984-),男,讲师,主要从事CO2地质封存和地下水数值模拟技术方面的研究工作.E-mail: rr.zhao@cug.edu.cn

      通讯作者:

      成建梅,E-mail: jmcheng@cug.edu.cn

    • 中图分类号: P641

    Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir

    • 摘要: 摘要:在单一倾斜含水层中封存CO2时,在浮力作用下,CO2会向地层上升一侧快速运移,不利于封存安全.可在倾斜地层的上升一侧,距离CO2注入井一定位置设置注水井,创造水力屏障,以阻止CO2向上移动.建立了数值模型来探讨这一方法的有效性,分析注水位置、距离、速度等因素的影响.结果表明注水形成的水力屏障能有效阻挡CO2羽的向上迁移,且能促进CO2溶解,抽水能显著降低地层压力.为了确保能完全阻挡CO2运移,需要注水长度大于CO2羽的厚度,甚至是在全部储层注水.注水速度是影响水力屏障效果的关键因素.注水距离越近阻挡效果越好.可以在CO2羽即将到达之前注水,以减少注水量和能源消耗.

       

    • 图  1  模型三维视图

      Fig.  1.  The three-dimensional view of the model

      图  2  模型示意

      Fig.  2.  The sketch of the model

      图  3  Base case中A-A′剖面CO2饱和度和溶解的质量分数在不同时间的分布情况

      剖面位置见图 1Sg代表CO2饱和度;XCO2代表CO2溶解的质量分数

      Fig.  3.  The distribution of CO2 gas saturation and dissolved CO2 mass fraction along the A-A′ cross section at different times for the Base case

      图  4  Case 1a和Case 1c中A-A′剖面CO2饱和度在不同时间的分布情况

      剖面位置见图 1Sg代表CO2饱和度

      Fig.  4.  The distribution of CO2 gas saturation along the A-A′ cross section at different times for the Cases 1a and 1c

      图  5  Case 2a和Case 2b中A-A′剖面CO2饱和度在50 a时的分布情况

      剖面位置见图 1Sg代表CO2饱和度

      Fig.  5.  The distribution of CO2 gas saturation along the A-A′ cross section at 50 years for the Cases 2a and 2b

      图  6  Case 3a和Case 3c中A-A′剖面CO2饱和度在不同时间的分布情况

      剖面位置见图 1Sg代表CO2饱和度

      Fig.  6.  The distribution of CO2 gas saturation along the A-A′ cross section at different times for the Cases 3a and 3c

      图  7  Case 4a和Case 4b中A-A′剖面CO2饱和度在100年时的分布情况

      剖面位置见图 1Sg代表CO2饱和度;XCO2代表CO2溶解的质量分数

      Fig.  7.  The distribution of CO2 gas saturation along the A-A′ cross section at 100 years for the Cases 4a and 4b

      图  8  不同抽水速度下监测点的压力提升情况

      Fig.  8.  The pressure buildup of the monitoring point at different injection rates

      表  1  模型主要参数取值

      Table  1.   The values of main model parameters

      地层 Kh (10-15 m2) Kh/Kv α-1(MPa) β(10-10 Pa-1) Srw Srg m
      盖层 0.001 10 5.00 4.5 0.40 0.15 0.457
      储层 100 10 0.02 4.5 0.30 0.15 0.457
      注:Kh为水平渗透率;Kh/Kv为水平和垂直渗透率的比值;α-1为毛细进入压力;β为压缩率;Srw为最大残余水饱和度;Srg为最大残余气饱和度;m为相对渗透率函数中的指数.
      下载: 导出CSV

      表  2  不同注水方案中的参数设置

      Table  2.   The parameter values used in the different injection scenarios

      方案编号 注水位置 注水距离(km) 注水速度(kg/s) 停止注入CO2后注水速度(kg/s) 抽水速度(kg/s)
      Base case 全部储层 1 31.7 10 31.7
      Case 1a 储层上部100 m
      Case 1b 储层上部40 m
      Case 1c 储层上部20 m
      Case 2a 2
      Case 2b 3
      Case 2c 5
      Case 3a 10.0
      Case 3b 5.0
      Case 3c 1.0
      Case 4a 5
      Case 4b 1
      Case 5a 10.0
      Case 5b 5.0
      Case 5c 0(不抽水)
      注:空白处与Base case设置相同.
      下载: 导出CSV
    • [1] Bachu, S., 2003.Screening and Ranking of Sedimentary Basins for Sequestration of CO2 in Geological Media in Response to Climate Change.Environmental Geology, 44(3):277-289.doi: 10.1007/s00254-003-0762-9
      [2] Birkholzer, J.T., Zhou, Q., 2009.Basin-Scale Hydrogeologic Impacts of CO2 Storage:Capacity and Regulatory Implications.International Journal of Greenhouse Gas Control, 3(6):745-756.doi: 10.1016/j.ijggc.2009.07.002
      [3] Buscheck, T.A., Sun, Y., Chen, M., et al., 2012.Active CO2 Reservoir Management for Carbon Storage:Analysis of Operational Strategies to Relieve Pressure Buildup and Improve Injectivity.International Journal of Greenhouse Gas Control, 6(1):230-245.doi: 10.1016/j.ijggc.2011.11.007
      [4] Corey, A.T., 1954.The Interrelation between Gas and Oil Relative Permeabilities.Producers Monthly, 19(1):38-41.
      [5] Court, B., Bandilla, K.W., Celia, M.A., et al., 2012.Initial Evaluation of Advantageous Synergies Associated with Simultaneous Brine Production and CO2 Geological Sequestration.International Journal of Greenhouse Gas Control, 8(5):90-100.doi: 10.1016/j.ijggc.2011.12.009
      [6] de Coninck, H., Benson, S.M., 2014.Carbon Dioxide Capture and Storage:Issues and Prospects.Annual Review of Environment and Resources, 39(1):243-270.doi: 10.1146/annurev-environ-032112-095222
      [7] Deng, H., Stauffer, P.H., Dai, Z., et al., 2012.Simulation of Industrial-Scale CO2 Storage:Multi-Scale Heterogeneity and Its Impacts on Storage Capacity, Injectivity and Leakage.International Journal of Greenhouse Gas Control, 10:397-418.doi: 10.1016/j.ijggc.2012.07.003
      [8] Doughty, C., Freifeld, B.M., Trautz, R.C., 2008.Site Characterization for CO2 Geologic Storage and Vice Versa:the Frio Brine Pilot, Texas, USA as a Case Study.Environmental Geology, 54(8):1635-1656.doi: 10.1007/s00254-007-0942-0
      [9] Fang, Q., Li, Y.L., Cheng, P., et al., 2014.Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers:A Case Study of Jianghan Basin, China.Earth Science, 39(11):1675-1683.
      [10] IPCC, 2005.IPCC Special Report on Carbon Dioxide Capture and Storage.Cambridge University Press, Cambridge.
      [11] Jing, J., Yuan, Y.L., Yang, Y.L., et al., 2014.Influence of Strata Dip on CO2 Geological Storage—A Case Study of Erdos CCS Project.Geotechnical Investigation & Surveying, (6):39-44 (in Chinese with English abstract).
      [12] Leonenko, Y., Keith, D.W., 2008.Reservoir Engineering to Accelerate the Dissolution of CO2 Stored in Aquifers.Environmental Science & Technology, 42(8):2742-2747.doi: 10.1021/es071578c
      [13] Li, X.C., Liu, Y.F., Bai, B., et al., 2006.Ranking and Screening of CO2 Saline Aquifer Storage Zones in China.Chinese Journal of Rock Mechanics and Engineering, 25(5):963-968 (in Chinese with English abstract).
      [14] Michael, K., Golab, A., Shulakova, V., et al., 2010.Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations.International Journal of Greenhouse Gas Control, 4(4):659-667.doi: 10.1016/j.ijggc.2009.12.011
      [15] Nordbotten, J.M., Kavetski, D., Celia, M.A., et al., 2009.Model for CO2 Leakage Including Multiple Geological Layers and Multiple Leaky Wells.Environmental Science & Technology, 43(3):743-749.doi: 10.1021/es801135v
      [16] Pruess, K., García, J., 2002.Multiphase Flow Dynamics during CO2 Disposal into Saline Aquifers.Environmental Geology, 42(2-3):282-295.doi: 10.1007/s00254-001-0498-3
      [17] Pruess, K., Nordbotten, J., 2011.Numerical Simulation Studies of the Long-Term Evolution of a CO2 Plume in a Saline Aquifer with a Sloping Caprock.Transport in Porous Media, 90(1):135-151.doi: 10.1007/s11242-011-9729-6
      [18] Pruess, K., Oldenburg, C., Moridis, G., 2012.TOUGH2 User's Guide, Version 2.1.Report LBNL-43134, Lawrence Berkeley Laboratory, Berkeley.
      [19] Pruess, K., Spycher, N., 2007.ECO2N—A Fluid Property Module for the TOUGH2 Code for Studies of CO2 Storage in Saline Aquifers.Energy Conversion and Management, 48(6):1761-1767.doi: 10.1016/j.enconman.2007.01.016
      [20] Réveillère, A., Rohmer, J., Manceau, J.C., 2012.Hydraulic Barrier Design and Applicability for Managing the Risk of CO2 Leakage from Deep Saline Aquifers.International Journal of Greenhouse Gas Control, 9:62-71.doi: 10.1016/j.ijggc.2012.02.016
      [21] Shi, X.Q., Zhang, K.N., Wu, J.C., 2009.The History and Application of TOUGH2 Code.Geotechnical Investigation & Surveying, (10):29-34 (in Chinese with English abstract).
      [22] Sung, R.T., Li, M.H., Dong, J.J., et al., 2014.Numerical Assessment of CO2 Geological Sequestration in Sloping and Layered Heterogeneous Formations:A Case Study from Taiwan.International Journal of Greenhouse Gas Control, 20:168-179.doi: 10.1016/j.ijggc.2013.11.003
      [23] van Genuchten, M.T., 1980.A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.Soil Science Society of America Journal, 44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x
      [24] Yamamoto, H., Zhang, K., Karasaki, K., et al., 2009.Numerical Investigation Concerning the Impact of CO2 Geologic Storage on Regional Groundwater Flow.International Journal of Greenhouse Gas Control, 3(5):586-599.doi: 10.1016/j.ijggc.2009.04.007
      [25] Yang, G.D., Li, Y.L., Ma, X., et al., 2014.Effect of Chlorite on CO2-Water Rock Interaction.Earth Science, 39(4):462-472.
      [26] Zhang, K., Wu, Y.S., Pruess, K., 2008.User's Guide for TOUGH2-MP-A Massively Parallel Version of the TOUGH2 Code.Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley.
      [27] Zhao, R., Cheng, J., Zhang, K., 2012.CO2 Plume Evolution and Pressure Buildup of Large-Scale CO2 Injection into Saline Aquifers in Sanzhao Depression, Songliao Basin, China.Transport in Porous Media, 95(2):407-424.doi: 10.1007/s11242-012-0052-7
      [28] Zhou, Q., Birkholzer, J.T., Mehnert, E., et al., 2010.Modeling Basin-and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment.Ground Water, 48(4):494-514.doi: 10.1111/j.1745-6584.2009.00657.x
      [29] 房琦, 李义连, 程鹏, 等, 2014.低渗卤水盆地提高CO2注入性的技术方法:以江汉盆地为例.地球科学, 39(11):1675-1683. http://earth-science.net/WebPage/Article.aspx?id=2965
      [30] 靖晶, 苑艺琳, 杨艳林, 等, 2014.地层倾角对CO2地质封存的影响研究——以鄂尔多斯CCS工程为例.工程勘察, (6):39-44.
      [31] 李小春, 刘延锋, 白冰, 等, 2006.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 25(5):963-968.
      [32] 施小清, 张可霓, 吴吉春, 2009.TOUGH2软件的发展及应用.工程勘察, (10):29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200910008.htm
      [33] 杨国栋, 李义连, 马鑫, 等, 2014.绿泥石对CO2-水-岩石相互作用的影响.地球科学, 39(4):462-472. http://earth-science.net/WebPage/Article.aspx?id=2855
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  4971
    • HTML全文浏览量:  1680
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-09-08
    • 刊出日期:  2016-04-15

    目录

      /

      返回文章
      返回