• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    低温气体辅助煤层气压裂中的冷冲击机理

    张亮 罗炯 崔国栋 范志坤 任韶然 张建光 杨勇 车航

    张亮, 罗炯, 崔国栋, 范志坤, 任韶然, 张建光, 杨勇, 车航, 2016. 低温气体辅助煤层气压裂中的冷冲击机理. 地球科学, 41(4): 664-674. doi: 10.3799/dqkx.2016.055
    引用本文: 张亮, 罗炯, 崔国栋, 范志坤, 任韶然, 张建光, 杨勇, 车航, 2016. 低温气体辅助煤层气压裂中的冷冲击机理. 地球科学, 41(4): 664-674. doi: 10.3799/dqkx.2016.055
    Zhang Liang, Luo Jiong, Cui Guodong, Fan Zhikun, Ren Shaoran, Zhang Jianguang, Yang Yong, Che Hang, 2016. Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4): 664-674. doi: 10.3799/dqkx.2016.055
    Citation: Zhang Liang, Luo Jiong, Cui Guodong, Fan Zhikun, Ren Shaoran, Zhang Jianguang, Yang Yong, Che Hang, 2016. Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4): 664-674. doi: 10.3799/dqkx.2016.055

    低温气体辅助煤层气压裂中的冷冲击机理

    doi: 10.3799/dqkx.2016.055
    基金项目: 

    国家科技重大专项项目 2009ZX05062-012-011

    中央高校基本科研业务费专项资金资助项目 15CX05036A

    中石油2011校企合作研究基金项目 2011-HB-X308

    中央高校基本科研业务费专项资金资助项目 13CX02052A

    详细信息
      作者简介:

      张亮(1983-),男,博士,副教授,主要从事注气提高采收率、非常规能源开发、CO2资源化利用等方面的研究.E-mail:zhlupc@upc.edu.cn

    • 中图分类号: P618.11

    Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases

    • 摘要: 液N2等气体辅助煤层气压裂的常规机理已较为清楚,但其低温特征对煤层物性的影响以及对压裂效果的改善机理尚未引起重视,缺乏理论认识.归纳总结了低温气体对煤岩的冷冲击作用机制,评价了地层水的结冰条件和低温气体的热物性,通过室内实验和数值模拟等手段验证和预测了液N2对煤岩及近井煤层的冷冲击效果,并进行了冷冲击机理应用潜力分析.研究结果表明,煤层气压裂过程中注入N2等低温气体对煤层进行冷冲击,可引起煤岩基质收缩和地层水结冰膨胀,使煤岩产生大量微裂缝和力学强度降低(10%~30%),有利于实现冰晶暂堵和改善煤层气压裂效果.以沁水盆地樊庄区块3#煤层为例,当液N2注入总量为30~120 m3时,可在近井周围3~5 m内形成低温区(<-20 ℃),煤层孔隙度将平均增大约1.5倍,渗透率增大4倍,还可造成煤岩的拉伸和挤压破坏.利用低温气体的冷冲击机理及其产生的冰晶暂堵可以作为改进煤层气和页岩气压裂工艺的新方向.

       

    • 图  1  水相图

      Fig.  1.  Diagram of water phase

      图  2  KCl和NaCl水溶液的冰点温度

      Fig.  2.  Freezing points of water dissolved with KCl and NaCl

      图  3  低温气体的质量热容和导热系数

      a.N2质量热容;b.CO2质量热容;c.CH4质量热容;d.N2导热系数;e.CO2导热系数;f.CH4导热系数;据Aspen Hysys(2006)

      Fig.  3.  Heat capacity and thermal conductivity of cryogenic gases

      图  4  CO2水合物相态曲线

      a.NaCl水溶液;b.KCl水溶液;据任韶然(2008)

      Fig.  4.  CO2 hydrate equilibrium curves

      图  5  冷冲击前后试样A1纵波波幅变化

      Fig.  5.  Amplitude change of P-wave in coal sample A1 before and after cold shock

      图  6  试样B1(a)和B3(b)冷冲击前后效果对比

      Fig.  6.  Comparison of cold shock performance between samples B1 (a) and B3 (b)

      图  7  近井煤层温度场分布

      a.不同模拟时间(40 min后停注);b.不同注入速度(40 min时);c.不同注入温度(40 min时);d.不同割理渗透率(40 min时)

      Fig.  7.  Temperature distribution in coalbed around wellbore after cold shock

      图  8  近井煤层应力场

      Fig.  8.  Stress change in coalbed around wellbore

      图  9  近井煤层孔渗变化

      Fig.  9.  Porosity and permeability change in coalbed around wellbore

      图  10  不同深度煤层冷冲击后产生的净拉应力

      Fig.  10.  σnet-pull at different depths with coal rock temperature decreasing to certain level

      表  1  低温气体热力学性质

      Table  1.   Summary of thermal properties of cryogenic gases

      低温气体 N2 CO2 CH4
      分子量 28.013 44.010 16.040
      临界温度(℃) -146.9 31.1 -82.6
      临界压力(MPa) 3.396 7.372 4.599
      三相点温度(℃) -210.00 -56.50 -182.46
      三相点压力(MPa) 0.012 5 0.518 0 0.011 7
      沸点(℃) -195.8(0.101 MPa) -78.4(0.101 MPa)a -161.5(0.101 MPa)
      冰点(℃) -210.00(0.012 5 MPa) -56.50(0.518 0 MPa) -182.46(0.011 7 MPa)
      液态密度(kg/m3) 810(-196 ℃,0.10 MPa) 1 154(-50 ℃,0.68 MPa) 423(-162 ℃,0.10 MPa)
      质量热容(kJ/(kg·℃)) 1.03b ~1.72c 1.09b ~2.02c 2.21b ~3.92c
      导热系数(W/(m·℃)) 0.025 5b~0.056 9c 0.016 9b ~0.108 1c 0.033 7b ~0.092 5c
      气化潜热(kJ/kg) 198.6(5.56 kJ/mol) 230.5~339.6(0~-50 ℃) 510.9(0.10 MPa)
      低温气体用量d(kg/m3) 193.22~351.40 265.49~935.74 90.18~196.25
      主要优缺点 超低温、安全可控、低温区范围较大 置换甲烷、易形成水合物、低温区范围较小 超低温、可形成水合物、易燃爆、低温区范围较大
      注:a.CO2的沸点是指干冰升华为气体的温度;b.0.1~1.0 MPa下平均质量热容和导热系数;c.16 MPa下平均质量热容和导热系数;d.前者为考虑气化潜热计算得到的结果,后者为不考虑气化潜热计算得到的结果;据张家荣,1987黄建彬,2002.
      下载: 导出CSV

      表  2  冷冲击前后煤样纵波波速变化

      Table  2.   Velocity change of P-wave in coal samples before and after cold shock

      煤样编号 干燥煤样声速(m/s) 饱和水煤样声速(m/s) 声速衰减率(%) 抗压强度下降幅度(%) 弹性模量下降幅度(%) 煤样取心方向
      冷冲击前 冷冲击后 冷冲击前 冷冲击后 干燥处理
      A1 1 739 1 545 2 509 1 741 1 580 9.14 14.70 10.53 平行于割理
      A2 2 017 1 804 2 312 1 888 1 833 9.12 16.81 12.09 平行于割理
      A3 1 886 1 773 2 328 1 662 1 693 10.25 17.58 12.66 垂直于割理
      B1 1 364 1 184 1 471 1 164 953 30.13 33.70 25.00 垂直于割理
      B2 1 173 980 1 301 998 874 25.49 25.84 18.88 平行于割理
      B3 1 466 1 289 1 572 1 298 1 089 25.72 31.41 23.19 平行于割理
      下载: 导出CSV

      表  3  液N2冷冲击煤岩数值模拟模型参数设置

      Table  3.   Parameter setting of numerical simulation model for cold shock by liquid nitrogen

      模拟参数 取值 模拟参数 取值
      煤层埋深(m) 550 煤岩热容(J/(m3·℃)) 1.75×106d
      煤层厚度(m) 5 煤岩导热系数(J/(m·min·℃)) 16.8e
      煤层温度(℃) 30 盖底层热容(J/(m3·℃)) 2.26×106f
      煤层原始压力(MPa) 4 盖底层导热系数(J/(m·min·℃)) 180g
      基质孔隙度(%) 2.66a N2热容(J/(mol·℃)) CN2=36.302-0.047 6t+0.002 8t2+1.68×10-5t3,其中t为温度,℃
      割理孔隙度(%) 0.84a N2导热系数(J/(m·min·℃)) 3.414
      基质渗透率(10-15 m2) 0.001 模拟地层半径(m) 186
      割理渗透率(10-15 m2) 0.5,1*,5 井眼半径(m) 0.108h
      割理间距(m) 2.5×10-3 注入速度(Sm3/min)j 500,1 000*,2 000
      煤岩密度(kg/m3) 1 550b 注入温度(℃) -60,-80*,-100
      煤岩孔隙压缩系数(kPa-1) 6×10-5c 网格划分 120×1×1
      注:a.设煤岩总孔隙度3.5%,割理压缩比率β(割理孔隙度/总孔隙度)一般为0.11~0.37,取平均值为0.24;b.煤岩密度一般为1.136~1.783 t/m3;c.煤岩压缩系数一般为1.8×10-4~2.2×10-3 MPa-1,设孔隙度为3.5%,则孔隙压缩系数为5.1×10-3~ 63.0×10-3 MPa-1,取60.0×10-3 MPa-1;d.煤岩质量热容一般随温度增大而增大,为1.00~1.26 kJ/(kg·℃),取1.13 kJ/(kg·℃);e.煤岩导热率为0.173~1.335 W/(m·℃),平均值为0.220~0.330 W/(m·℃),取0.280 W/(m·℃);f.砂岩质量热容一般为0.837~1.315 kJ/(kg·℃),砂岩密度为1.2~3.0 t/m3,取平均值得到2.26×106 J/(m3·℃);g.砂岩导热系数为1.852~4.133 W/(m·℃),取平均值为3.000 W/(m·℃);h.3-1/2″油管,5-1/2″套管,8-1/2″井眼;j.标况下N2密度为1.25 kg/m3,根据现场经验,国外单井液N2注入速度一般为0.5~2.0 m3/min(=324~1 296 Sm3/min),注入总量一般为20~55 m3(McDaniel et al., 1997Grundmann et al., 1998),国内液N2注入总量为73 m3(http://www.zgsyb.com.cnhttp://www.oilhb.com),液态CO2为77 m3(焦中华等,2011).带*数值为基本模型参数设置.
      下载: 导出CSV
    • [1] Aspen Hysys, M.B., 2006.Optimize Hydrocarbon Processes.Aspen Technology, Inc., Boston.
      [2] Bian, R.X., Deng, S.G., Fan, Y.R., et al., 1998.Relation between Acoustic Amplitude and Fracture Properties.Well Logging Technology, 22(5):327-331 (in Chinese with English abstract).
      [3] Cai, B., Wang, X., Jiang, T.X., et al., 2007.Application of Hydraulic CO2 Fracturing Technique in Coalbed Gas Fracturing.Natural Gas Technology, 1(5):40-42(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380414600604
      [4] Cai, C.Z., Li, G.S., Huang, Z.W., et al., 2014.Experiment Study of Rock Porous Structure Damage under Cryogenic Nitrogen Freezing.Rock and Soil Mechanics, 35(4):965-971 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201404008.htm
      [5] Fu, X.H., Qin, Y., Wei, C.T., 2007.Coalbed Methane Geology.China University of Mining and Technology Press, Xuzhou (in Chinese).
      [6] Grundmann, S.R., Rodvelt, G.D., Dial, G.A., 1998.Cryogenic Nitrogen as a Hydraulic Fracturing Fluid in the Devonian Shale.SPE 51067, SPE Eastern Regional Meeting, Pittsburgh.doi:10.2118/51067-MS
      [7] Gupta, D.V.S., 2003.Field Application of Unconventional Foam Technology:Extension of Liquid CO2 Technology.SPE 84119, SPE Annual Technical Conference and Exhibition, Denver.doi:10.2118/84119-MS
      [8] Huang, J.B., 2002.Manual of Industrial Gases.Chemical Industry Press, Beijing (in Chinese).
      [9] Jiao, Z.H., Ni, X.M., Jia, B., 2011.Application of Carbon Dioxide Energy Accumulation Fracturing to Coal Bed Methane Vertical Well.Coal Engineering, (2):48-50 (in Chinese with English abstract).
      [10] Kelemen, S.R., Kwiatek, L.M., 2009.Physical Properties of Selected Block Argonne Premium Bituminous Coal Related to CO2, CH4, and N2 Adsorption.International Journal of Coal Geology, 77(2):2-9.doi: 10.1016/j.coal.2008.05.020
      [11] Levine, J.R., 1996.Model Study of the Influence of Matrix Shrinkage on Absolute Permeability of Coalbed Reservoirs.Geological Society Special Publication, 109(1):197-212.doi: 10.1144/GSL.SP.1996.109.01.14
      [12] Li, G., 2008.Optimized Research and Application on Liquid Nitrogen Amount and Mixing Gas Method.Journal of Mineralogy and Petrology, 28(2):118-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200802022.htm
      [13] Li, T.L., Wu, X.M., Tu, H.Z., 2000.The Measurement and Analysis and Application on the Mechanical Property of Coal Seam.Geology and Prospecting, 36(2):85-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200002028.htm
      [14] Mack, D.J., 1991.Fracturing Process Using Carbon Dioxide and Nitrogen.US Patent 5069283.
      [15] McDaniel, B.W., Grundmann, S.R., Kendrick, W.D., et al., 1997.Field Applications of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid.SPE 38623, SPE Annual Technical Conference and Exhibition, San Antoniodoi:10.2523/38623-MS
      [16] Ren, S.R., 2008.Software of SD Gas Hydrate Prediction and Analysis (SDSHY)(Dissertation).China University of Petroleum, Dongying (in Chinese).
      [17] Sun, Z.D., Jia, C.Z., Li, X.F., et al., 2011.Unconventional Oil & Gas Exploration and Development.Petroleum Industry Press, Beijing (in Chinese).
      [18] Su, X.B., Feng, Y.L., Chen, J.F., 2002.The Classification of Fractures in Coal.Coal Geology & Exploration, 30(4):21-24 (in Chinese with English abstract).
      [19] Tang, S.H., Ma, C.X., Ye, J.P., et al., 2006.A Modeling Experiment of Enhancing Coalbed Methane Recovery by Carbon Dioxide Injection.Journal of China University of Mining & Technology, 35(5):607-611, 616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200605008.htm
      [20] Tudor, R., 1996.Nitrogen/Carbon Dioxide Combination Fracture Treatment.US Patent 5558160.
      [21] Wilson, D.R., 2010.Method of Stimulating a Coalbed Methane Well.US Patent 7757770.
      [22] Wilson, D.R., Siebert, R.M., Lively, P., 1995.Cryogenic Coal Bed Gas Well Stimulation Method.US Patent 5464061.
      [23] Wilson, D.R., Siebert, R.M., Lively, P., 1997.Cryogenic Well Stimulation Method.US Patent 5653287. http://www.freepatentsonline.com/5653287.html
      [24] Wyllie, M., Gregory, A., Gardner, G., 1956.Elastic Wave Velocities in Heterogeneous and Porous Media.Geophysics, 21(1):41-70.doi: 10.1190/1.1438217
      [25] Wyllie, M., Gregory, A., Gardner, G., 1958.An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media.Geophysics, 23(3):459-493.doi: 10.1190/1.1438493
      [26] Xie, P., Hou, G.D., Han, J.J., 2009.Application of CO2 Fracturing Technology in Sulige Gas Field.Block Oil & Gas Field, 16(5):104-106 (in Chinese with English abstract).
      [27] Xu, P., Yu, B.M., 2008.Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry.Advances in Water Resources, 31:74-81.doi: 10.1016/j.advwatres.2007.06.003
      [28] Yang, Y.J., Song, Y., Chen, S.J., et al., 2006.Experimental Study on Strength Discreteness and Triaxial Compression of Coal.Rock and Soil Mechanics, 27(10):1763-1766 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3e75a47062ae2ef5b25a75518c2d5e8d&encoded=0&v=paper_preview&mkt=zh-cn
      [29] Zhang, J.R., 1987.Manual of Thermophysical Properties of Material Commonly Used in Engineering.New Era Publishing House, Beijing (in Chinese).
      [30] Zheng, Y.P., Ran, Z.H., Qiao, D.Y., et al., 2011.Application of Aqueous Foam Fracturing Liquid with Liquid Nitrogen Injection Technology in Su 77 Well Field.Xinjiang Oil & Gas, 7(2):59-62 (in Chinese with English abstract).
      [31] 边瑞雪, 邓少贵, 范宜仁, 等, 1998.地层纵横波幅度与裂缝倾角及张开度的关系.测井技术, 22(5):327-331. http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS805.005.htm
      [32] 才博, 王欣, 蒋廷学, 等, 2007.液态CO2压裂技术在煤层气压裂中的应用.天然气技术, 1(5):40-42. http://www.wenkuxiazai.com/doc/e5c8d00ac5da50e2524d7fb6.html
      [33] 蔡承政, 李根生, 黄中伟, 等, 2014.液N2冻结条件下岩石孔隙结构损伤试验研究.岩土力学, 35(4):965-971.
      [34] 傅雪海, 秦勇, 韦重韬, 2007.煤层气地质学.徐州:中国矿业大学出版社.
      [35] 黄建彬, 2002.工业气体手册.北京:化学工业出版社.
      [36] 焦中华, 倪小明, 贾炳, 2011.CO2增能压裂在煤层气垂直井中的应用.煤炭工程, (2):48-50. http://www.wenkuxiazai.com/doc/98692b12866fb84ae45c8d27.html
      [37] 李刚, 2008.川西致密气藏压裂液N2助排剂优化研究及应用.矿物岩石, 28(2):118-120. http://www.cnki.com.cn/Article/CJFDTotal-KWYS200802022.htm
      [38] 李同林, 乌效鸣, 屠厚泽, 2000.煤岩力学性质测试分析与应用.地质与勘探, 36(2):85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200002028.htm
      [39] 任韶然, 2008. SD气体水合物预测和分析软件(SDSHY)(硕士学位论文). 东营: 中国石油大学.
      [40] 孙赞东, 贾承造, 李相方, 等, 2011.非常规油气勘探与开发.北京:石油工业出版社.
      [41] 苏现波, 冯艳丽, 陈江峰, 2002.煤中裂隙的分类.煤田地质与勘探, 30(4):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200204007.htm
      [42] 唐书恒, 马彩霞, 叶建平, 等, 2006.注二氧化碳提高煤层甲烷采收率的实验模拟.中国矿业大学学报, 35(5):607-611, 616. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200605008.htm
      [43] 谢平, 侯光东, 韩静静, 2009.CO2压裂技术在苏里格气田的应用.断块油气田, 16(5):104 -106. http://www.cqvip.com/QK/90020X/200905/31902406.html
      [44] 杨永杰, 宋扬, 陈绍杰, 等, 2006.煤岩强度离散性及三轴压缩试验研究.岩土力学, 27(10):1763-1766. doi: 10.3969/j.issn.1000-7598.2006.10.024
      [45] 张家荣, 1987.工程常用物质的热物理性质手册.北京:新时代出版社.
      [46] 郑义平, 冉照辉, 乔东宇, 等, 2011.液N2伴注水基泡沫压裂液技术在苏77井区的应用.新疆石油天然气, 7(2):59-62. http://www.cqvip.com/QK/90803A/201102/38379476.html
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  4799
    • HTML全文浏览量:  1740
    • PDF下载量:  15
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-05-06
    • 刊出日期:  2016-04-15

    目录

      /

      返回文章
      返回