Zircon (U-Th)/He Age and Its Implication for Post-Mineralization Exhumation Degree of Linglong and Jiaojia Goldfields, Northwest Jiaodong, China
-
摘要: 玲珑和焦家矿田是胶西北地区最负盛名的两个金矿田.目前有关这两个矿田成矿研究的成果已十分丰富,但是,成矿后隆升剥蚀程度的研究尚属空白.为此,利用最近兴起的低温热年代学技术,对两个矿田成矿后剥露程度进行了尝试研究.结果表明,玲珑矿田锆石(U-Th)/He年龄主要为80~100 Ma,焦家矿田锆石(U-Th)/He年龄主要为90~105 Ma.这些年龄与前人运用其他方法获得的成岩成矿年龄不同,其不是本区岩浆-热液成矿事件的年龄,而是成矿后花岗岩隆升剥蚀的热年龄.基于锆石(U-Th)/He年龄制约,估算本区成矿后隆升剥蚀速率大致与全球造山型金矿剥露速率相当(大约60 m/Ma).玲珑矿田总体比焦家矿田成矿后多剥露了600~900 m,焦家矿田深部找矿潜力应比玲珑矿田大.
-
关键词:
- 锆石(U-Th)/He /
- 剥露程度 /
- 胶西北金矿集中区 /
- 矿产 /
- 矿床学
Abstract: The Linglong and Jiaojia goldfields are the two most famous goldfields in the Northwest Jiaodong with voluminous publication focused on gold mineralization. Whereas it is still a barren land as far to pay attention to the post-mineralization exhumation. Utilizing the latest low-temperature thermochronological technique, this work carries out a tentative research on the exhumation degree in the two goldfields. The results show that the zircon (U-Th)/He ages in Linglong goldfield vary predominantly between 80 and 100 Ma, while they are of significant concentration between 90 and 105 Ma in Jiaojia goldfield. These ages yielded in this work are different from those of the previous obtained by other methods, they are not the geochronological ages in respond to magmatic-hydrothermal mineralization events, instead they must have recorded the thermochronological ages of the post-mineralization exhumation of the granitoid rocks. Based on the constrain of the zircon (U-Th)/He ages, it can be concluded that the degree of exhumation in this area is roughly in agreement with that from the statistics of the global orogenic gold deposits, about 60 m/Ma. The amount of post-mineralization exhumation in the Linglong goldfield is overall ca. 600-900 m more than that in the Jiaojia goldfield, so the prospecting potential at deep part is larger in the Jiaojia goldfield than that in the Linglong goldfield. -
表 1 玲珑和焦家矿田花岗岩锆石(U-Th)/He测试结果
Table 1. The results of zircon (U-Th)/He dating for the Linglong and Jiaojia goldfields
矿田 样品 高程(m) U(10-6) Th(10-6) Th/U He(mL/min) 未校正年龄 2σ Ft 校正年龄(Ma) 2σ 玲珑矿田 ZK14-2 -150.8 900 220 0.24 28.30 61.45 5.0 0.74 83.4 7.6 ZK14-2 1 290 323 0.25 27.40 70.67 5.4 0.71 99.9 8.8 权重平均 -- -- -- -- 65.70 3.8 -- 90.6 5.8 ZK14-4 -511.8 219 103 0.47 8.73 60.24 4.0 0.79 76.7 5.2 ZK14-4 995 322 0.32 27.20 66.62 5.0 0.74 89.8 7.6 ZK14-4 182 49 0.27 2.86 54.30 3.8 0.72 75.9 6.2 权重平均 -- -- -- -- 59.45 2.4 -- 79.3 3.6 ZK14-6 -966.8 340 153 0.45 7.53 63.85 4.0 0.73 88.0 6.4 ZK14-6 421 119 0.28 6.60 59.12 3.8 0.71 83.3 6.2 ZK14-6 619 135 0.22 11.70 60.80 4.6 0.72 84.1 7.2 权重平均 -- -- -- -- 61.22 2.4 -- 85.2 3.8 ZK14-8 -1 369.8 550 145 0.26 21.40 73.38 5.6 0.78 93.7 7.0 ZK14-8 704 169 0.24 29.80 74.91 6.8 0.79 95.1 8.6 ZK14-8 593 140 0.24 22.40 71.64 5.6 0.79 90.5 7.2 权重平均 -- -- -- -- 73.13 3.4 -- 92.7 4.4 焦家矿田 ZK4-2 -315.8 1 062 241 0.23 10.60 70.28 6.4 0.69 102.3 10.2 ZK4-2 1 055 245 0.23 6.71 64.93 4.0 0.64 102.2 12.0 权重平均 -- -- -- -- 66.44 3.4 -- 102.2 7.8 ZK4-3 -505.8 1 292 130 0.10 54.90 84.65 7.2 0.76 112.0 10.4 ZK4-3 541 93.3 0.17 16.40 80.83 6.2 0.74 109.9 9.6 ZK4-3 831 109 0.13 11.70 59.34 4.8 0.69 85.4 7.6 权重平均 -- -- -- -- 67.21 3.8 -- 99.1 5.2 ZK4-4 -720.8 1 085 134 0.12 27.00 69.33 5.2 0.74 93.3 7.8 ZK4-4 932 172 0.18 9.05 62.38 4.0 0.66 95.0 7.0 ZK4-4 444 86 0.19 6.14 67.01 4.6 0.66 101.0 8.0 权重平均 -- -- -- -- 64.36 3.0 -- 96.3 4.4 ZK4-5 -970.8 2 225 177 0.08 23.40 51.94 4.0 0.66 78.4 6.8 ZK4-5 365 110 0.30 6.80 51.65 3.4 0.75 69.2 5.2 权重平均 -- -- -- -- 51.77 2.6 -- 72.6 4.2 注:权重平均年龄=Y/X;其中,X=SUM(X1, …, Xn), Xn为第n个样品测试误差平方的倒数.Y=SUM(Y1, …, Yn), Yn为第n个样品测试年龄与Xn的乘积;权重平均误差为X平方根的倒数. -
[1] Boyce, J.W., Hodges, K.V., Olszewski, W.J., et al., 2006.Laser Microprobe (U-Th)/He Geochronology.Geochimica et Cosmochimica Acta, 70(12):3031-3039.doi: 10.1016/j.gca.2006.03.019 [2] Chang, Y., Wang, W., Zhou, Z.Y., 2010.Age-Elevation Relationship Method Limited by the Topographic Relief over the Sampling Transect.Chinese Journal of Geophysics, 53(8):1868-1874(in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract3233.shtml [3] Chen, G.Y., 1993.Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorite in Jiaodong Region.China University of Geosciences Press, Wuhan, 131(in Chinese). doi: 10.1007/s00126-003-0368-x [4] Dodson, M.H., 1973.Closure Temperatures in Cooling Geological and Petrological System.Contributions Mineralogy Petrology, 40:259-274. doi: 10.1007/BF00373790 [5] Ehlers, T.A., 2005.Crustal Thermal Processes and the Interpretation of Thermochronometer Data.Reviews in Mineralogy and Geochemistry, 58(1):315-350.doi: 10.2138/rmg.2005.58.12 [6] Ehlers, T.A., Armstrong, P.A., Chapman, D.S., 2001.Normal Fault Thermal Regimes and the Interpretation of Low-Temperature Thermochronometers.Physics of the Earth and Planetary Interiors, 126(3):179-194.doi: 10.1016/S0031-9201(01)00254-0 [7] England, P., Molnar, P., 1990.Surface Uplift, Uplift of Rocks, and Exhumation of Rocks.Geology, 18(12):1173-1177.doi:10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO; 2 [8] Evans, N.J., Byrne, J.P., Keegan, J.T., et al., 2005.Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite:Application to Laser (U-Th)/He Thermochronology.Journal of Analytical Chemistry, 60(12):1159-1165. doi: 10.1007/s10809-005-0260-1 [9] Evans, N.J., Mcinnes, B.I.A., Mcdonald, B., et al., 2013.Emplacement Age and Thermal Footprint of the Diamondiferous Ellendale E9 Lamproite Pipe, Western Australia.Mineralium Deposita, 48(3):413-421.doi: 10.1007/s00126-012-0430-7 [10] Fan, H.R., Zhai, M.G., Xie, Y.H., et al., 2003.Ore-Forming Fluids Associated with Granite-Hosted Gold Mineralization at the Sanshandao Deposit, Jiaodong Gold Province, China.Mineralium Deposita, 38:739-750. doi: 10.1007/s00126-003-0368-x [11] Farley, K.A., 2000.Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite.Journal of Geophysical Research, 105(B2):2903-2914.doi: 10.1016/1999JB900348 [12] Farley, K.A., Wolf, R.A., Silver, L.T., 1996.The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages.Geochimica et Cosmochimica Acta, 60(21):4223-4229.doi: 10.1016/S0016-7037(96)00193-7 [13] Fu, F.Q., Mcinnes, B.I.A., Evans, N.J., et al., 2010.Numerical Modeling of Magmatic-Hydrothermal Systems Constrained by U-Th-Pb-He Time-Temperature Histories.Journal of Geochemical Exploration, 106(1):90-109. https://www.researchgate.net/profile/Brent_Mcinnes/publication/248533026_Numerical_modeling_of_magmatichydrothermal_systems_constrained_by_UThPbHe_timetemperature_histories/links/542ab66d0cf29bbc12688c37.pdf?disableCoverPage=true [14] Goldfarb, R., Santosh, M., 2013.The Dilemma of the Jiaodong Gold Deposits:Are They Unique? Geoscience Frontiers, 5(2):139-153.doi: 10.1016/j.gsf.2013.11.001 [15] Harrison, T.M., Duncan, I., Mcdougall, I., 1985.Diffusion of 40Ar in Biotite:Temperature, Pressure and Compositional Effects.Geochimica et Cosmochimica Acta, 49(11):2461-2468.doi: 10.1016/0016-7037(85)90246-7 [16] Kesler, S.E., Wilkinson, B.H., 2006.The Role of Exhumation in the Temporal Distribution of Ore Deposits.Economic Geology, 101(5):919-922.doi: 10.2113/gsecongeo.104.5.623 [17] Kesler, S.E., Wilkinson, B.H., 2009.Resources of Gold in Phanerozoic Epithermal Deposits.Economic Geology, 104(5):623-633.doi: 10.2113/gsecongeo.102.1.155 [18] Lee, J.K., Williams, I.S., Ellis, D.J., 1997.Pb, U and Th Diffusion in Natural Zircon.Nature, 390(6656):159-162.doi: 10.1038/36554 [19] Liu, Z.J., Wang, J.P., Zheng, D.W., et al., 2010.Exploration Prospect and Post-Ore Denudation in the Northwestern Jiaodong Gold Province, China:Evidence from Apatite Fission Track Thermochronology.Acta Petrologica Sinica, 26(12):3597-3611(in Chinese with English abstract). https://www.researchgate.net/publication/282384011_Exploration_prospect_and_post-ore_denudation_in_the_northwestern_Jiaodong_Gold_Province_China_Evidence_from_apatite_fission_track_themochronology [20] Li, J.W., Vasconcelos, P.M., Zhang, J., et al., 2003.40Ar/39Ar Constraints on a Temporal Link between Gold Mineralization, Magmatism, and Continental Margin Transtension in the Jiaodong Gold Province, Eastern China.The Journal of Geology, 111(6):741-751.doi: 10.1086/378486 [21] Lu, L.N., Fan, H.R., Hu, F.F., et al., 2011.Emplacement Depth of the Guojialing Granodiorites from the Northwestern Jiaodong Peninsula, Eastern China:Evidences from Hornblende Thermobarometry and Fluid Inclusions.Acta Petrologica Sinica, 27(5):1521-1532(in Chinese with English abstract). https://www.researchgate.net/publication/286880875_Emplacement_depth_of_the_Guojialing_granodiorites_from_the_Northwestern_Jiaodong_Peninsula_eastern_China_Evidences_from_hornblende_thermobarometry_and_fluid_inclusions [22] Lü, G.X., Kong, Q.C., 1993.Gold Deposit Geology Series:Gold Deposit of Linglong-Jiaojia Type in Jiaodong Peninsula.Science Press, Beijing, 253(in Chinese). http://www.sciencedirect.com/science/article/pii/S0169136814001541 [23] Márton, I., Moritz, R., Spikings, R., 2010.Application of Low-Temperature Thermochronology to Hydrothermal Ore Deposits:Formation, Preservation and Exhumation of Epithermal Gold Systems from the Eastern Rhodopes, Bulgaria.Tectonophysics, 483:240-254.doi: 10.1016/j.tecto.2009.10.020 [24] McInnes, B.I.A., Evans, N.J., Fu, F.Q.et al., 2005.Application of Thermochronology to Hydrothermal Ore Deposits.Reviews in Mineralogy and Geochemistry, 58(1):467-498. doi: 10.2138/rmg.2005.58.18 [25] McInnes, B.I.A., Farley, K.A., Sillitoe, R.H., et al., 1999.Application of Apatite (U-Th)/He Thermochronometry to the Determination of the Sense and Amount of Vertical Fault Displacement at the Chuquicamata Porphyry Copper Deposit, Chile.Economic Geology, 94:937-948.doi: 10.2113/gsecongeo.94.6.937 [26] Miao, L.C., Luo, Z.K., Huang, J.Z., et al., 1997.Studies and Implication of Zicon SHRIMP of Granitic Intrusive in Zhaoye Metallogenic Belt, Shandong Province.Science in China(Series D), 27(3):207-213(in Chinese). doi: 10.1007/BF02879527 [27] Qiu, Y.M., Groves, D.I., McNaughton, N.J., et al., 2002.Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China.Mineralium Deposita, 37(3-4):283-305. doi: 10.1007/s00126-001-0238-3 [28] Qiu, Y.S., 1988.Regional Metallogenic Condition of Gold Deposits in the Zhaoyuan-Yexian District, Shandong Province, China.Liaoning Science and Technology Press, Shenyang, 268(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200001006.htm [29] Reiners, P.W., 2005.Zircon (U-Th)/He Thermochronometry.Reviews in Mineralogy and Geochemistry, 58(1):151-179. doi: 10.2138/rmg.2005.58.6 [30] Reiners, P.W., Spell, T.L., Nicolescu, S., et al., 2004.Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating.Geochimica et Cosmochimica Acta, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021 [31] Stockli, D.F., Farley, K.A., Dumitru, T.A., 2000.Calibration of the Apatite (U-Th)/He Thermochronometer on an Exhumed Fault Block, White Mountains, California.Geology, 28(11):983. doi: 10.1130/0091-7613(2000)28<983:COTAHT>2.0.CO;2 [32] Sun, H.S., Sun, L., Cao, X.Z., et al., 2008.Axial Vertical Zoning Characteristics of Primary Halos and Geochemical Exploration Indicators for Deep Ore Body Prognosis in Shangzhuang Gold Deposit, Northwest Jiaodong Peninsula, Shangdong Province.Mineral Deposits, 27(1):64-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201003002.htm [33] Wang, J.Y., Huang, S.P., 1990.Geothermic Dataset in Chinese Mainland.Seismology and Geology, 12(4):351-366(in Chinese). http://www.sciencedirect.com/science/article/pii/S1002007108001093 [34] Wang, L.G., Qiu, Y.M., Mcnaughton, N.J., et al., 1998.Constraints on Crustal Evolution and Gold Metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb Zircon Studies of Granitoids.Ore Geology Reviews, 13(1):275-291. https://www.researchgate.net/publication/248211532_Constraints_on_crustal_evolution_and_gold_metallogeny_in_the_Northwestern_Jiaodong_Peninsula_China_from_SHRIMP_U-Pb_zircon_studies_of_granitoids [35] Wang, Z.L., Yang, L.Q., Guo, L.N., et al., 2015.Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China:A Fluid Inclusion Study.Ore Geology Reviews, 65:701-717.doi: 10.1016/j.oregeorev.2014.06.006 [36] Wen, B.J., Fan, H.R., Santosh, M., et al., 2015.Genesis of Two Different Types of Gold Mineralization in the Linglong Goldfield, China:Constrains from Geology, Fluid Inclusions and Stable Isotope.Ore Geology Reviews, 65:643-658.doi: 10.1016/j.oregeorev.2014.03.018 [37] Xu, Y.G., 2001.Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China:Evidence, Timing and Mechanism.Physics and Chemistry of the Earth Part A—Solid Earth and Geodesy, 26(9-10):747-757. doi: 10.1016/S1464-1895(01)00124-7 [38] Xu, Y.G., Huang, X.L., Ma, J.L., et al., 2004.Crust-Mantle Interaction during the Tectono-Thermal Reactivation of the North China Craton:Constraints from SHRIMP Zircon U-Pb Chronology and Geochemistry of Mesozoic Plutons from Western Shandong.Contributions to Mineralogy and Petrology, 147(6):750-767. doi: 10.1007/s00410-004-0594-y [39] Xu, Y.G., Li, H.Y., Pang, C.J., et al., 2009.On the Timing and Duration of the Destruction of the North China Craton.Chinese Science Bulletin, 54(19):3379-3396. https://www.researchgate.net/publication/225642364_On_the_timing_and_duration_of_the_destruction_of_the_North_China_Craton [40] Zhai, M.G., Meng, Q.R., Liu, J.M., et al., 2004.Geological Features of Mesozoic Tectonic Regime Inversion in Eastern North China and Implication for Geodynamics.Earth Science Frontiers, 11(3):285-297(in Chinese with English abstract). https://www.researchgate.net/publication/312453122_Geological_features_of_Mesozoic_tectonic_regime_inversion_in_Eastern_North_China_and_implication_for_geodynamics [41] Zhai, Y.S., 2000.Metallogenic System and Its Evolution:From Preliminary Practice to Theoretical Consideration.Earth Science, 25(4):333-339(in Chinese with English abstract). https://trid.trb.org/view.aspx?id=1334916 [42] Zhai, Y.S., Deng, J., Peng, R.M., 2000.Research Contents and Methods for Post-Ore Changes, Modifications and Preservation.Earth Science, 25(4):340-345(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200004001.htm [43] Zhang, H.F., Li, S.R., Zhai, M.G., et al., 2006.Crust Uplift and Implications in the Jiaodong Peninsula, Eastern China.Acta Petrologica Sinica, 22(2):285-295(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602003.htm [44] Zhang, X.O., Cawood, P.A., Wilde, S.A., et al., 2003.Geology and Timing of Mineralization at the Cangshang Gold Deposit, North-Western Jiaodong Peninsula, China.Mineralium Deposita, 38(2):141-153. doi: 10.1007/s00126-002-0290-7 [45] 常远, 王玮, 周祖翼, 2010.采样地形对年龄-高程法应用的限制.地球物理学报, 53(8): 1868-1874. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201008013.htm [46] 陈光远, 1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版社, 131. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.007.htm [47] 柳振江, 王建平, 郑德文, 等, 2010.胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据.岩石学报, 26(12): 3597-3611. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012013.htm [48] 陆丽娜, 范宏瑞, 胡芳芳, 等, 2011.胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据.岩石学报, 27(5): 1521-1532. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105025.htm [49] 吕古贤, 孔庆存, 1993.金矿地质研究丛书:胶东玲珑-焦家式金矿地质.北京:科学出版社, 253. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199100008005.htm [50] 苗来成, 罗镇宽, 黄佳展, 等, 1997.山东招掖金矿带内花岗岩类侵入体锆石SHRIMP研究及其意义.中国科学(D辑), 27(3): 207-213. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703002.htm [51] 裘有守, 1988.山东招远-掖县地区金矿区域成矿条件.沈阳:辽宁科学技术出版社, 268. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198400021004.htm [52] 孙华山, 孙林, 曹新志, 等, 2008.胶西北上庄金矿床原生晕轴(垂)向分带特征及深部矿体预测的勘查地球化学标志.矿床地质, 27(1): 64-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200801008.htm [53] 汪集旸, 黄少鹏, 1990.中国大陆地区大地热流数据汇编(第二版).地震地质, 12(4): 351-366. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199004010.htm [54] 翟明国, 孟庆任, 刘建明, 等, 2004.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨.地学前缘, 11(3): 285-297. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403036.htm [55] 翟裕生, 2000.成矿系统及其演化——初步实践到理论思考.地球科学, 25(4): 333-339. http://earth-science.net/WebPage/Article.aspx?id=949 [56] 翟裕生, 邓军, 彭润民, 2000.矿床变化与保存的研究内容和研究方法.地球科学, 25(4): 340-345. http://earth-science.net/WebPage/Article.aspx?id=950 [57] 张华锋, 李胜荣, 翟明国, 等, 2006.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义.岩石学报, 22(2): 285-295. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602003.htm