About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance
-
摘要: 林山岩群是华北克拉通中部造山带南缘前寒武纪结晶基底的一部分,它对于探讨中部造山带碰撞时代及其在克拉通南缘的分布具有重要意义.选择林山岩群主体的变基性岩(斜长角闪片岩)为主要研究对象,利用锆石U-Pb定年和岩石地球化学方法,获得的结果表明斜长角闪片岩样品锆石多呈长柱状,且外形不规则,具弱分带、斑杂状分带和扇形分带结构,其中少量锆石保留有早期原岩残留的岩浆核.锆石核部具岩浆振荡环带特征,大部分Th/U比值范围为0.10~9.24,且外形不规则,边部具溶蚀结构;绝大部分锆石具弱分带、斑杂状分带和扇形分带结构,以及低Th/U比值范围为0~0.09,个别比值为0.12,显示为典型的变质锆石特征.LA-ICP-MS锆石U-Pb定年结果表明该斜长角闪片岩的核部残留加权平均年龄为2 528±43 Ma(MSWD=1.5,n=10),经历变质作用的加权平均时限为2 474±22 Ma(MSWD=1.3,n=21).全岩地球化学结果显示林山岩群变基性岩贫硅(47.70%~50.77%,平均值为48.90%)和低钾(0.56%~1.78%,平均值为1.13%),轻、重稀土分异较弱,亏损微量元素Nb、Th、Ti、Zr等高场强元素,且具有低的微量元素Zr含量(<130×10-6)和Zr/Y比值(<4).这些特征表明林山岩群形成于俯冲作用背景下的岛弧环境.因此,上述证据共同反映了华北克拉通东、西陆块碰撞产物的中部造山带经历了新太古代晚期-古元古代早期的俯冲碰撞造山作用.Abstract: Linshan Group, located in the southern margin of the central orogenic belt of the North China Craton, is a Precambrian basement. It is important to study the collision era of the central orogenic belt and the distribution of the southern margin of the North China Craton. A study was carried out on the metabasite (plagioclase-amphibole schist) of the Linshan Group for the purpose of constraining the collisional time of the central orogenic belt and its distribution through the zircon U-Pb dating and rock geochemical methods. The results obtained show that most of zircon grains from plagioclase-amphibole schist are long columnar, euhedral to subhedral, and show typical core-rim structure with irregular shape, weak zoning, taxitic zoning and sector zoning structure. Some zircons preserve the inherited cores of the early magma. Zircon rims display characteristics of dissolution texture with low Th/U ratios (most of them less than 0.09), however, zircons' cores show typical oscillatory zoning structure and relatively high Th/U ratios ranging from 0.10 to 9.24. The evidence suggests that the zircons of plagioclase-amphibole schist could be metamorphic origin. Relict cores and rims of the zircons from the plagioclase-amphibole schist yield ages of 2 528±43 Ma (MSWD=1.5, n=10) and 2 474±22 Ma (MSWD=1.3, n=21), respectively. The former data represent residual age of protolith, and the latter indicate a circa 2.5 Ga metamorphic event in the central orogenic belt of the North China Craton. Whole-rock geochemical results show that metabasite samples from the Linshan Group have relatively low contents of SiO2 (47.70%-50.77%, average=48.90%) and K2O (0.56%-1.78%, average=1.13%), and are depleted in high field strength elements (eg., Nb, Th, Ti and Zr) with flat REE patterns. Moreover, the geochemical samples have low content of Zr (less than 130×10-6) and ratios of Zr/Y (less than 4), indicating that the Linshan Group could have been formed in the subducted-related island arc environment. Therefore, the above evidence show that the central orogenic belt that formed by the collision orogenesis between eastern block and western block of the North China Craton experienced late Neoarchean to early Paleoproterozoic subduction-collisional event.
-
Key words:
- early Paleoproterozoic /
- metamorphic event /
- Linshan Group /
- North China Craton /
- central orogenic belt /
- isotope /
- tectonics
-
图 1 华北克拉通构造分区(a)和变质基底分布(b)
Fig. 1. Tectonic subdivision (a) and distribution of the exposed basement (b) of the North China Craton
图 4 斜长角闪片岩Zr/TiO2-Nb/Y判别图解
据Winchester and Floyd(1977);其中2个样品(灰色三角形,下同)可能遭受了部分熔融作用影响
Fig. 4. Zr/TiO2 vs.Nb/Y discriminant diagram for the plagioclase-amphibole schist of the Linshan Group
图 5 斜长角闪片岩稀土元素配分图(a)和微量元素蛛网图(b)
球粒陨石和原始地幔标准化数据来自Sun and McDonough(1989);灰色线可能遭受了部分熔融作用
Fig. 5. Chondrite-(a) and primitive mantle-(b) normalized diagrams for plagioclase-amphibole schist of Linshan Group
图 10 林山岩群斜长角闪片岩构造环境判别
a.Nb-Zr判别图解,修编自Le et al.(1983);b.Hf/3-Th-Nb判别图解,修编自Wood(1980);c.不活动元素构造环境判别图解,修编自Agrawal et al.(2008);d.Th/Yb-La/Yb判别图解,修编自Condie(1989).N-MORB.N型洋中脊玄武岩;IAT.岛弧拉斑玄武岩;CAB.钙碱性玄武岩;E-MORB+WPT.E型洋中脊玄武岩和板内拉斑玄武岩;WAPB.碱性板内玄武岩;IAB.岛弧玄武岩;OIB.洋岛玄武岩;CRB.大陆裂谷玄武岩;PA.初始岛弧;IA.岛弧;CMA.大陆边缘弧;AA.安第斯岛弧
Fig. 10. Tectonic discriminant diagrams for plagioclase-amphibole schist of Linshan Group
表 1 林山岩群斜长角闪片岩主量(%)及微量元素(10-6)分析结果
Table 1. Major element (%) and trace element (10-6) compositions of plagioclase-amphibole schist of Linshan Group
样品 斜长角闪片岩 斜长角闪片岩 斜长角闪片岩 D025/74-1 D026/112-1 D029/84-1 D030/131-1 D135/13-1 D135/20-1 D136/72-1 D703/57-1 D745/6-1 SiO2 50.77 47.73 48.94 48.15 49.65 48.60 48.05 48.98 49.23 Al2O3 13.73 13.83 14.08 13.89 12.34 13.67 15.21 13.41 13.09 TiO2 0.99 1.55 1.55 1.23 1.70 0.78 1.00 0.78 1.14 Fe2O3 2.76 4.65 7.00 4.29 6.20 3.30 3.87 3.61 4.91 FeO 9.18 10.93 7.60 8.40 9.75 7.85 8.00 8.30 8.85 CaO 9.97 8.10 12.86 8.74 7.66 10.16 8.31 10.67 9.36 MgO 7.00 5.61 3.47 8.11 4.71 7.87 7.05 7.36 6.25 K2O 0.71 1.33 0.56 1.50 1.45 1.42 1.87 0.56 0.80 Na2O 1.96 2.65 1.20 2.22 2.14 2.07 1.96 2.12 1.92 MnO 0.20 0.76 0.28 0.23 0.32 0.41 0.36 0.24 0.24 P2O5 0.09 0.14 0.14 0.09 0.21 0.10 0.16 0.09 0.13 H2O+ 1.66 1.75 2.02 2.92 2.54 2.59 3.00 2.58 2.90 H2O- 0.20 0.25 0.08 - 0.26 0.19 0.33 0.23 0.44 灼失量 2.48 2.51 1.46 2.22 1.75 1.92 2.23 1.92 1.97 Rb 53.50 65.50 28.28 89.83 47.98 42.37 109.28 12.29 44.60 Ba 19.74 66.21 9.21 36.10 58.85 86.55 73.38 32.64 32.86 Th 9.79 8.13 10.36 17.56 20.60 7.36 11.44 6.00 9.64 U 8.56 7.19 17.27 13.96 19.56 8.08 7.68 9.41 14.14 Nb 5.25 6.81 7.92 7.42 9.24 3.31 5.15 3.16 7.29 Ta 7.60 13.18 11.65 12.32 17.53 8.37 7.94 8.21 11.39 La 8.35 10.08 11.42 8.17 18.44 6.37 13.94 9.54 10.57 Ce 7.73 9.03 10.13 7.93 14.56 5.22 10.80 7.22 8.52 Pr 7.49 9.14 10.77 7.87 14.09 5.46 10.24 6.73 8.62 Sr 5.89 8.42 9.77 8.75 8.60 15.89 11.98 8.48 7.07 Nd 7.03 8.58 10.91 7.67 12.42 5.09 8.96 5.84 7.80 Zr 7.68 7.21 9.33 7.13 10.22 4.55 6.82 4.07 6.36 Hf 12.90 21.56 21.49 15.61 16.93 8.32 11.78 7.32 10.17 Sm 6.20 7.45 10.13 7.01 11.72 5.25 7.63 5.53 7.98 Eu 6.64 7.84 8.68 6.07 9.34 4.80 6.88 5.25 6.94 Gd 5.16 5.74 9.36 5.89 9.64 4.67 5.78 4.68 6.69 Dy 6.38 6.97 9.40 5.50 9.16 4.53 5.06 4.47 6.54 Y 4.96 5.56 8.08 4.23 7.74 3.72 4.09 3.56 5.41 Ho 5.87 6.46 9.35 4.93 9.08 4.16 4.62 4.13 6.11 Yb 5.56 5.85 8.77 4.04 7.34 3.70 3.92 3.67 5.49 La 5.41 6.53 7.40 5.30 11.95 4.13 9.03 6.18 6.85 Ce 12.95 15.13 16.97 13.28 24.38 8.75 18.09 12.09 14.27 Pr 1.90 2.32 2.74 2.00 3.58 1.39 2.60 1.71 2.19 Nd 8.79 10.72 13.64 9.58 15.52 6.36 11.20 7.30 9.75 Sm 2.52 3.03 4.11 2.84 4.76 2.13 3.10 2.24 3.24 Eu 1.02 1.21 1.34 0.94 1.44 0.74 1.06 0.81 1.07 Gd 2.81 3.13 5.09 3.20 5.25 2.54 3.15 2.55 3.64 Tb 0.60 0.67 0.94 0.57 0.97 0.47 0.56 0.47 0.69 Dy 4.30 4.70 6.34 3.71 6.17 3.06 3.41 3.01 4.41 Ho 0.87 0.96 1.39 0.73 1.35 0.62 0.69 0.62 0.91 Er 2.31 2.49 4.11 1.88 3.77 1.84 2.04 1.83 2.70 Tm 0.43 0.45 0.62 0.29 0.54 0.27 0.29 0.26 0.39 Yb 2.45 2.58 3.87 1.78 3.24 1.63 1.73 1.62 2.42 Lu 0.34 0.33 0.58 0.26 0.49 0.24 0.27 0.25 0.38 Y 21.32 23.90 34.75 18.20 33.27 16.01 17.58 15.29 23.28 ∑REE 68.04 78.14 103.90 64.56 116.70 50.16 74.78 56.22 76.18 LREE/HREE 1.35 1.53 1.18 1.65 1.71 1.33 2.21 1.70 1.43 (La/Yb)CN 1.49 1.71 1.29 2.01 2.50 1.71 3.53 2.58 1.91 δEu 1.14 1.17 0.87 0.92 0.85 0.94 1.01 1.00 0.92 注:样品均为国土资源部武汉矿产资源监督检测中心测试;其中“-”为未分析. 表 2 林山岩群斜长角闪片岩样品(D029/84-1) LA-ICP-MS残留核部锆石U-Pb定年结果
Table 2. Sample D029/84-1 LA-ICP-MS U-Pb results of relict cores of the zircon from the plagioclase-amphibole schist of Linshan Group
点号 含量(10-6) Th/U U-Th-Pb同位素比值±1σ 同位素年龄±1σ(Ma) 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U D84-1-04 1.76 18.48 0.10 0.160 0±0.005 0 10.97±0.34 0.480±0.008 2 502.0±52.8 2 521.0±28.8 2 546.0±33.0 D84-1-06 0.42 6.72 0.06 0.190 0±0.008 0 13.49±0.54 0.530±0.010 2 744.0±68.8 2 714.0±38.0 2 736.0±40.2 D84-1-08 1.31 7.25 0.18 0.170 0±0.009 0 11.60±0.55 0.510±0.010 2 554.0±79.5 2 573.0±44.4 2 651.0±42.8 D84-1-09 9.39 67.74 0.14 0.160 0±0.003 0 11.77±0.19 0.520±0.004 2 502.0±27.5 2 586.0±15.0 2 687.0±17.1 D84-1-13 0.10 5.36 0.02 0.170 0±0.008 0 11.77±0.54 0.500±0.011 2 583.0±75.2 2 586.0±43.0 2 622.0±48.4 D84-1-14 35.12 3.80 9.24 0.180 0±0.026 0 11.09±0.70 0.480±0.014 2 627.0±248 2 530.0±58.5 2 543.0±62.0 D84-1-22 8.63 47.68 0.18 0.160 0±0.003 0 11.86±0.25 0.520±0.006 2 506.0±33.3 2 594.0±20.2 2 700.0±25.0 D84-1-24 0.20 16.84 0.01 0.170 0±0.004 0 11.13±0.27 0.490±0.006 2 525.0±42.6 2 534.0±22.7 2 552.0±26.7 D84-1-30 0.09 4.91 0.02 0.180 0±0.015 0 11.79±0.82 0.490±0.015 2 696.0±138.0 2 588.0±65.0 2 592.0±63.0 D84-1-43 9.22 65.30 0.14 0.170 0±0.005 0 11.86±0.35 0.510±0.006 2 521.0±49.0 2 594.0±28.0 2 663.0±26.0 表 3 林山岩群斜长角闪片岩样品(D029/84-1) LA-ICP-MS变质锆石U-Pb定年结果
Table 3. Sample D029/84-1 LA-ICP-MS U-Pb result of rims of the zircon from the plagioclase-amphibole schist of Linshan Group
点号 含量(10-6) Th/U U-Th-Pb同位素比值±1σ 同位素年龄±1σ(Ma) 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U D84-1-02 0.37 23.91 0.015 0.163 6±0.003 7 11.61±0.26 0.520±0.006 2 494.0±37.7 2 574.0±20.6 2 679.0±25.5 D84-1-10 0 7.91 0.000 0.169 2±0.007 1 11.64±0.43 0.520±0.010 2 550.0±70.4 2 576.0±34.7 2 697.0±42.0 D84-1-12 0.21 26.71 0.008 0.157 9±0.003 7 9.95±0.23 0.460±0.005 2 435.0±39.2 2 430.0±21.4 2 425.0±22.5 D84-1-15 10.16 122.05 0.083 0.162 5±0.002 3 10.28±0.15 0.460±0.003 2 483.0±24.1 2 460.0±13.4 2 426.0±14.2 D84-1-16 2.38 58.70 0.041 0.164 3±0.002 9 11.15±0.20 0.490±0.004 2 502.0±29.6 2 535.0±16.6 2 572.0±18.4 D84-1-17 0.03 13.39 0.002 0.176 4±0.004 9 11.78±0.34 0.490±0.006 2 620.0±46.6 2 587.0±27.2 2 552.0±27.7 D84-1-18 0.15 4.83 0.031 0.163 6±0.009 1 9.96±0.49 0.460±0.010 2 494.0±93.8 2 431.0±45.7 2 444.0±43.2 D84-1-23 0.02 7.74 0.003 0.161 3±0.006 4 11.49±0.42 0.530±0.010 2 469.0±67.6 2 564.0±34.2 2 749.0±40.6 D84-1-25 18.07 151.00 0.120 0.158 2±0.001 9 11.62±0.16 0.530±0.004 2 437.0±20.0 2 574.0±13.0 2 731.0±19.0 D84-1-26 6.44 67.60 0.095 0.155 5±0.002 9 11.49±0.23 0.530±0.006 2 409.0±32.0 2 564.0±19.0 2 753.0±27.0 D84-1-28 0.28 23.80 0.012 0.163 4±0.004 7 10.60±0.31 0.470±0.006 2 492.0±48.0 2 489.0±27.0 2 486.0±25.0 D84-1-29 0.69 25.30 0.027 0.157 9±0.004 7 11.69±0.33 0.540±0.007 2 433.0±50.0 2 580.0±27.0 2 777.0±28.0 D84-1-32 0.16 8.87 0.018 0.155 3±0.008 4 9.74±0.50 0.470±0.008 2 405.0±92.0 2 411.0±48.0 2 464.0±37.0 D84-1-33 0.18 12.80 0.014 0.175 9±0.012 2 11.41±0.76 0.480±0.011 2 617.0±115.0 2 557.0±62.0 2 540.0±46.0 D84-1-34 0.03 21.90 0.001 0.158 3±0.004 7 9.94±0.26 0.460±0.005 2 439.0±50.0 2 429.0±24.0 2 431.0±24.0 D84-1-38 0.24 24.40 0.010 0.167 4±0.006 2 10.98±0.40 0.470±0.007 2 531.0±62.0 2 521.0±34.0 2 493.0±30.0 D84-1-40 0.11 51.10 0.002 0.163 7±0.004 2 11.36±0.29 0.500±0.006 2 495.0±44.0 2 553.0±24.0 2 608.0±25.0 D84-1-44 0.03 28.30 0.001 0.163 2±0.006 4 10.46±0.43 0.460±0.006 2 500.0±66.0 2 476.0±38.0 2 439.0±27.0 D84-1-46 0.82 18.70 0.044 0.166 1±0.006 0 10.71±0.38 0.470±0.006 2 518.0±66.0 2 498.0±33.0 2 470.0±27.0 D84-1-47 0.10 11.10 0.009 0.164 8±0.008 1 9.62±0.48 0.430±0.009 2 505.0±83.0 2 400.0±46.0 2 298.0±39.0 D84-1-48 0.20 16.60 0.012 0.164 5±0.005 8 10.40±0.36 0.460±0.007 2 502.0±59.0 2 471.0±32.0 2 438.0±31.0 -
[1] Agrawal, S., Guevara, M., Verma, S.P., 2008.Tectonic Discrimination of Basic and Ultrabasic Volcanic Rocks through Log-Transformed Ratios of Immobile Trace Elements.International Geology Review, 50:1057-1079. doi: 10.2747/0020-6814.50.12.1057 [2] Condie, K.C., 1989.Geochemical Changes in Basalts and Andesites across the Archaean-Proterizoic Boundary:Identification and Significance.Lithos, 23:1-18. doi: 10.1016/0024-4937(89)90020-0 [3] Deng, H., Kusky, T.M., Polat, A., et al., 2013.Geochemistry of Neoarchean Mafic Volcanic Rocks and Late Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting.Lithos, 175(5):193-212. http://www.sciencedirect.com/science/article/pii/S0024493713001503 [4] Deng, H., Kusky, T.M., Polat, A., et al., 2014.Geochronology, Mantle Source Composition and Geodynamic Constraints on the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton.Lithos, 205(9):359-378. https://www.researchgate.net/profile/Hao_Deng10/publication/264123483_Geochronology_mantle_source_composition_and_geodynamic_constraints_on_the_origin_of_Neoarchean_mafic_dikes_in_the_Zanhuang_Complex_Central_Orogenic_Belt_North_China_Craton/links/5508c7e80cf26ff55f83cd4f.pdf?disableCoverPage=true [5] Deng, J.F., Wu, Z.X., Zhao, G.C., et al., 1999.Precambrian Granitic Rocks, Continental Crustal Evolution and Craton Formation of the North China Platform.Acta Petrologica Sinica, 15(2):190-198(in Chinese with English abstract). https://www.researchgate.net/publication/279587697_Precambrian_granitic_rocks_continental_crustal_evolution_and_craton_formation_of_the_North_China_Platform [6] Diwu, C.R., Sun, Y., Guo, A., et al., 2011.Crustal Growth in the North China Craton at ~2.5 Ga:Evidence from In-Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex.Gondwana Research, 20:149-170. http://www.cqvip.com/QK/86894X/200924/32393543.html [7] Farahat, E.S., 2010.Neoproterozoic Arc-Back-Arc System in the Central Eastern Desert of Egypt:Evidence from Supra-Subduction Zone Ophiolites.Lithos, 120(3-4):293-308. doi: 10.1016/j.lithos.2010.08.017 [8] Gao, M., Gao, F., 1988.Retrogressive Metamorphism of Archaean Granulites and the Evidence of Rb-Sr Isochron Age in Zhangjiakou and Xuanhua Regions.Journal of Hebei College of Geology, 11(4):11-19(in Chinese with English abstract). https://www.researchgate.net/publication/222312152_Archean_blocks_and_their_boundaries_in_the_North_China_Craton_Lithological_geochemical_structural_and_P-T_path_constraints_and_tectonic_evolution [9] Gebauer, D., 1996.A P-T-t Path for a High-Pressure Ultramafic Mafic Rock-Association and Its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphics Zircon Domains.Example:Alps Arami Central Swiss Alps.In:Reading the lsotopic Code, Geophsical Monograph 95.Am.Geophys.Union, Washington D.C., 307-329. doi: 10.1029/GM095p0307/pdf [10] Gibson, I.L., Kirkpatrick, R.J., Emmerman, R., et al., 1982.The Trace Element Composition of the Lavas and Dikes from a 3 km Vertical Section through the Lava Pile of Eastern Iceland.Journal of Geophysical Research, 87:6532-6546. doi: 10.1029/JB087iB08p06532 [11] Guan, H., Sun, M., Xu, P., 1998.Geochronological Study of Zircons from High-Grade Gneisses of Fuping Complex by LP-ICPMS Technique.Acta Petrologica Sinica, 14(4):460-470(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB804.004.htm [12] Guo, J.H., O'Brien, P.J., Zhai, M.G., 2002.High-Pressure Granulites in the Sanggan Area, North China Craton:Metamorphic Evolution, P-T Paths and Geotectonic Significance.Journal of Metamorphic Geology, 20:741-756. doi: 10.1046/j.1525-1314.2002.00401.x [13] Guo, J.H., Sun, M., Chen, F.K., et al., 2005.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton:Timing of Paleoproterozoic Continental Collision.Journal of Asian Earth Sciences, 24:629-642. doi: 10.1016/j.jseaes.2004.01.017 [14] Guo, R.R., Zhai, M.G., Santosh, M., et al., 2013.Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopes of Metavolcanics from Eastern Hebei Reveal Neoarchean Subduction Tectonics in the North China Craton.Gondwana Research, 24(2):664-686. doi: 10.1016/j.gr.2012.12.025 [15] Hu, B., Zhai, M.G., Peng, P., et al., 2013.Late Paleoproterozoic to Neoproterozoic Geological Events of the North China Craton:Evidences from LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Cambrian and Jurassic Sedimentary Rocks in Western Hills of Beijing.Acta Petrologica Sinica, 29(7):2508-2536(in Chinese with English abstract). https://www.researchgate.net/publication/286203630_Late_Paleoproterozoic_to_Neoproterozoic_geological_events_of_the_North_China_Craton_Evidences_from_LA-ICP-MS_U-Pb_geochronology_of_detrital_zircons_from_the_Cambrian_and_Jurassic_sedimentary_rocks_in_ [16] Kelemen, P.B., Johnson, K.T.M., Kinzler, R.J., et al., 1990.High-Field-Strength Element Depletions in Arc Basalts Due to Mantle-Magma Interaction.Nature, 345:521-523. doi: 10.1038/345521a0 [17] Kusky, T.M., 2004.Introduction.Developments in Precambrian Geology.In:Kusky, T.M., ed., Precambrian Ophiolites and Related Rocks.Elsevier, Amsterdam, 1-34. doi: 10.1029/GM095p0307/pdf [18] Kusky, T.M., 2011.Geophysical and Geological Tests of Tectonic Models of the North China Craton.Gondwana Research, 20:26-35. doi: 10.1016/j.gr.2011.01.004 [19] Kusky, T.M., Li, J.H., 2003.Paleoproterozoic Tectonic Evolution of the North China Craton.Journal of Asian Earth Sciences, 22:23-40. https://www.researchgate.net/profile/Timothy_Kusky/publication/222825952_Paleoproterozoic_tectonic_evolution_of_the_North_China_Craton/links/02e7e518077df22aa8000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [20] Kusky, T.M., Windley, B.F., Zhai, M.G., 2007.Tectonic Evolution of the North China Block:From Orogen to Craton to Orogen.In:Zhai, M.G., Windley, B.F., Kusky, T.M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia.Geological Society of London, Special Publication, 280:1-34. https://www.researchgate.net/profile/Brian_Windley/publication/235769330_Tectonic_Evolution_of_the_North_China_Block_From_Orogen_to_Craton_to_Orogen/links/0912f51362281781f2000000.pdfhttps://www.researchgate.net/profile/Brian_Windley/publication/235769330_Tectonic_evolution_of_the_North_China_Block_from_orogen_to_craton_to_orogen/links/0912f51362281781f2000000.pdf?disableCoverPage=true [21] Le, R., Dick, A.P., Brlank, H.J.B., et al., 1983.Geochemistry, Mineralogy and Petrogensis of Lavas Erupted along the Southwest Indian Ridge between the Bouvettriple Gunction and 11 Degree East.Journal of Petrology, 24:267-318. doi: 10.1093/petrology/24.3.267 [22] Lei, W.Y., Shi, G.H., Liu, Y.X., 2013.Research Progress on Trace Element Characteristics of Zircons of Different Origins.Earth Science Frontiers, 20(4):273-284(in Chinese with English abstract). https://www.researchgate.net/publication/279571372_Research_progress_on_trace_element_characteristics_of_zircons_of_different_origins [23] Li, J., Kusky, T., 2007.A Late Archean Foreland Fold and Thrust Belt in the North China Craton:Implications for Early Collisional Tectonics.Gondwana Research, 12:47-66. doi: 10.1016/j.gr.2006.10.020 [24] Li, J.H., Kusky, T.M., Huang, X., 2002.Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes.GSA Today, 12:4-11.doi: 10.1130/1052-5173 [25] Li, J.H., Niu, X.L., Chen, Z., et al., 2004.Discovery of Deep-Level Foreland Thrust-Fold Structures in Taihang Mt.and Its Implication for Early Tectonic Evolution of North China.Progress in Natural Science, 14(10):1118-1127(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zrkxjz-e200503006 [26] Liu, D.Y., Wan, Y.S., Wu, J.S., et al., 2007.Archean Crustal Evolution and the Oldest Rocks in the North China Craton.Geological Bulletin of China, 26(9):1131-1138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200709016.htm [27] Liu, S.J., Jahn, B.M., Wan, Y.S., et al., 2014.Neoarchean to Paleoproterozoic High-Pressure Mafic Granulite from the Jiaodong Terrain, North China Craton:Petrology, Zircon Age Determination and Geological Implications.Gondwana Research, 01293:1-16. http://linkinghub.elsevier.com/retrieve/pii/S1342937X14002305 [28] Liu, S.W., Santosh, M., Wang, W., et al., 2011.Zircon U-Pb Chronology of the Jianping Complex:Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton.Gondwana Research, 20:48-63. doi: 10.1016/j.gr.2011.01.003 [29] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009.Continental and Oceanic Crust Recycling Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51:537-571. http://www.oalib.com/references/19218164 [30] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55:1535-1546. doi: 10.1007/s11434-010-3052-4 [31] Liu, Z.H., Wang, A.J., Li, X.F., 1997.Metamophism Evolution of the Late Archen Collsion Orogenic Belt in Wutaishan.Geological Journal of China Universities, 3(2):162-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB502.000.htm [32] Luo, Z.B., Zhang, H.F., Diwu, C.R., et al., 2012.Zircon U-Pb, Lu-Hf Isotope and Trace Element Compositions of Intermediata Pyroxene Granulite in the Huai'an Area, Northwest Hebei Province:Constraints on the Timing of Retrograde Metamorphism.Acta Petrologica Sinica, 28(11):3721-3738(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211024.htm [33] Pfander, J.A., Munker, C., Stracke, A., et al., 2007.Nb/Ta and Zr/Hf in Ocean Island Basalts:Implications for Crust-Mantle Differentiation and the Fate of Niobium.Earth and Planetary Science Letters, 254 (1-2):158-172. doi: 10.1016/j.epsl.2006.11.027 [34] Polat, A., Kusky, T.M., Li, J.H., et al., 2005.Geochemistry of the Late Archean (ca.2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton:Implications for Geodynamic Setting and Continental Growth.Geological Society of America Bulletin, 117:1387-1399. doi: 10.1139/e02-070?journalCode=cjes [35] Qi, L., Hu, J., Gregoire, D.C., 2000.Determination of Trace Elements in Granites by Inductively Coupled Plasma-Mass Spectrometry.Talanta, 51:507-513. doi: 10.1016/S0039-9140(99)00318-5 [36] Roberta, L., Rudnick, D., Fountain, M., 1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 3(33):267-309. doi: 10.1029/95RG01302/full?scrollTo=footer-citing [37] Sun, M., Guan, H., 2001.Zircon U-Pb Ages of the Fuping Complex and Their Implications:Some Comments on the Geochronological Study of the Precambrian High-Grade Metamorphic Terranes.Acta Petrologica Sinica, 17(1):145-156(in Chinese with English abstract). https://www.researchgate.net/publication/279756005_Zircon_U-Pb_ages_of_the_fuping_complex_and_their_implications_Some_comments_on_the_geochronological_study_of_the_precambrian_high-grade_metamorphic_terranes?_sg=ILPQfU5EsWRBopAc7X9beTZNLvd_EMpjWXSOyBm-4fffitXxfgmUEgZ0k3rq5hCWpirO8IyfVprdGe0TlkUOAI67Q5Hja2dI1MEGiE9qDHc [38] Sun, S.S., McDonough, M.C., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society Special Publication, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [39] Wan, Y.S., Miao, P.S., Liu, D.Y., et al., 2010.Formation Ages and Source Regions of the Palaeoproterozoic Gaofan.Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons:Resolution of Debates over Their Stratigrapbic Relationships.Chinese Science Bulltin, 55(7):572-578(in Chinese). doi: 10.1007/s11434-009-0615-3?view=classic [40] Wang, J.P., Kusky, T., Polat, A., et al., 2013.A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton.Tectonophysics, 608:929-946. doi: 10.1016/j.tecto.2013.07.025 [41] Wang, J.P., Kusky, T., Wang, L., et al., 2014.A Neoarchean Subduction Polarity Reversal Event in the North China Craton.Lithos, 220-223:133-146. http://www.sciencedirect.com/science/article/pii/S0024493715000511 [42] Wang, K.Y., Hao, J., Wilde, S., et al., 2000.Reconsideration of Some Key Geological Problems of Late Archaean-Early Proterozoic in the Wutaishan-Hengshan Area:Constraints from SHRIMP U-Pb Zircon Data.Scientia Geologica Sinica, 35(2):175-184(in Chinese with English abstract). doi: 10.1007/s11434-009-3611-8 [43] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001.Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts.Acta Petrologica Sinica, 17(3):413-421(in Chinese with English abstract). https://www.researchgate.net/publication/279768841_ThHf-TaHf_idenfication_of_tectonic_setting_of_basalts [44] Wei, Y., Zheng, J.P., Su, Y.P, et al., 2013.Zircon U-Pb Ages and Hf Isotopes of Granulites from the Huai'an Complex:Implications for the Accretion and Reworking of the Lower Crust beneath the North Margin of the North China Craton.Acta Petrologica Sinica, 29(7):2281-2294(in Chinese with English abstract). https://www.researchgate.net/publication/285839737_Zircon_U-Pb_ages_and_Hf_isotopes_of_granulites_from_the_Huai'_an_Complex_Implications_for_the_accretion_and_reworking_of_the_lower_crust_beneath_the_north_margin_of_the_North_China_Craton [45] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Differenet Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2 [46] Wood, D.A., 1980.The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province.Earth and Planetary Science Letters, 50:11-30. doi: 10.1016/0012-821X(80)90116-8 [47] Wu, C.H., Li, H.M., Zhong, C.T., et al., 2000.TIMS U-Pb Single Zircon Ages for the Orthogneiss and the Paragneiss of Fuping Complex:Implications for Existence of the Palaeoproterozoic Supracrustal Rocks in the Central Basement of North China Craton.Progress in Precambrian Research, 23(3):129-139(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP198901000.htm [48] Wu, Y.B., Chen, D.G., Xia, Q.K., et al., 2002.In-Situ Trace Element Analyses of Zircons from Dabieshan Huangzhen Eclogite:Trace Element Characteristics of Eclogite-Facies Metamorphic Zircon.Chinese Science Bulletin, 47(11):859-863(in Chinese). http://www.cqvip.com/QK/86894X/200216/1004290118.html [49] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf?origin=publication_detail [50] Xia, L.Q., Xia, Z.C., Xu, X.C., etal., 2007.The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method.Acta Petrologica et Mineralogica, 26(1):77-88(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200701010.htm [51] Xiao, L.L., Jiang, Z.S., 2010.Geochemistry and Tectonic Environment of Amphibolites of the Zanhuang Metamorphic Complex.Bulletin of Mineralogy, Petrology and Geochemistry, 29(4):339-347(in Chinese with English abstract). https://www.researchgate.net/publication/281577563_Geochemistry_and_tectonic_environment_of_amphiholites_of_the_Zanhuang_metamorphic_complex [52] Xiao, L.L., Liu, F.L., Liu, J.H., et al., 2013.Geochemistry and Its Tectonic Implications of the Zuoquan-Zanhuang Complex.Acta Petrologica Sinica, 29(2):533-550(in Chinese with English abstract). https://www.researchgate.net/publication/287705947_Geochemistry_and_Its_Tectonic_Implications_of_the_Zuoquan-Zanhuang_Complex [53] Xiao, L.L., Lu, J.S., Wang, G.D., et al., 2012.Geochemistry, Metamorphic Evolution and Its Tectonic Implications of Amphibolites in the Southwest Area of the Zanhuang Complex.Acta Petrologica Sinica, 28(9):2807-2818(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201209012.htm [54] Xiao, L.L., Wang, G.D., 2011.Zircon U-Pb Dating of Metabasic Rocks in the Zanhuang Metamorphic Complex and Its Geological Significance.Acta Petrologica et Mineralogica, 30(5):781-794(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201105005.htm [55] Zhai, M.G., 2011.Cratonization and the Ancient North China Continent:A Summary and Review.Science in China (Series D), 54:1110-1120. doi: 10.1007/s11430-011-4250-x [56] Zhang, L.C., Zhai, M.G., Zhang, X.J., et al., 2012.Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Province:Constraints from Geochemistry and SIMS Zircon U-Pb Dating.Precambrian Research, 222-223:325-338. doi: 10.1016/j.precamres.2011.09.007 [57] Zhang, L.L., Dai, F.H., Cui, J.W., et al., 2014.Geochemistry Characteristics and Significance of Metamorphic Intrusions in Guyana Region, Inner Mongolia.Earth Science, 39(3):271-282 (in Chinese with English abstract). https://www.researchgate.net/publication/287461247_Geochemistry_characteristics_and_significance_of_metamorphic_intrusions_in_Guyang_Region_Inner_Mongolia [58] Zhang, Q., Qian, Q, Wang, Y., 1999.Geochemical Study on Igneous Rocks of Orogenic Belts.Earth Science Frontiers, 6(3):113-120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200201007.htm [59] Zhang, R.Y., Zhang, C.L., Sun, Y., 2013.Crustal Reworking in the North China Craton at ~2.5 Ga:Evidence from Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain.Acta Petrologica Sinica, 29(7):2265-2280(in Chinese with English abstract). doi: 10.1002/gj.2493/references [60] Zhang, Z.Q., Wu, J.S., Ye, X.J., 1991.Archaean Metamorphic Rocks from the Lower Fuping Group in the Mt.Taihang Region, North China:REE Geochemistry, Rb-Sr and Sm-Nd Ages and Implications.Geochimica, (2):118-127(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB198401004.htm [61] Zhao, G.C., 2009.Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton:Key Issues and Discussion.Acta Petrologica Sinica, 25(8):1772-1792(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908006.htm [62] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution.Precambrian Research, 103:55-88. https://www.researchgate.net/profile/Guochun_Zhao/publication/222679918_Metamorphism_of_basement_rocks_in_the_Central_Zone_of_the_North_China_Craton_imphcations_for_Paleoproterozoic_tectonic_evolution/links/0912f513b5c52cf290000000.pdf?origin=publication_list [63] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136:177-202. doi: 10.1016/j.precamres.2004.10.002 [64] Zhao, G.C., Wilde, S.A., Cawood, P.A., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107:45-73. doi: 10.1016/S0301-9268(00)00154-6 [65] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998.Thermal Evolution of the Archaean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting.International Geology Review, 40:706-721. doi: 10.1080/00206819809465233 [66] Zhao, T.P., Zhou, M.F., Jin, C.W., et al., 2001.Discussion on Age of the Xiong'er Group in Southern Margin of North China Craton.Chinese Journal of Geology, 36(3):326-334(in Chinese with English abstract). http://hub.hku.hk/handle/10722/151066 [67] Zhao, Z.H., 2007.How to Use the Trace Element Diagrams to Discriminate Tectonic Settings.Geotectonica et Melallogenia, 31(1):92-103(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200701012.htm [68] Zhao, Z.X., Du, J.F., Li, Y.H., et al., 2004.Formation of the Neoarchean Collision Orogen and Its Division of Tectonic Slices in Wutaishan Mountain.Geological Survey and Research, 27(1):5-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200401001.htm [69] 邓晋福, 吴宗絮, 赵国春, 等, 1999.华北地台前寒武花岗岩类、陆壳演化与克拉通形成.岩石学报, 15(2): 190-198. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.004.htm [70] 高劢, 高凡, 1988.张家口宣化地区太古代麻粒岩退变质作用与Rb-Sr等时年龄证据.河北地质学院学报, 11(4): 11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDX198804001.htm [71] 关鸿, 孙敏, 徐平, 1998.阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学研究.岩石学报, 14(4): 460-470. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB804.004.htm [72] 胡波, 翟明国, 彭澎, 等, 2013.华北克拉通古元古代末-新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据.岩石学报, 29(7): 2508-2536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201307019.htm [73] 雷玮琰, 施光海, 刘迎新, 2013.不同成因锆石的微量元素特征研究进展.地学前缘, 20(4): 273-284. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304028.htm [74] 李江海, 牛向龙, 陈征, 等, 2004.太行山区深层次推覆构造的发现及其地质意义.自然科学进展, 14(10): 1118-1127. doi: 10.3321/j.issn:1002-008X.2004.10.006 [75] 刘敦一, 万渝生, 伍家善, 等, 2007.华北克拉通太古宙地壳演化和最古老的岩石.地质通报, 26(9);1131-1138. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200709016.htm [76] 刘志宏, 王安建, 李晓峰, 1997.五台山晚太古代碰撞造山带的变质作用演化.高校地质学报, 3(2);162-170. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX702.003.htm [77] 罗志波, 张华锋, 第五春荣, 等, 2012.冀西北怀安地区中性辉石麻粒岩的锆石U-Pb、Lu-Hf及微量元素组成对区域退变质时代的制约.岩石学报, 28(11): 3721-3738. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211024.htm [78] 孙敏, 关鸿, 2001.阜平杂岩年龄及其地质意义——兼论前寒武高级变质地体的定年问题.岩石学报, 17(1): 145-156. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101014.htm [79] 万渝生, 苗培森, 刘敦一, 等, 2010.华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约.科学通报, 55(7): 572-578. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201007007.htm [80] 王凯怡, 郝杰, Simon, W., 等, 2000.山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识:单颗粒锆石离子探针质谱年龄提出的地质制约.地质科学, 35(2): 175-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002005.htm [81] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th-Hf、Ta-Hf图解判别.岩石学报, 17(3): 413-421. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm [82] 魏颖, 郑建平, 苏玉平, 等, 2013.怀安麻粒岩锆石U-Pb年代学及Hf同位素:华北北缘下地壳增生再造过程研究.岩石学报, 29(7): 2281-2294. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201307003.htm [83] 吴昌华, 李惠民, 钟长汀, 等, 2000.阜平片麻岩和湾子片麻岩的单颗粒锆石U-Pb年龄-阜平杂岩并非一统太古宙基底的年代学证据.前寒武纪研究进展, 23(3): 129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200003000.htm [84] 吴元保, 陈道公, 夏群科, 等, 2002.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征.科学通报, 47(11): 859-863. doi: 10.3321/j.issn:0023-074X.2002.11.013 [85] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [86] 夏林圻, 夏祖春, 徐学义, 等, 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 26(1): 77-89. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701010.htm [87] 肖玲玲, 蒋宗胜, 2010.赞皇斜长角闪片岩地球化学特征及其构造环境探讨.矿物岩石地球化学通报, 29(4): 339-347. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201004002.htm [88] 肖玲玲, 刘福来, 刘建辉, 等, 2013.左权-赞皇变质杂岩的地球化学特征及其构造意义.岩石学报, 29(2): 533-550. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302014.htm [89] 肖玲玲, 卢俊生, 王国栋, 等, 2012.赞皇变质杂岩区西南部斜长角闪岩的地球化学、变质演化研究及其构造意义.岩石学报, 28(9): 2807-2818. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209012.htm [90] 肖玲玲, 王国栋, 2011.赞皇变基性岩中锆石的U-Pb定年及其地质意义.岩石矿物学杂志, 30(5): 781-794. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201105005.htm [91] 张莉莉, 代芳华, 崔加伟, 等, 2014.内蒙古固阳地区新太古代变质侵入岩地球化学特征及意义.地球科学, 39(3): 271-282. http://earth-science.net/WebPage/Article.aspx?id=2838 [92] 张旗, 钱青, 王焰, 1999.造山带火成岩地球化学研究.地学前缘, 6(3): 113-120. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903015.htm [93] 张瑞英, 张成立, 孙勇, 2013.华北克拉通~2.5Ga地壳再造事件:来自中条山TTG质片麻岩的证据, 岩石学报, 29(7): 2265-2280. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406003.htm [94] 张宗清, 伍家善, 叶笑江, 1991.阜平群下部太古代变质岩石的REE、Rb-Sr和Sm-Nd年龄及其意义.地球化学, (2): 118-127. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199102002.htm [95] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8): 1772-1792. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908006.htm [96] 赵太平, 周美夫, 金成伟, 等, 2001.华北陆块南缘熊耳群形成时代讨论.地质科学, 36(3): 326-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103007.htm [97] 赵振华, 2007.关于岩石微量元素构造环境判别图解使用的有关问题.大地构造与成矿, 31(1): 92-103. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200701012.htm [98] 赵祯祥, 杜晋锋, 李营辉, 等, 2004.五台山新太古代碰撞造山带的形成及构造岩片划分.地质调查与研究, 27(1): 5-12. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200401001.htm