The Coupling Relationship between Hydrothermal Fluids and the Hydrocarbon as Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift
-
摘要: 天然气成藏已经成为目前的研究热点之一.通过对塔里木盆地顺南地区奥陶系44块样品进行成岩观察、流体包裹体系统分析、碳氧同位素分析测试和激光拉曼探针测试,对区内的热流体活动及热液矿物进行了识别,并对可能的热流体活动和油气成藏时期进行了推测.结果显示热流体活动在区内形成了大套的硅化地层和大量裂缝、溶洞中的方解石和石英胶结物,并伴随区内第1期天然气成藏,可能发生于海西晚期-印支期;区内第2期油气成藏主要发生于喜山期,以天然气为主.热流体活动不仅促进了海西晚期的天然气成藏,同时也对储层物性的提高和储集空间的保存起到了积极作用.Abstract: Natural gas allumulation has become one of the hot spots in the current research. In this paper, 44 samples of the Ordovician in Shunnan area have been employed to make diagenetic observation, fluid inclusions measurement, carbon and oxygen isotope measurement and Raman spectrum, aiming to recognize the hydrothermal fluid flows and speculate the time of the hydrothermal fluid flows and the accumulation of the oil and gas. The silicified limestone and the calcite, quartz cement in the cracks and caves are the products of hydrothermal fluids, accompanied with the first stage of gas accumulation during late Hercynian-Indosinian. The second stage of gas accumulation produced during Himalayan. Hydrothermal activities not only promote the gas accumulation during Hercynian, but also play a positive role in improve and preserve the reservoir spaces.
-
图 4 顺南地区奥陶系典型成岩现象照片
a-a’.SN4井,O1-2y,6 673.28 m,单偏光和阴极发光照片,裂缝中的石英胶结物,发蓝色和棕色阴极光,从裂缝壁向中心石英颗粒变大、自形程度变高(红色箭头),可见石英晶间孔;b-b’.SN2井,O1-2y,6 874.90 m,单偏光和阴极发光照片,灰岩围岩中分布的半自形-自形交代石英,发蓝色阴极光,裂缝中充填的方解石Ⅱ,发亮橙黄色阴极光;c-c’.SN4井,O1-2y,6 673.28 m,单偏光和阴极发光照片,裂缝和石英晶间孔中充填的方解石Ⅱ,发亮橙黄色阴极光;d-d’.SN4井,O1-2y,6 671.77 m,单偏光和阴极发光照片,硅化灰岩,灰岩围岩中分布的半自形-自形交代石英,发蓝色阴极光,溶孔中充填的方解石Ⅰ,发暗橙红色阴极光;e-e’.SN4井,O1-2y,6 668.81 m,单偏光和阴极发光照片,石英晶间孔中的方解石Ⅱ,发亮橙黄色和亮橙红色阴极光;f-f’.SN4井,O2yj,6 363.08 m,单偏光和阴极发光照片,沿着缝合线发育的白云石,发红色阴极光
Fig. 4. The typical pictures of diagenesis processes in Shunnan area
图 6 顺南地区奥陶系方解石Ⅱ氧同位素δ18OPDB与最低Th交汇
据Davies and Smith(2006);朱东亚等(2009);金之钧等(2013)修编.寒武纪-奥陶纪海水氧同位素δ18OSMOW范围为-8‰~-3‰(Veizer, 1997),大气淡水比当时海水氧同位素δ18OSMOW偏轻3‰左右(Gat, 1996),即-11‰~-6‰,地层水氧同位素δ18OSMOW范围为-4‰~5‰(Cai, 2001),热流体的氧同位素δ18OSMOW最高可达10‰~12‰(郑永飞和陈江峰,2000),随着与地层流体的混合而逐渐降低,直至最后完全表现出地层水的特征.流体氧同位素δ18OSMOW等值线根据方解石-流体氧同位素分馏方程计算
Fig. 6. Relationship between δ18OPDB values and minimum homogenization temperatures of the calcite Ⅱ in the Ordovician, Shunnan area
图 7 油包裹体和富气相包裹体照片集
a, b.SN1井,O2yj,6 531.40 m,单偏光和显微荧光照片,裂缝方解石Ⅱ中捕获的发蓝绿色荧光的次生油包裹体;c.SN4井,O1-2y,6 673.28 m,单偏光和显微荧光照片,裂缝方解石Ⅱ中捕获的发黄绿色荧光的原生油包裹体;d.SN4井,O1-2y,6 673.05 m,单偏光和显微荧光照片,交代石英中捕获的发蓝色色荧光的原生油包裹体;e.SN4井,O1-2y,6 673.28 m,单偏光照片,胶结石英中捕获的原生气相包裹体;f.SN4井,O1-2y,6 673.28 m,单偏光照片,切穿多个石英颗粒的愈合裂纹中捕获的次生气相包裹体
Fig. 7. The typical pictures of oil and gas inclusions in Shunnan area
表 1 顺南地区成岩矿物原生盐水流体包裹体测试数据
Table 1. The homogenization temperatures of primary aqueous inclusions in diagenesis minerals in Shunnan area
成岩矿物 井号 层位 流体包裹体均一温度(℃) 初熔温度(℃) 最终熔化温度(℃) 范围 平均值 范围 平均值 范围 平均值 方解石Ⅰ SN1 O2yj 122.6~178.1 153.7 -23.0~-4.0 -9.4 O1-2y 113.5~183.2 152.9 -27.4~-1.0 -6.9 O1-2y SN2 172.9~188.9 179.5 -12.9~-2.1 -6.3 SN3 O2yj 145.2~179.0 156.6 -27.1~-6.5 -6.3 O1-2y 119.7~180.2 145.5 -27.1~-6.5 -19.8 SN4 O2yj 128.5~180.3 158.7 -11.7~-8.6 -10.3 O1-2y 158.6~188.9 172.1 -17.5~-7.7 -11.9 方解石Ⅱ SN1 O2yj 151.6~162.4 157.4 -28.1~-25.4 -26.5 O1-2y 154.2~199.2 180.9 -29.6~-7.5 -17.5 SN2 O2yj 157.1~230.9 192.6 -28.8~-13.0 -22.4 O1-2y 142.3~220.5 172.0 -36.1~-16.5 -24.6 SN4 O1-2y 147.6~259.6 200.9 -58.2~-52.4 -56.3 -37.1~-4.2 -21.2 交代石英 SN2 O1-2y 148.9~235.2 172.9 -25.1~-13.6 -19.2 SN4 O1-2y 151.2~248.9 195.6 -56.3~-50.2 -53.9 -37.5~-3.2 -19.1 胶结石英 SN4 O1-2y 144.2~254.4 199.4 -60.0~-44.6 -50.6 -37.4~-3.3 -18.6 注:流体包裹体系统测试在中国地质大学(武汉)资源学院石油系微观烃类检测实验室完成.显微测温、测盐仪器为英国产Linkam THMS 600G冷热台,测定误差为±0.1 ℃.显微测温初始升温速率为8 ℃/min,当包裹体临近均一状态时升温速率调整为2 ℃/min. 表 2 顺南地区方解石Ⅱ和泥晶灰岩碳氧同位素组成及对应流体包裹体最低均一温度
Table 2. The carbon and oxygen isotope compositions and minimum homogenization temperatures of calcite Ⅱ and micrite limestone in Shunnan area
井号 层位 深度(m) 矿物类型 δ13CPDB(‰) δ18OPDB(‰) 流体包裹体最低Th(℃) SN1 O2yj 6 531.40 方解石Ⅱ -0.24 -7.76 151.6 O2yj 6 533.04 方解石Ⅱ -0.34 -9.46 155.7 O1-2y 6 672.81 方解石Ⅱ 0.24 -9.97 154.2 O1-2y 6 968.13 方解石Ⅱ -2.22 -12.94 174.9 O1-2y 6 968.42 方解石Ⅱ -2.22 -9.61 160.4 SN2 O2yj 6 454.45 方解石Ⅱ -2.18 -12.49 157.1 O1-2y 6 554.86 方解石Ⅱ -0.44 -10.91 166.2 O1-2y 6 870.52 方解石Ⅱ -2.48 -13.26 142.3 SN4 O1-2y 6 668.81 泥晶灰岩 0.19 -6.58 O1-2y 6 460.66 方解石Ⅱ -1.82 -11.09 188.1 O1-2y 6 673.28 溶洞中方解石Ⅱ -1.98 -10.83 216.6 裂缝中方解石Ⅱ -1.93 -10.66 190.9 注:碳氧同位素测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.碳氧同位素测试采用了标准100%磷酸法,使用的质谱仪型号为MAT251EM,δ13C和δ18O均以PDB为标准,测试精度为:δ13C<0.01‰,δ18O<0.02‰. -
[1] Burke, E.A.J., 2001.Raman Microspectrometry of Fluid Inclusions.Lithos, 55(1-4):139-158.doi: 10.1016/s0024-4937(00)00043-8 [2] Cai, C.F., Li, K.K., Li, H.T., et al., 2008.Evidence for Cross Formational Hot Brine Flow from Integrated 87Sr/86Sr, REE and Fluid Inclusions of the Ordovician Veins in Central Tarim, China.Applied Geochemistry, 23(8):2226-2235.doi: 10.1016/j.apgeochem.2008.03.009 [3] Chen, D.Z., 2008.Structure-Controlled Hydrothermal Dolomitization and Hydrothermal Dolomite Reservoirs.Oil & Gas Geology, 29(5):614-622 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200805014.htm [4] Chen, H.H., 2007.Advances in Geochronology of Hydrocarbon Accumulation.Oil & Gas Geology, 28(2):143-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200702006.htm [5] Chen, H.L., Yang, S.F., Li, Z.L., et al., 2009.Spatial and Temporal Characteristics of Permian Large Igneous Province in Tarim Basin.Xinjiang Petroleum Geology, 30(2):179-182 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJSD200902013.htm [6] Chi, G.X., Lu, H.Z., 2008.Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept.Acta Petrologica Sinica, 24(9):1945-1953 (in Chinese with English abstract). http://www.oalib.com/paper/1472413 [7] Cui, H., Guan, P., Jian, X., 2012.Magmatic Hydrothermal Fluids-Formation Water Compound System and Diagenetic response of Carbonate Reservoir Rocks in Northern Tarim Basin.Acta Scientiarum Naturalium Universitatis Pekinensis, (3):30-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201203015.htm [8] Davies, G.R., Smith, L.B., 2006.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview.AAPG Bulletin, 90(11):1641-1690.doi: 10.1306/05220605164 [9] Friedman, I., O'Neil, J.R., 1977.Complilation of Stable Isotope Fractionation Factors of Geochemical Interest.U.S.Geol.Surv.Prof.Paper, U.S.A., 440 KK: 12. [10] Gao, Q.D., Zhao, K.Z., Hu, X.F., et al., 2011.C-O, Sr Isotope Composition of the Carbonate in Ordovician in Tarim Basin and Implication on Fluid Origin.Journal of Zhejiang University:Science Edition, 38(5):579-583 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZDX201105019.htm [11] Gat, J.R., 1996.Oxygen and Hydrogen Isotopes in the Hydrologic Cycle.Annual Review of Earth and Planetary Sciences, 24(1):225-262.doi: 10.1146/annurev.earth.24.1.225 [12] Goldstein, R.H., 2001.Fluid Inclusions in Sedimentary and Diagenetic Systems.Lithos, 55(1-4):159-193.doi: 10.1016/s0024-4937(00)00044-x [13] Goldstein, R.H., Reynolds, T.J., 1994.Systematics of Fluid Inclusions in the Diagenetic Minerals.SEPM Short Course 31, Tulsa. [14] Jiao, C.L., He, Z.L., Xing, X.J., et al., 2011.Tectonic Hydrothermal Dolomite and its Significance of Reservoirs in Tarim Basin.Acta Petrologica Sinica, 27(1):277-284 (in Chinese with English abstract). http://www.oalib.com/paper/1475299 [15] Jin, Z.J., Zhu, D.Y., Meng, Q.Q., et al., 2013.Hydrothermal Activites and Influences on Migration of Oil and Gas in Tarim Basin.Acta Petrologica Sinica, 29(3):1048-1058 (in Chinese with English abstract). [16] Lavoie, D., Chi, G., 2006.Hydrothermal Dolomitization in the Lower Silurian La Vieille Formation in Northern New Brunswick:Geological Context and Significance for Hydrocarbon Exploration.Bulletin of Canadian Petroleum Geology, 54(4):380-395.doi: 10.2113/gscpgbull.54.4.380 [17] Li, H.L., Qiu Nanhsheng, Jin, Z.J., et al., 2005.Geothermal History of Tarim Basin.Oil & Gas Geology, 26(5):613-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBYD200501004.htm [18] Li, K.K., Cai, C.F., Cai, L.L., et al., 2008.Hydrothermal Fluid Activity and Thermochemical Sulfate Reduction in the Upper Ordovician, Tazhong Area.Oil & Gas Geology, 29(2):217-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200802009.htm [19] Li, K.P., Chen, H.H., Feng, Y., 2012.Characteristics of Homogenization Temperatures of Fluid Inclusions and Application in Deeply Buried Carbonate Rocks.Natural Gas Geoscience, 23(4):756-763 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201204020.htm [20] Li, Z., Huang, S.J., Liu, J.Q., et al., 2010.Buried Diagenesis Structurally Controlled Thermal Fluid Process and Their Effect on Ordovician Carbonate.Acta Sedimentologica Sinica, 28(5):969-979 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201005016.htm [21] Liu, C.G., Li, G.R., Zhu, C.L., et al., 2008.Geochemistry Characteristics of Carbon, Oxygen and Strontium Isotopes of Calcites Filled in Karstic Fissure-Cave in Lower-Middle Ordovician of Tahe Oilfield, Tarim Basin.Earth Science, (3):377-386 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200803013.htm [22] Liu, X.F., Cai, Z.X., Li, S.X., et al., 2012.Geochemistry and Genesis of Mineral Rare Earth Elements in Fluorite Ore Cavities in Xinjiang Xiker Area.Xinjiang Petroleum Geology, 33(06):660-663 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201206009.htm [23] Liu, Z.B., Li, H.L., Qiang, Y.X., et al., 2012.Characteristics of Lower Paleozoic Carbonate Sediment and Reservoir of Guchengxu Uplift in Tazhong Area.Chinese Journal of Geology, 47(3):640-652 (in Chinese with English abstract). [24] Lu H Z, Fan H R, Ni P, et al., 2004.Fluid Inclusions.Beijing:Science Press (in Chinese). [25] Ma, Q.Y., Sha, X.G., Li, Z.J., et al., 2013.Evidence of Exposure Erosion of Lower-Middle Ordovician Top in Beiweixie Region, Middle Tarim Basin.Petroleum Geology & Experiment, 35(5):500-504 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201305006.htm [26] Ma, W.X., Liu, S.G., Huang, W.M., et al., 2014.Fabric Characteristics and Formation Mechanism of Chert in Sinian Dengying Formation, Eastern Chongqing.Acta Geologica Sinica, (2):239-253 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201402007.htm [27] Tang, L.J., Qiu, H.J., Yun, L., et al., 2014.Poly-Phase Reform-Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin, Nw China.Journal of Jilin University:Earth Science Edition, 44(1):1-14 (in Chinese with English abstract). [28] Tang, Z.X., Cao, Z.C., Wang, X.W., et al., 2013.Reservoir Characteristics and Influencing Factors in the Inner Yingshan Formation in Guchengxu Uplift, Tarim Basin.Lithologic Reservoirs, 25(4):44-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201304011.htm [29] Veizer, J., Azmy, K., Ala, D., et al., 1997.Oxygen Isotope Evolution of Phanerozoic Seawater.Palaeo, 132:159-172. doi: 10.1016/S0031-0182(97)00052-7 [30] Wei, G.Q., Jia, C.Z., Song, H.Z., et al., 2000.Ordovician Structural-Depositional Model and Prediction ForProfitable Crack Reservoir of Carbonate Rock in Tazhong Area, Tarim Basin.Acta Sedimentologica Sinica, 18(3):408-413 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200003013.htm [31] Wendte, J., Byrnes, A., Sargent, D., 2009a.The Control of Hydrothermal Dolomitization and Associated Fracturing on Porosity and Permeability of Reservoir Facies of the Upper Devonian Jean Marie Member (Redknife Formation) in the July Lake Area of Northeastern British Columbia.Bulletin of Canadian Petroleum Geology, 57(4):387-408.doi: 10.2113/gscpgbull.57.4.387 [32] Wendte, J., Chi, G., Al-Aasm, I., et al., 2009b.Fault/fracture Controlled Hydrothermal Dolomitization and Associated Diagenesis of the Upper Devonian Jean Marie Member (Redknife Formation) in the July Lake Area of Northeastern British Columbia.Bulletin of Canadian Petroleum Geology, 57(3):275-322.doi: 10.2113/gscpgbull.57.3.275 [33] Wu, M.B., Wang, Y., Zheng, M.L., et al., 2007.Hydrothermal Fluid Karst and Influence to Reservoir in Ordovician Carbonate Rocks of Tazhong Area.Science in China:Series D, 37(S01):83-92 (in Chinese). [34] Wu, Y., Chen, H.H., Xiao, Q.G., et al., 2011.Active Thermal Fluids and the Lower Cretaceous Hydrocarbon Accumulation in the Cuoqin Basin, Tibet.Acta Petrolei Sinica, 32(4):621-628 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201104011.htm [35] Yang, H.J., Li, K.K., Pan, W.Q., et al., 2012.Burial Hydrothermal Dissolution Fluid Activity and its Transforming Effect on the Reservoirs in Ordovician in Central Tarim.Acta Petrologica Sinica, 28(3):783-792 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201203008.htm [36] Yang, S.B., Liu, J., Li, H.L., et al., 2013.Characteristics of the NE-Trending Strike-Slip Fault System and its Control on Oil Accumulation in North Peri-Cline Area of the Tazhong Paleouplift.Oil & Gas Geology, (6):797-802 (in Chinese with English abstract). [37] Yang, S.F., Chen, H.L., Li, Z.L., et al., 2014.Early Permian Tarim Large Igneous Province in Northwest China.Science China:Earth Sciences, 44(2):187-199 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201312003&dbname=CJFD&dbcode=CJFQ [38] Yin, G., Ni, S.J., 2009.Isotope Geochemistry.Geological Publishing House, Beijing (in Chinese). [39] Yu, X., Chen, H.L., Yang, S.F., et al., 2009.Geochemical Features of Permian Basalts in Tarim Basin and Compared with Emeishan LIP.Acta Petrologica Sinica, 25(6):1492-1498 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090620 [40] Zhang, S.C., 2000.Middle-Upper Ordovician Source Rock Geochemistry of the Tarim Basin.Acta Petrolei Sinica, 21(6):23-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200006005.htm [41] Zhang, S.C., Zhang, B.M., Wang, F.Y., et al., 2000.Middle-Upper Ordovician Stratium:The Main Hydrocarbon Source Rocks.Marine Origin Petroleum Geology, 5(2):16-22 (in Chinese with English abstract). [42] Zhang, W.H., Chen, Z.Y., 1993.Geology of Fluid Inclusions.China University of Geosciences Press, Wuhan (in Chinese). [43] Zhang, X.F., Hu, W.X., Zhang, J.T., et al., 2008.Geochemical Analyses on Dolomitizing Fluids of Lower Ordovician Carbonate Reservoir in Tarim Basin.Earth Science Frontiers, 15(2):80-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200802010.htm [44] Zheng, Y.F., Chen, J.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese). [45] Zhu, D.Y., Jin, Z.J., Hu, W.X., 2009.Hydrothermal Alteration Dolomite Reservoir in Tazhong Area.Acta Petrolei Sinica, 30(5):698-704 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200905012.htm [46] Zhu, D.Y., Jin, Z.J., Hu, W.X., 2010.Hydrothermal Recrystallization of the Lower Ordovician Dolomite and Its Significance to Reservoir in Northern Tarim Basin.Science in China:Series D, 40(2):156-170 (in Chinese). doi: 10.1007/s11430-010-0028-9 [47] Zhu, D.Y., Meng, Q.Q., Hu, W.X., et al., 2013.Differences between Fluid Activities in the Central and North Tarim Basin.Geochimica, (1):82-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201301009.htm [48] 陈代钊, 2008.构造-热液白云岩化作用与白云岩储层.石油与天然气地质, 29(5): 614-622. doi: 10.11743/ogg20080510 [49] 陈汉林, 杨树锋, 厉子龙, 等, 2009.塔里木盆地二叠纪大火成岩省发育的时空特点.新疆石油地质, 30(2): 179-182. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902013.htm [50] 陈红汉, 2007.油气成藏年代学研究进展.石油与天然气地质, 28(2): 143-150. doi: 10.11743/ogg20070203 [51] 池国祥, 卢焕章, 2008.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报, 24(9): 1945-1953. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm [52] 崔欢, 关平, 简星, 2012.塔北西部岩浆热液-地层水流体系统及碳酸盐岩储层的成岩作用响应.北京大学学报:自然科学版, (3): 30-32. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203015.htm [53] 高奇东, 赵宽志, 胡秀芳, 等, 2011.塔里木盆地奥陶系碳酸盐岩碳氧同位素组成及流体来源讨论.浙江大学学报:理学版, 38(5): 579-583. http://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201105019.htm [54] 焦存礼, 何治亮, 邢秀娟, 等, 2011.塔里木盆地构造热液白云岩及其储层意义.岩石学报, 27(1): 277-284. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101020.htm [55] 金之钧, 朱东亚, 孟庆强, 等, 2013.塔里木盆地热液流体活动及其对油气运移的影响.岩石学报, 29(3): 1048-1058. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm [56] 李慧莉, 邱楠生, 金之钧, 等, 2005.塔里木盆地的热史.石油与天然气地质, 26(5): 613-617. doi: 10.11743/ogg20050509 [57] 李开开, 蔡春芳, 蔡镠璐, 等, 2008.塔中地区上奥陶统热液流体与热化学硫酸盐还原作用.石油与天然气地质, 29(2): 217-222. doi: 10.11743/ogg20080210 [58] 李克蓬, 陈红汉, 丰勇, 2012.深层碳酸盐岩流体包裹体均一温度特征及应用探讨.天然气地球科学, 23(4): 756-763. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204020.htm [59] 李忠, 黄思静, 刘嘉庆, 等, 2010.塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造—热流体作用及其有效性.沉积学报, 28(5): 969-979. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201101001118.htm [60] 刘存革, 李国蓉, 朱传玲, 等, 2008.塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征.地球科学, (3): 377-386. doi: 10.11764/j.issn.1672-1926.2008.03.377 [61] 刘显凤, 蔡忠贤, 李树新, 等, 2012.新疆西克尔萤石矿洞稀土元素地球化学特征及成因.新疆石油地质, 33(6): 660-663. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206009.htm [62] 刘忠宝, 李慧莉, 钱一雄, 等, 2012.塔中古城墟隆起下古生界碳酸盐岩沉积与储层特征.地质科学, 47(3): 640-652. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201203008.htm [63] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社. [64] 马庆佑, 沙旭光, 李宗杰, 等, 2013.塔里木盆地塔中北围斜中下奥陶统顶部暴露剥蚀的证据探讨.石油实验地质, 35(5): 500-504. doi: 10.11781/sysydz201305500 [65] 马文辛, 刘树根, 黄文明, 等, 2014.渝东地区震旦系灯影组硅质岩结构特征与成因机理.地质学报, (2): 239-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402007.htm [66] 汤良杰, 邱海峻, 云露, 等, 2014.塔里木盆地多期改造-晚期定型复合构造与油气战略选区.吉林大学学报:地球科学版, 44(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htm [67] 唐照星, 曹自成, 汪新文, 等, 2013.塔里木盆地古城墟隆起鹰山组内幕储层特征及影响因素.岩性油气藏, 25(4): 44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201304011.htm [68] 魏国齐, 贾承造, 宋惠珍, 等, 2000.塔里木盆地塔中地区奥陶系构造-沉积模式与碳酸盐岩裂缝储层预测.沉积学报, 18(3): 408-413. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003013.htm [69] 吴茂炳, 王毅, 郑孟林, 等, 2007.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响.中国科学(D辑):地球科学, (S1): 83-92. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1009.htm [70] 吴悠, 陈红汉, 肖秋苟, 等, 2011.青藏措勤盆地下白垩统活动热流体与油气成藏.石油学报, 32(4): 621-628. doi: 10.7623/syxb201104009 [71] 杨海军, 李开开, 潘文庆, 等, 2012.塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用.岩石学报, 28(3): 783-792. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm [72] 杨圣彬, 刘军, 李慧莉, 等, 2013.塔中北围斜区北东向走滑断裂特征及其控油作用.石油与天然气地质, (6): 797-802. doi: 10.11743/ogg20130612 [73] 杨树锋, 陈汉林, 厉子龙, 等, 2014.塔里木早二叠世大火成岩省.中国科学(D辑):地球科学, (2): 187-199. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201402001.htm [74] 尹观, 倪师军, 2009.同位素地球化学.北京:地质出版社. [75] 余星, 陈汉林, 杨树锋, 等, 2009.塔里木盆地二叠纪玄武岩的地球化学特征及其与峨眉山大火成岩省的对比.岩石学报, 25(6): 1492-1498. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906020.htm [76] 张水昌, 2000.塔里木盆地中上奥陶统油源层地球化学研究.石油学报, 21(6): 23-28. doi: 10.7623/syxb200006004 [77] 张水昌, 张宝民, 王飞宇, 等, 2000.中—上奥陶统:塔里木盆地的主要油源层.海相油气地质, 5(Z1): 16-22. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2000Z1008.htm [78] 张文淮, 陈紫英, 1993.流体包裹体地质学.武汉:中国地质大学出版社. [79] 张学丰, 胡文瑄, 张军涛, 等, 2008.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析.地学前缘, 15(2): 80-89. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802010.htm [80] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社. [81] 朱东亚, 金之钧, 胡文瑄, 2009.塔中地区热液改造型白云岩储层.石油学报, 30(5): 698-704. doi: 10.7623/syxb200905011 [82] 朱东亚, 孟庆强, 胡文瑄, 等, 2013.塔里木盆地塔北和塔中地区流体作用环境差异性分析.地球化学, (1): 82-94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201301009.htm [83] 朱东亚, 金之钧, 胡文瑄, 2010.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义.中国科学:地球科学, (2): 156-170. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002003.htm